Skip to main content

Basin Thermal Structure in the Chilean-Pampean Flat Subduction Zone

  • Chapter
  • First Online:

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

Flat-slab segments are considered refrigerated areas given that the asthenospheric wedge is forced to shift hundreds of kilometres away from the trench, and the flat and coupled subducting plate acts as a thermal insulator. Although lithospheric-scale thermal analysis based on numerical modelling and geophysical observations abound, studies on the thermal history of sedimentary basins are scarce. In this contribution, we present a temperature data compilation from more than 60 oil wells within the Chilean-Pampean flat-slab segment and the transitional zones to normal subduction to the north and south in the south-central Andes. The geothermal gradient data are correlated with basin-basal heat flow estimated from 1D modelling, Curie point depths derived from aeromagnetic surveys, and previous crustal and lithospheric thicknesses estimations. Their distribution evidences a quite good consistency and correlation from region-to-region. Our modelling demonstrates that sedimentation changes are not sufficient to explain the variations illustrated in the geothermal gradient map, and that basal heat flux variations are required to reproduce the reported values. According to our results, the coldest basins develop over the flat slab or cratonward regions, whereas the highest temperatures on areas where the slab plunges. This suggests that the flat-slab geometry as well as the lithospheric structure affects the thermal state within the upper crust and particularly the sedimentary basins. Further studies will allow improving our database as well as the knowledge about the radiogenic contribution of the lithosphere and the asthenospheric heat input to the basins basal heat flow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen PA, Allen JR (2005) Basin analysis: principles and applications, 2nd edn. Blackwell, Malden, MA

    Google Scholar 

  • Alvarado P, Beck S, Zandt G (2007) Crustal structure of the south-central Andes Cordillera and backarc region from regional waveform modelling. Geophys J Int 170(2):858–875

    Article  Google Scholar 

  • Alvarado P, Pardo M, Gilbert H, Miranda S, Anderson M, Saez M, Beck S (2009) Flatslab subduction and crustal models for the seismically active Sierras Pampeanas region of Argentina. In: Kay SM, Ramos VA, Dickinson W (eds) Backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision. Geological Society of America, Memoir 204, pp 261–278

    Google Scholar 

  • Álvarez O, Nacif S, Gimenez M, Folguera A, Braitenberg A (2014) Goce derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin. Tectonophysics 622:198–215

    Article  Google Scholar 

  • Álvarez O, Lince Klinger F, Gimenez M, Ruiz F, Martinez P (2015) Density and thermal structure of the Southern Andes and adjacent foreland from 32° to 55° S using Earth gravity field models. In: Folguera A et al (eds) Growth of the Southern Andes, Springer Earth System Sciences. https://doi.org/10.1007/978-3-319-23060-3_2

  • Anderson M, Alvarado P, Zandt G, Beck S (2007) Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina. Geophys J Int 171:419–434

    Article  Google Scholar 

  • Artemieva IM (2009) The continental lithosphere: reconciling thermal, seismic, and petrologic data. Lithos 109:23–46

    Article  Google Scholar 

  • Artemieva IM (2011) The lithosphere: an interdisciplinary approach. Cambridge University Press, Cambridge, 794 pp., ISBN 9780521843966

    Google Scholar 

  • Barazangi M, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4:686–692

    Article  Google Scholar 

  • Barazangi M, Isacks BL (1979) Subduction of the Nazca plate beneath Peru: evidence from spatial distribution of earthquakes. Geophys J R astr Soc 57:537–555

    Article  Google Scholar 

  • Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bohm MS, Luth H, Echtler G, Asch K, Bataille C, Bruhn A, Rietbrock P, Wigger (2002) The Southern Andes between 36° and 40° S latitude: seismicity and average seismic velocities. Tectonophysics 356:275–289

    Google Scholar 

  • Borzotta E, Mamaní MJ, Venencia JE (2009) Preliminary Magnetotelluric study of Ambato and Valle Fértil Lineaments in Bermejo Basin and Sierra de Valle Fértil, San Juan, Argentina. Acta Geodaetica et Geophysica Hungarica 44(2):157–166

    Article  Google Scholar 

  • Cahill T, Isacks BL (1992) Seismicity and shape of the subducted Nazca Plate. J Geophys Res 97:17503–17529

    Article  Google Scholar 

  • Calegari RJ, Chebli G, Manoni RS, Lázzari V (2014) Las cuencas cretácicas de la región central del país: General Levalle. In: Martino RD, Guereschi AB (eds) Geología y Recursos Naturales de la Provincia de Córdoba, Congreso Geológico Argentino. Asociación Geológica Argentina, Córdoba, pp 913–938

    Google Scholar 

  • Chulick GS, Detweiler S, Mooney WD (2013) Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins. J South Am Earth Sci 42:260–276. https://doi.org/10.1016/j.jsames.2012.06.002

    Article  Google Scholar 

  • Collo G, Dávila FM, Nóbile J, Astini RA, Gehrels G (2011) Clay mineralogy and thermal history of the Neogene Vinchina Basin, central Andes of Argentina: analysis of factors controlling the heating conditions. Tectonics 30:1–18

    Article  Google Scholar 

  • Collo G, Dávila FM, Teixeira W, Nóbile JC, Sant′ Anna LG, Carter A (2015) Isotopic and thermochronologic evidence of extremely cold lithosphere associated with a slab flattening in the Central Andes of Argentina. Basin Res. https://doi.org/10.1111/bre.12163

    Google Scholar 

  • Currie CA, Hyndman RD, Wang K, Kostoglodov V (2002) Thermal models of the Mexico subduction zone: implications for the megathurst seismogenic zone. J Geophys Res 107:2370. https://doi.org/10.1029/2001JB000886

    Article  Google Scholar 

  • Dávila FM, Carter A (2013) Exhumation history of the Andean broken foreland revisited. Geology 41(4):443–446

    Article  Google Scholar 

  • Dávila FM, Lithgow-Bertelloni C (2015) Dynamic uplift during slab flattening. Earth and Planet Sci Lett 425:34–43

    Article  Google Scholar 

  • Eakin CM, Lithgow-Bertelloni C, Dávila FM (2014) Influence of Peruvian flat—subduction dynamics on the evolution of the Amazon basin. Earth and Planet Sci Lett 404:250–260. https://doi.org/10.1016/j.epsl.2014.07.027

    Article  Google Scholar 

  • Engdahl ER, van der Hilst RD, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88:722–743

    Google Scholar 

  • English J, Johnston ST, Wang K (2003) Thermal modeling of the Laramide orogeny: testing the flat slab subduction hypothesis. Earth and Planet Sci Lett 214:619–632

    Article  Google Scholar 

  • Espurt N, Baby P, Brusset S, Roddaz M, Hermoza W, Regard V, Antoine P-O, Salas-Gismondi R, Bolaños R (2007) How does the Nazca Ridge subduction influence the modern Amazonian foreland basin? Geology 35:515–518

    Google Scholar 

  • Fromm R, Zandt G, Beck SL (2004) Crustal thickness beneath the Andes and Sierras Pampeanas at 30° S inferred from Pn apparent phase velocities. Geophys Res Lett 31:L06625. https://doi.org/10.1029/2003GL019231

    Article  Google Scholar 

  • Frost BR, Shive PN (1986) Magnetic mineralogy of the lower continental crust. J Geophys Res 91: https://doi.org/10.1029/JB091iB06p06513

  • Gans CR, Beck SL, Zandt G, Gilbert H, Alvarado P, Anderson M, Linkimer L (2011) Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high resolution results. Geophys J Int 186(1):45–58

    Article  Google Scholar 

  • Giambiagi LB, Ramos VA (2002) Structural evolution of the Andes between 33°30´ and 33°45´ S, above the transition zone between the flat and normal subduction segment, Argentina and Chile. J South Am Earth Sci 15(1):101–116

    Article  Google Scholar 

  • Gilbert H, Beck S, Zandt G (2006) Lithospheric and upper mantle structure of central Chile and Argentina. Geophys J Int 165:383–398

    Article  Google Scholar 

  • Gimenez ME, Martínez MP, Introcaso A (2000) A crustal model based mainly on gravity data in the area between the Bermejo Basin and the Sierras de Valle Fértil–Argentina. J South Am Earth Sci 13(3):275–286

    Article  Google Scholar 

  • Gimenez ME, Braithenberg C, Martinez MP, Introcaso A (2009) A comparative analysis of seismological and gravimetric crustal thicknesses below the Andean region with flat subduction of the Nazca Plate. Int J Geophys 2009:1–8

    Article  Google Scholar 

  • Grevemeyer I, Kaul N, Diaz-Naveas JL (2006) Geothermal evidence for fluid flow through the gas hydrate stability field off Central Chile—transient flow related to large subduction zone earthquakes? Geophys J Int 166:461–468

    Google Scholar 

  • Gutscher MA (2002) Andean subduction styles and their effect on thermal structure and interplate coupling. J South Am Earth Sci 15:3–10

    Article  Google Scholar 

  • Gutscher MA, Maury R, Eissen JP, Bourdon E (2000) Can slab melting be caused by flat subduction? Geology 28:535–538

    Google Scholar 

  • Hampel A (2002) The migration history of the Nazca Ridge along the Peruvian active margin: a re-evaluation. Earth Planet. Sci. Lett 203:665–679

    Article  Google Scholar 

  • Hamza VM, Muñoz M (1996) Heat flow map of South America. Geothermics 25:599–646

    Article  Google Scholar 

  • Hamza VM, Gomes AJL, Ferreira LET (2005) Status report on geothermal energy developments in Brazil. In: Proceedings of the World Geothermal Congress, Antalya

    Google Scholar 

  • Hantschel T, Kaueraf AI (2009) Heat flow analysis. In: Kaueraf AI, Hantschel T (eds) Fundamentals of basin and petroleum systems modeling. Springer-Verlag Berlin Heidelberg, pp 103–150. https://doi.org/10.1007/978-3-540-72318-9

  • Harrison WE, Luza KV, Prater ML, Cheung PK (1983) Geothermal Resource Assessment in Oklahoma. Special Publications 83-1. Oklahoma Geological Survey

    Google Scholar 

  • Hasterak D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett 307(1):59–70

    Article  Google Scholar 

  • Henry SG, Pollack H (1988) Terrestrial heat flow above the Andean subduction zone in Bolivia and Peru. J Geophys Res 93:15,153–15,162

    Google Scholar 

  • Horner DR (1951) Pressure Build-up in Wells, 3 rd World Petroleum Congress, The Hague, NL, World Petroleum Congress, May 28–June 6, 1951

    Google Scholar 

  • Husson L, Moretti S (2002) Thermal regime of fold and thrust belts–An application to the Bolivian sub Andean zone. Tectonophysics 345:253–280. https://doi.org/10.1016/S0040-1951(01)00216-5

    Article  Google Scholar 

  • Jaupart C, Labrosse S, Mareschal JC (2007) Temperatures, heat and energy in the mantle of the Earth. In: Shubert G, Bercovici D (eds) Treatise on geophysics: mantle dynamics 7(6):253–303

    Google Scholar 

  • Jordan T, Isacks BL, Allmendinger RW, Brewer J, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca Plate. Geol Soc Am Bull 94:341–361

    Article  Google Scholar 

  • Jordan TE, Schlunegger F, Cardozo N (2001) Unsteady and spatially variable evolution of the Neogene Andean Bermejo foreland basin, Argentina. J South Am Earth Sci 14:775–798

    Article  Google Scholar 

  • Kay SM, Coira B (2009) Shallowing and steepening subduction zones, continental lithosphere loss, magmatism and crustal flow under the Central Andean Altiplano-Puna Plateau. In: Kay SM, Ramos VA, Dickinson W (eds) Backbone of the Americas, Geological Society of América, GSA, Boulder: Memoir 404: 229–259

    Google Scholar 

  • Kay SM, Mpodozis C (2002) Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab. J South Am Earth Sci 15:39–57

    Article  Google Scholar 

  • Kay SM, Mpodozis C, Ramos VA, Munizaga F (1991) Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28° to 33°S) Argentina. In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting: Boulder, Colorado, Geological Society of America Special Paper, vol 265, pp 113–137

    Google Scholar 

  • Kirby SH, Engdahl ER, Denlinger R (1996) Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs, in subduction: top to bottom. Geophys Monogr Ser 96:195–214

    Google Scholar 

  • Manea VC, Manea M (2011) Flat-slab thermal structure and evolution beneath central Mexico. Pure App Geophys 168(8):1475–1487

    Article  Google Scholar 

  • Manea VC, Manea M, Kostoglodov V, Sewell G (2005) Thermo-mechanical model of the mantle wedge in Central Mexican subduction zone and a blob tracing approach for the magma transport. Phys Earth Planet Inter 149:165–186. https://doi.org/10.1016/JPEPI2004.08.024.

  • Mareschal JC, Jaupart C (2013) Radiogenic heat production, thermal regime and evolution of continental crust. Tectonophysics 609:524–534. https://doi.org/10.1016/j.tecto.2012.12.001

    Article  Google Scholar 

  • Marot M, Monfret T, Gerbault M, Nolet G, Ranalli G, Pardo M (2014) Flat vs. normal subduction zones: a comparison based on 3D regional traveltime tomography and petrological modeling of central Chile and western Argentina (29–35S). Geophys J Int 199:1633–1654

    Article  Google Scholar 

  • Martinod J, Funiciello F, Faccenna C, Regard V (2005) Dynamical effects of subducting ridges: insights from 3-D laboratory models. Geophys J Int 163:1137–1150

    Article  Google Scholar 

  • McGeary S, Nur A, Ben-Avraham Z (1985) Spatial gaps in arc volcanism: the effect of collision or subduction of oceanic plateaus. Tectonophysics 119:195–221

    Article  Google Scholar 

  • Milana JP, Bercowsky F, Jordan T (2003) Paleoambientes y magnetoestratigrafía de l Neógeno de la Sierra de Mogna, y su relación con la Cuenca de Antepaís Andina. Revista de la Asociación Geológica Argentina 58(3):447–473

    Google Scholar 

  • Miranda FJ, Pesce AH (1997) Argentina geothermal resources: new trends in development. GRC Transactions 21:337–339

    Google Scholar 

  • Muñoz M (2005) No flat Wadati–Benioff Zone in the central and Southern Central Andes. Tectonophysics 395:41–65. https://doi.org/10.1016/j.tecto.2004.09.002

  • Nacif S, Triep EG, Spagnotto SL, Aragon E, Furlani R, Álvarez O (2015) The flat to normal subduction transition study to obtain the Nazca plate morphology using high resolution seismicity data from the Nazca plate in Central Chile. Tectonophysics 657:102–112

    Article  Google Scholar 

  • Pardo M, Comte D, Monfret T (2002) Seismotectonic and stress distribution in the central Chile subduction zone. J South Am Earth Sci 15:11–22

    Article  Google Scholar 

  • Pesce AH (1995) Argentina Country update. In: Proceedings of the World Geothermal Congress, Florence, pp 35–43

    Google Scholar 

  • Pesce AH (2000) Argentina Country update. In: Proceedings of the World Geothermal Congress, Kyushu-Tohoku, pp 35–43

    Google Scholar 

  • Pesce AH (2005) Argentina Country update. In: Proceedings of the World Geothermal Congress, Antalya, pp 24–29

    Google Scholar 

  • Pilger RH (1981) Plate reconstructions, aseismic ridges, and low angle subduction beneath the Andes. Geol Soc Am Bull 92:448–456

    Article  Google Scholar 

  • Ramos VA, Folguera A (2009) Andean flat slab subduction through time. In: Murphy B (ed) Ancient orogens and modern analogues. London, The Geological Society, Special Publication 327, pp31–54

    Google Scholar 

  • Ramos VA, Cristallini EO, Perez DJ (2002) The Pampean flatslab of the central Andes. J S Am Earth Sci 15:59–78

    Article  Google Scholar 

  • Ravat D, Pignatelli A, Nicolosi I, Chiappini M (2007) A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophys J Int:421–434. https://doi.org/10.1111/j.1365-246x.2007.03305.x

  • Reinante SM, Olivieri G, Salinas A, Lovecchio JP, Basile Y (2014) La cuenca Chacoparaná: estratigrafía y recursos de hidrocarburos. In: Martino RD, Guereschi AB (eds) Geología de subsuelo, XIX Congreso Geológico Argentino. Asociación Geológica Argentina, Córdoba, pp 895–912

    Google Scholar 

  • Ruiz F, Introcaso A (2004) Curie point depths beneath Precordillera Cuyana and Sierras Pampeanas obtained from spectral analysis of magnetic anomalies. J Gondwana Res 8:1133–1142

    Article  Google Scholar 

  • Ross HE, Blakely RJ, Zoback MD (2006) Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics 71:L51. https://doi.org/10.1190/1.2335572

    Article  Google Scholar 

  • Sacks S, y Okada H (1974) A comparison of the anelasticity structure beneath western South America and Japan. Phys Earth Planet Inter 9:211–219

    Google Scholar 

  • Sigismondi ME (2012) Estudio de la deformaciôn litosférica de la cuenca Neuquina: estructura termal, datos de gravedad y sísmica de reflexiôn. PhD thesis, Universidad de Buenos Aires, Buenos Aires, 1–367

    Google Scholar 

  • Sigismondi ME, Fantin FA (2014) Estructura cortical y características geodinámicas. In: Martino RD, Guereschi AB (eds) Geología de subsuelo, XIX Congreso Geológico Argentino. Asociación Geológica Argentina, Córdoba, pp 01–23

    Google Scholar 

  • Springer M (1999) Interpretation of heat-flow density in the central Andes. Tectonophysics 306:377–395

    Article  Google Scholar 

  • Soler SR (2015) Métodos Espectrales para la Determinación de la Profundidad del Punto de Curie y Espesor Elástico de la Corteza Terrestre. Facultad de Ciencias Exactas, Ingeniería y Agrimensura (FCEIA), Universidad Nacional de Rosario (UNR). Tesis de Grado para Título de Licenciado en Física

    Google Scholar 

  • Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem, Geophys and Geosyst 7(5). https://doi.org/10.1029/2005GC001045

  • Tassara A, Echaurren A (2012) Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models. Geophys J Int 189:161–168

    Article  Google Scholar 

  • Tassara A, Gôtze HJ, Schmidt S, Hackney R (2006) Threedimensional density model of the Nazca plate and the Andean continental margin. J geophys Res 111. https://doi.org/10.1029/2005JB003976

  • Uyeda S, Watanabe T, Volponi F (1978) Report of heat flow measurements in San Juan and Mendoza, Argentina. Bull Earthq Res Inst 53:165–172

    Google Scholar 

  • Uyeda S, Watanabe T (1982) Terrestrial heat flow in Western South America. Tectonophysics 83:63–70

    Article  Google Scholar 

  • van Hunen J, van Keken PE, Hynes A, Davies GF (2008) Tectonics of early Earth: some geodynamic considerations. In: Condie KC, Pease V (eds) When did plate tectonics begin on planet Earth?: Geological Society of America Special Paper, vol 440, pp 157–171. https://doi.org/10.1130/2008.2440(08)

  • Waples DW (2001) A new model for heat flow in extensional basins: radiogenic heat, asthenospheric heat and the McKenzie model. Natl Res Res 10

    Google Scholar 

  • Yañez GA, Ranero CR, von Huene R, Diaz J (2001) Magnetic anomaly interpretation across the southern central Andes (32°– 34°S): the role of the Juan Fernández Ridge in the late Tertiary evolution of the margin. J Geophys Res 106:6325–6345

    Google Scholar 

  • Yañez G, Cembrano J, Pardo M, Ranero C, Selle´s D (2002) The Challenger-Juan Fernández-Maipo major tectonic transition of the Nazca- Andean subduction system at 33–34° S: geodynamic evidence and implications. J South Am Earth Sci 15:23–38

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Consejo Nacional de Investigaciones Científicas y Técnicas, the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2015-1092), the Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (Secyt-UNC 2016-2017 30720150100830CB), the Proyecto de Investigación UE 2016 - CONICET and the CAPES-MINCYT and the Conicet-Fapesp programs for financial support of our Research Projects in Argentina. We would like to acknowledge the help of Ignacio Brisson for it constructive discussion of the results during the research and the Sevicio Geologico Minero Nacional (SEGEMAR, Córdoba delegation) and the Gerencia de Exploración YPF SA. We acknowledge thorough reviews by Silvia Nassif and Francisco Ruiz, which helped to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilda Collo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Collo, G. et al. (2018). Basin Thermal Structure in the Chilean-Pampean Flat Subduction Zone. In: Folguera, A., et al. The Evolution of the Chilean-Argentinean Andes. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-67774-3_21

Download citation

Publish with us

Policies and ethics