Advertisement

The Peru-Chile Margin from Global Gravity Field Derivatives

  • Orlando Álvarez
  • Mario Giménez
  • Federico Lince Klinger
  • Andrés Folguera
  • Carla Braitenberg
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

Deformation along the 3,500 km subduction Pacific margin of the Peru-Chile trench is partially controlled by ocean bathymetric heterogeneities and sediments. Oceanic highs (e.g. ridges, fracture zones, plateaus) influence deformation in the fore-arc zone where collision occurs, and control turbiditic flow dispersal and consequently the amount of sediments accreted at the frontal accretionary prism and subduction channel, compartmentalizing the trench into segments linked to seismic segmentation. Recent satellite missions (CHAMP, GRACE and GOCE) have introduced an extraordinary improvement in the reconstruction of the global gravity field. Earth gravity field models, mainly derived from satellite measurements, reflect mass inhomogeneities of the earth. This chapter focuses on the determination of mass heterogeneities over the oceanic plate and their relation to general distribution of sediments over the Peru-Chilean margin, seismic segmentation along the margin, and the relationship between trench sediment thickness and the variable Andean orogenic volume, by means of a gravimetric analysis. Using the gravity potential model EGM2008 and satellite GOCE data we calculated two functionals of the geopotential: the Bouguer anomaly and the vertical gravity gradient, both corrected for the topographic effect. The vertical gravity gradient field is of special interest as it highlights main geological features, and allows unraveling unknown structures that are concealed by sediments. From these, different features can be clearly depicted such as the contact between the Pacific oceanic crust and the South American plate, the Nazca Ridge, the Juan Fernandez Ridge and the Chile Rise, among others. The segmentation between a filled trench south of Juan Fernandez Ridge, a partially filled trench to the north up to the Copiapo Ridge, and a completely starved trench north of this latitude is depicted. Finally, the relationship between gravity derived fields, high oceanic features and seismic segmentation is discussed for the last megathrust earthquakes that affected this subductive plate boundary.

Keywords

GOCE EGM2008 Megathrust earthquakes Vertical gravity gradient 

Notes

Acknowledgements

Authors acknowledge the use of the GMT-mapping software of Wessel & Smith (1998). The authors would like to thank to CONICET.

References

  1. Adam J, Reuther CD (2000) Crustal dynamics and active fault mechanics during subduction erosion. Application of frictional wedge analysis on to the North Chilean Forearc. Tectonophysics 321:297–325CrossRefGoogle Scholar
  2. Alonso R, Bookhagen B, Carrapa B, Coutand I, Haschke M, Hilley G, Schoenbohm L, Sobel E, Strecker M, Trauth M, Villanueva A (2006) Tectonics, climate, and landscape evolution of the Southern Central Andes: the Argentine Puna Plateau and adjacent regions between 22 and 30° S. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes active subduction orogeny. Frontiers in earth science series. Springer, Berlin Heidelberg New York, pp 265–284Google Scholar
  3. Alvarez O, Gimenez ME, Braitenberg C, Folguera A (2012) GOCE satellite de rived gravity and gravity gradient corrected for topo graphic Effect in the South Central Andes region. Geophys J Int 190(2):941–959. https://doi.org/10.1111/j.1365-246X.2012.05556.xCrossRefGoogle Scholar
  4. Alvarez O, Gimenez ME, Braitenberg C (2013) Nueva metodología para el cálculo del efecto topográfico para la corrección de datos satelitales. Rev Asoc Geol Arg 70(4):422–429Google Scholar
  5. Alvarez O, Nacif S, Gimenez M, Folguera A, Braitenberg A (2014) GOCE drived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin. Tectonophysic 622:198–215. https://doi.org/10.1016/j.tecto.2014.03.011CrossRefGoogle Scholar
  6. Alvarez O, Nacif S, Spagnotto S, Folguera A, Gimenez M, Chlieh M, Braitenberg C (2015) Gradients from GOCE reveal gravity changes before Pisagua Mw = 8.2 and Iquique Mw = 7.7 large megathrust earthquakes. J South Am Earth Sci 64(2):15–29.  https://doi.org/10.1016/j.jsames.2015.09.014Google Scholar
  7. Álvarez O, Pesce A, Gimenez M, Folguera A, Soler S, Wenjin C (2016) Analysis of the Illapel Mw = 8.3 thrust earthquake rupture zone using GOCE derived gradients. Pure Appl Geophys, online first August, 2016. https://doi.org/10.1007/s00024-016-1376-y
  8. Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, pp 19Google Scholar
  9. Anderson EG (1976) The effect of topography on solutions of Stokes’ problem. Unisurv S-14, Rep, School of Surveying, University of New South Wales, KensingtonGoogle Scholar
  10. Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16(3):489–505CrossRefGoogle Scholar
  11. Barthelmes F (2009) Definition of functionals of the geopotential and their calculation from spherical harmonic models theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM), Scientific Technical Report STR09/02, GFZ German Research Centre for Geosciences, Postdam, Germany. http://icgem.gfz-postdam.de
  12. Braitenberg C, Mariani P, Ebbing J, Sprlak M (2011) The enigmatic Chad lineament revisited with global gravity and gravity gradient fields, Spec. Pub. Geol. Soc. London, ‘The formation and evolution of Africa from the Archaean to Present’Google Scholar
  13. Bruinsma SL, Förste C, Abrikosov O, Marty JC, Rio MH, Mulet S, Bonvalot S (2013) The new ESA satellite-only gravity field model via the direct approach. Geophys Res Lett 40:3607–3612CrossRefGoogle Scholar
  14. Cande SC, Leslie RB, Parra JC, Hobart M (1987) Interaction between the Chile ridge and the Chile trench: geophysical and geothermal evidence. J Geophys Res 92:495–520CrossRefGoogle Scholar
  15. Contreras-Reyes ER (2008) Evolution of the seismic structure of the incoming/subducting oceanic Nazca plate off south-central Chile (Ph.D. thesis): Kiel, Germany, Christian-Albrechts-Universität zu Kiel, p 143Google Scholar
  16. Contreras-Reyes ER, Flueth E, Grevemeyer I (2010) Tectonic control on sediment accretion and subduction off south-central Chile: Implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes. Tectonics 29 (TC6018). https://doi.org/10.1029/2010TC002734
  17. DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478CrossRefGoogle Scholar
  18. Götze HJ, Schmidt S, Wienecke S, Braitenberg C, Schreckenberger B (2003) Regional gravity offshore Chile—new insight into crustal structures. Poster presentation SFB 267 Workshop, Pucón, Chile, October 2003Google Scholar
  19. Hackney R, Echtler HP, Franz G, Götze HJ, Lucassen F, Marchenko D, Melnick D, Meyer U, Schmidt S, Tašárová Z, Tassara A, Wienecke S (2006) The segmented overriding plate and coupling at the South-Central Chilean Margin (36°–42° S). In: Oncken O, Chong G, Franz G, Giese P, Götze H- J, Ramos VA, Strecker MR, Wigger P (eds) The Andes—active subduction orogeny. Frontiers in earth science series. Springer, Berlin Heidelberg New York, pp 355–375Google Scholar
  20. Hartley AJ (2003) Andean uplift and climate change. J Geol Soc Lond 160:7–10CrossRefGoogle Scholar
  21. Hartley AJ, Jolley EJ (1995) Tectonic implications of Late Cenozoic sedimentation from the Coastal Cordillera of northern Chile (22°–24° S). J Geol Soc London 152:51–63CrossRefGoogle Scholar
  22. Haselton K, Hilley G, Strecker MR (2002) Average Pleistocene climatic patterns in the southern Central Andes: controls on mountain glaciations and palaeoclimate implications. J Geol 110:211–226CrossRefGoogle Scholar
  23. Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point mass approaches for mass reductions in gravity field modeling. J Geod 81(2):121–136. https://doi.org/10.1007/s00190-006-0094-0CrossRefGoogle Scholar
  24. Hofmann-Wellenhof B, Moritz H (2005) Physical Geodesy. ISBN-10 3-211-33544-7, SpringerWien, NewYorkGoogle Scholar
  25. Janak J, Sprlak M (2006) New software for gravity field modelling using spherical armonic. Geodetic and Cartographic Horizon 52:1–8Google Scholar
  26. Kendrick E, Bevis M, Smalley R Jr, Brooks B, Vargas RB, Lauría E, Fortes LPS (2003) The Nazca—South America Euler vector and its rate of change. J South Am Earth Sci 16:125–131CrossRefGoogle Scholar
  27. Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797CrossRefGoogle Scholar
  28. Laursen J, Scholl D, von Huene R (2002) Neotectonic deformation of the central Chile margin: deepwater forearc basin formation in response to hot spot ridge and seamount subduction. Tectonics 21. https://doi.org/10.1029/2001TC901023
  29. Lenters JD, Cook KH (1997) On the origin of the Bolivian High and related circulation features of the South American climate. J Atm Sci 54:656–677CrossRefGoogle Scholar
  30. Li X (2001) Vertical resolution: gravity versus vertical gravity gradient. Lead Edge 20(8):901–904CrossRefGoogle Scholar
  31. Lindquist K, Engle K, Stahlke D, Price E (2004) Global topography and bathymetry grid improves research efforts. EOS 85(19). https://doi.org/10.1029/2004EO190003
  32. Lohrmann J, Kukowski N, Krawczyk CM, Oncken O, Sick C, Sobiesiak M, Rietbrock A (2006) Subduction channel evolution in brittle fore-arc wedges a combined study with scaled sandbox experiments, seismological and reflection seismic data and geological field evidence. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes—Active subduction orogeny. Frontiers in earth science series. Springer, Berlin Heidelberg New York, pp 237–262Google Scholar
  33. Métois M, Vigny C, Socquet A (2016) Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38°–18° S). Pure Appl Geophys 173(5):1431–1449. https://doi.org/10.1007/s00024-016-1280-5CrossRefGoogle Scholar
  34. Moreno MS, Melnick D, Rosenau M, Baez J, Klotz J, Oncken O, Tassara A, Chen J, Bataille K, Bevis M, Socquet A, Bolte J, Vigny C, Brooks B, Ryder I, Grund V, Smalley B, Carrizo D, Bartsch M, Hase H (2012) Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth Planet Sci Lett 321–322:152–165. https://doi.org/10.1016/j.epsl.2012.01.006CrossRefGoogle Scholar
  35. Müller RD, Roest WR, Royer J, Gahagan LM, Sclater JG (1997) Digital isochrons of the world’s ocean floor. J Geophys Res 102:3211–3214CrossRefGoogle Scholar
  36. Müller RD, Sdrolias M, Gaina C, Roest WR (2008) Age, spreading rates and spreading symmetry of the world’s ocean crust. Geochem Geophys Geosyst 9:Q04006. https://doi.org/10.1029/2007GC001743CrossRefGoogle Scholar
  37. New MG, Hulme M, Jones PD (1999) Representing 20th century spacetime climate variability. I: Development of a 1961–1990 mean monthly terrestrial climatology. J Climate 12:829–856CrossRefGoogle Scholar
  38. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Climate Res 21:1–25CrossRefGoogle Scholar
  39. Oncken O, Hindle D, Kley J, Elger K, Victor P, Schemmann K (2006) Deformation of the Central Andean upper plate system—facts, fiction, and constraints for plateau models. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes—active subduction orogeny. Frontiers in earth science series. Springer, Berlin Heidelberg New York, pp 3–28Google Scholar
  40. Pail R, Bruisma S, Migliaccio F, Förste C, Goiginger H, Schuh WD, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843CrossRefGoogle Scholar
  41. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth gravitational model to degree 2160: EGM2008, paper presented at the 2008 General Assembly of the European Geosciences Union, Vienna, AustriaGoogle Scholar
  42. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. https://doi.org/10.1029/2011JB008916CrossRefGoogle Scholar
  43. Ramos VA, Ghiglione M (2008) Tectonic evolution of the Patagonian Andes. Developments in quaternary sciences vol. 11: ISSN 1571-0866Google Scholar
  44. Ranero C, von Huene R, Weinrebe W, Reichert C (2006) Tectonic processes along the Chile convergent margin. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes—active subduction orogeny. Frontiers in earth science series. Springer, Berlin Heidelberg New York, pp 91–121Google Scholar
  45. Sandwell DT, Smith WHF (1997) Marine Bouguer anomaly from Geosat and ERS-1 satellite altimetry. J Geophys Res 102:10039–10050CrossRefGoogle Scholar
  46. Scholl DW, Christensen MN, von Huene R, Marlow MS (1970) Peru-Chile trench sediments and sea-floor spreading. Geol Soc Am Bull 81:1339–1360CrossRefGoogle Scholar
  47. Schweller WJ, Kulm LD, Prince RA (1981) Tectonics structure, and sedimentary framework of the Perú-Chile Trench. In: Kulm LD, et al. (eds) Nazca Plate: Crustal formation and Andean convergence. Mem Geol Soc Am 154: 323–349Google Scholar
  48. Sick C, Yoon MK, Rauch K, Buske S, Lüth S, Araneda M, Bataille K, Chong G, Giese P, Krawczyk C, Mechie J, Meyer H, Oncken O, Reichert C, Schmitz M, Shapiro S, Stiller M, Wigger P (2006) Seismic images of accretive and erosive subduction zones from the Chilean margin. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes—active subduction orogeny. Frontiers in earth science series. Springer, Berlin Heidelberg New York, pp 147–169Google Scholar
  49. Tassara A, Götze H, Schmidt S, Hackney R (2006) Three dimensional density model of the Nazca plate and the Andean continental margin. J Geophys Res 111:B09404. https://doi.org/10.1029/2005JB003976CrossRefGoogle Scholar
  50. Tebbens SF, Cande SC (1997) Southeast Pacific tectonic evolution from early Oligocene to present. J Geophys Res 102(B6):12061–12084CrossRefGoogle Scholar
  51. Tilmann F, Zhang Y, Moreno M, Saul J, Eckelmann F, Palo M, Deng Z, Babeyko A, Chen K, Baez JC, Schurr B, Wang R, Dahm T (2016) The 2015 Illapel earthquake, central Chile: a type case for a characteristic earthquake? Geophys Res Lett 43:574–583. https://doi.org/10.1002/2015GL066963CrossRefGoogle Scholar
  52. Uieda L, Ussami N, Braitenberg CF (2010) Computation of the gravity gradient tensor due to topographic masses using tesseroids, Eos Trans. AGU, 91(26), Meet. Am. Suppl., Abstract G22A-04. http://code.google.com/p/tesseroids/
  53. Uieda L, Barbosa V, Braitenberg C (2016) Tesseroids: Forward-modeling gravitational fields in spherical coordinates. Geophysics: F41–F48. https://doi.org/10.1190/geo2015-0204.1
  54. Vietor T, Echtler H (2006) Episodic Neogene southward growth of the Andean subduction orogen between 30° S and 40° S—plate motions, mantle flow, climate, and upper-plate structure. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes—Active Subduction Orogeny. Frontiers in earth science series, Vol 1. Springer, Berlin Heidelberg New York, pp 375–400Google Scholar
  55. Völker D, Wiedicke M, Ladage S, Gaedicke C, Reichert C, Rauch K, Kramer W, Heubeck C (2006) Latitudinal variation in sedimentary processes in the Peru-Chile trench off central Chile. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds), The Andes—active subduction orogeny. Frontiers in Earth Science Series, Part II. Springer, Berlin Heidelberg New York, pp 193–216. https://doi.org/10.1007/978-3-540-48684-8_9
  56. von Huene R, Corvalán J, Flueh ER, Hinz K, Korstgard J, Ranero CR, Weinrebe W, CONDOR scientists (1997) Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaiso, Chile. Tectonics 16(3):474–488Google Scholar
  57. von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29:279–316CrossRefGoogle Scholar
  58. von Huene R, Weinrebe W, Heeren F (1999) Subduction erosion along the north Chile margin. J Geodyn 27:345–358CrossRefGoogle Scholar
  59. Wild-Pfeiffer F (2008) A comparison of different mass element for use in gravity gradiometry. J Geod 82:637–653. https://doi.org/10.1007/s00190-008-0219-8CrossRefGoogle Scholar
  60. Wienecke S (2006) A new analytical solution for the calculation of flexural rigidity: significance and applications. PhD Thesis, Free University Berlin, Berlin, p 126. World Wide Web Address: http://www.diss.fuberlin.de/
  61. Whittaker J, Goncharov A, Williams S, Müller RD, Leitchenkov G (2013) Global sediment thickness dataset updated for the Australian-Antarctic Southern Ocean. Geochem Geophys Geosystems 14:3297–3305. https://doi.org/10.1002/ggge.20181CrossRefGoogle Scholar
  62. Yañez GA, Ranero CR, von Huene R, Díaz J (2001) A tectonic interpretation of magnetic anomalies across a segment of the convergent margin of the Southern Central Andes (32°–34° S). J Geophys Res 106:6325–6345CrossRefGoogle Scholar
  63. Zachos J, Pagani N, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in the global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Orlando Álvarez
    • 1
    • 2
  • Mario Giménez
    • 1
    • 2
  • Federico Lince Klinger
    • 1
    • 2
  • Andrés Folguera
    • 2
    • 3
  • Carla Braitenberg
    • 4
  1. 1.Instituto Geofísico Sismológico Ing. Volponi (IGSV)Universidad de Nacional San JuanSan JuanArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Instituto de Estudios Andinos (IDEAN)University of Buenos AiresBuenos AiresArgentina
  4. 4.Dipartimento di Matematica e GeoscienzeUniversita di TriesteTriesteItaly

Personalised recommendations