Basin Thermal Structure in the Chilean-Pampean Flat Subduction Zone

  • Gilda Collo
  • Miguel Ezpeleta
  • Federico M. Dávila
  • Mario Giménez
  • Santiago Soler
  • Federico Martina
  • Pilar Ávila
  • Francisco Sánchez
  • Ricardo Calegari
  • Juan Lovecchio
  • Mario Schiuma
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

Flat-slab segments are considered refrigerated areas given that the asthenospheric wedge is forced to shift hundreds of kilometres away from the trench, and the flat and coupled subducting plate acts as a thermal insulator. Although lithospheric-scale thermal analysis based on numerical modelling and geophysical observations abound, studies on the thermal history of sedimentary basins are scarce. In this contribution, we present a temperature data compilation from more than 60 oil wells within the Chilean-Pampean flat-slab segment and the transitional zones to normal subduction to the north and south in the south-central Andes. The geothermal gradient data are correlated with basin-basal heat flow estimated from 1D modelling, Curie point depths derived from aeromagnetic surveys, and previous crustal and lithospheric thicknesses estimations. Their distribution evidences a quite good consistency and correlation from region-to-region. Our modelling demonstrates that sedimentation changes are not sufficient to explain the variations illustrated in the geothermal gradient map, and that basal heat flux variations are required to reproduce the reported values. According to our results, the coldest basins develop over the flat slab or cratonward regions, whereas the highest temperatures on areas where the slab plunges. This suggests that the flat-slab geometry as well as the lithospheric structure affects the thermal state within the upper crust and particularly the sedimentary basins. Further studies will allow improving our database as well as the knowledge about the radiogenic contribution of the lithosphere and the asthenospheric heat input to the basins basal heat flow.

Keywords

Chilean-Pampean flat subduction zone Heat flow Basins Sub-lithospheric cooling Thermal history Bore hole data Curie point depths Magnetic data 

Notes

Acknowledgements

We are grateful to the Consejo Nacional de Investigaciones Científicas y Técnicas, the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2015-1092), the Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (Secyt-UNC 2016-2017 30720150100830CB), the Proyecto de Investigación UE 2016 - CONICET and the CAPES-MINCYT and the Conicet-Fapesp programs for financial support of our Research Projects in Argentina. We would like to acknowledge the help of Ignacio Brisson for it constructive discussion of the results during the research and the Sevicio Geologico Minero Nacional (SEGEMAR, Córdoba delegation) and the Gerencia de Exploración YPF SA. We acknowledge thorough reviews by Silvia Nassif and Francisco Ruiz, which helped to improve this work.

References

  1. Allen PA, Allen JR (2005) Basin analysis: principles and applications, 2nd edn. Blackwell, Malden, MAGoogle Scholar
  2. Alvarado P, Beck S, Zandt G (2007) Crustal structure of the south-central Andes Cordillera and backarc region from regional waveform modelling. Geophys J Int 170(2):858–875CrossRefGoogle Scholar
  3. Alvarado P, Pardo M, Gilbert H, Miranda S, Anderson M, Saez M, Beck S (2009) Flatslab subduction and crustal models for the seismically active Sierras Pampeanas region of Argentina. In: Kay SM, Ramos VA, Dickinson W (eds) Backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision. Geological Society of America, Memoir 204, pp 261–278Google Scholar
  4. Álvarez O, Nacif S, Gimenez M, Folguera A, Braitenberg A (2014) Goce derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin. Tectonophysics 622:198–215CrossRefGoogle Scholar
  5. Álvarez O, Lince Klinger F, Gimenez M, Ruiz F, Martinez P (2015) Density and thermal structure of the Southern Andes and adjacent foreland from 32° to 55° S using Earth gravity field models. In: Folguera A et al (eds) Growth of the Southern Andes, Springer Earth System Sciences.  https://doi.org/10.1007/978-3-319-23060-3_2
  6. Anderson M, Alvarado P, Zandt G, Beck S (2007) Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina. Geophys J Int 171:419–434CrossRefGoogle Scholar
  7. Artemieva IM (2009) The continental lithosphere: reconciling thermal, seismic, and petrologic data. Lithos 109:23–46CrossRefGoogle Scholar
  8. Artemieva IM (2011) The lithosphere: an interdisciplinary approach. Cambridge University Press, Cambridge, 794 pp., ISBN 9780521843966Google Scholar
  9. Barazangi M, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4:686–692CrossRefGoogle Scholar
  10. Barazangi M, Isacks BL (1979) Subduction of the Nazca plate beneath Peru: evidence from spatial distribution of earthquakes. Geophys J R astr Soc 57:537–555CrossRefGoogle Scholar
  11. Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. Bohm MS, Luth H, Echtler G, Asch K, Bataille C, Bruhn A, Rietbrock P, Wigger (2002) The Southern Andes between 36° and 40° S latitude: seismicity and average seismic velocities. Tectonophysics 356:275–289Google Scholar
  13. Borzotta E, Mamaní MJ, Venencia JE (2009) Preliminary Magnetotelluric study of Ambato and Valle Fértil Lineaments in Bermejo Basin and Sierra de Valle Fértil, San Juan, Argentina. Acta Geodaetica et Geophysica Hungarica 44(2):157–166CrossRefGoogle Scholar
  14. Cahill T, Isacks BL (1992) Seismicity and shape of the subducted Nazca Plate. J Geophys Res 97:17503–17529CrossRefGoogle Scholar
  15. Calegari RJ, Chebli G, Manoni RS, Lázzari V (2014) Las cuencas cretácicas de la región central del país: General Levalle. In: Martino RD, Guereschi AB (eds) Geología y Recursos Naturales de la Provincia de Córdoba, Congreso Geológico Argentino. Asociación Geológica Argentina, Córdoba, pp 913–938Google Scholar
  16. Chulick GS, Detweiler S, Mooney WD (2013) Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins. J South Am Earth Sci 42:260–276.  https://doi.org/10.1016/j.jsames.2012.06.002CrossRefGoogle Scholar
  17. Collo G, Dávila FM, Nóbile J, Astini RA, Gehrels G (2011) Clay mineralogy and thermal history of the Neogene Vinchina Basin, central Andes of Argentina: analysis of factors controlling the heating conditions. Tectonics 30:1–18CrossRefGoogle Scholar
  18. Collo G, Dávila FM, Teixeira W, Nóbile JC, Sant′ Anna LG, Carter A (2015) Isotopic and thermochronologic evidence of extremely cold lithosphere associated with a slab flattening in the Central Andes of Argentina. Basin Res.  https://doi.org/10.1111/bre.12163Google Scholar
  19. Currie CA, Hyndman RD, Wang K, Kostoglodov V (2002) Thermal models of the Mexico subduction zone: implications for the megathurst seismogenic zone. J Geophys Res 107:2370.  https://doi.org/10.1029/2001JB000886CrossRefGoogle Scholar
  20. Dávila FM, Carter A (2013) Exhumation history of the Andean broken foreland revisited. Geology 41(4):443–446CrossRefGoogle Scholar
  21. Dávila FM, Lithgow-Bertelloni C (2015) Dynamic uplift during slab flattening. Earth and Planet Sci Lett 425:34–43CrossRefGoogle Scholar
  22. Eakin CM, Lithgow-Bertelloni C, Dávila FM (2014) Influence of Peruvian flat—subduction dynamics on the evolution of the Amazon basin. Earth and Planet Sci Lett 404:250–260.  https://doi.org/10.1016/j.epsl.2014.07.027CrossRefGoogle Scholar
  23. Engdahl ER, van der Hilst RD, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88:722–743Google Scholar
  24. English J, Johnston ST, Wang K (2003) Thermal modeling of the Laramide orogeny: testing the flat slab subduction hypothesis. Earth and Planet Sci Lett 214:619–632CrossRefGoogle Scholar
  25. Espurt N, Baby P, Brusset S, Roddaz M, Hermoza W, Regard V, Antoine P-O, Salas-Gismondi R, Bolaños R (2007) How does the Nazca Ridge subduction influence the modern Amazonian foreland basin? Geology 35:515–518Google Scholar
  26. Fromm R, Zandt G, Beck SL (2004) Crustal thickness beneath the Andes and Sierras Pampeanas at 30° S inferred from Pn apparent phase velocities. Geophys Res Lett 31:L06625.  https://doi.org/10.1029/2003GL019231CrossRefGoogle Scholar
  27. Frost BR, Shive PN (1986) Magnetic mineralogy of the lower continental crust. J Geophys Res 91:  https://doi.org/10.1029/JB091iB06p06513
  28. Gans CR, Beck SL, Zandt G, Gilbert H, Alvarado P, Anderson M, Linkimer L (2011) Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high resolution results. Geophys J Int 186(1):45–58CrossRefGoogle Scholar
  29. Giambiagi LB, Ramos VA (2002) Structural evolution of the Andes between 33°30´ and 33°45´ S, above the transition zone between the flat and normal subduction segment, Argentina and Chile. J South Am Earth Sci 15(1):101–116CrossRefGoogle Scholar
  30. Gilbert H, Beck S, Zandt G (2006) Lithospheric and upper mantle structure of central Chile and Argentina. Geophys J Int 165:383–398CrossRefGoogle Scholar
  31. Gimenez ME, Martínez MP, Introcaso A (2000) A crustal model based mainly on gravity data in the area between the Bermejo Basin and the Sierras de Valle Fértil–Argentina. J South Am Earth Sci 13(3):275–286CrossRefGoogle Scholar
  32. Gimenez ME, Braithenberg C, Martinez MP, Introcaso A (2009) A comparative analysis of seismological and gravimetric crustal thicknesses below the Andean region with flat subduction of the Nazca Plate. Int J Geophys 2009:1–8CrossRefGoogle Scholar
  33. Grevemeyer I, Kaul N, Diaz-Naveas JL (2006) Geothermal evidence for fluid flow through the gas hydrate stability field off Central Chile—transient flow related to large subduction zone earthquakes? Geophys J Int 166:461–468Google Scholar
  34. Gutscher MA (2002) Andean subduction styles and their effect on thermal structure and interplate coupling. J South Am Earth Sci 15:3–10CrossRefGoogle Scholar
  35. Gutscher MA, Maury R, Eissen JP, Bourdon E (2000) Can slab melting be caused by flat subduction? Geology 28:535–538Google Scholar
  36. Hampel A (2002) The migration history of the Nazca Ridge along the Peruvian active margin: a re-evaluation. Earth Planet. Sci. Lett 203:665–679CrossRefGoogle Scholar
  37. Hamza VM, Muñoz M (1996) Heat flow map of South America. Geothermics 25:599–646CrossRefGoogle Scholar
  38. Hamza VM, Gomes AJL, Ferreira LET (2005) Status report on geothermal energy developments in Brazil. In: Proceedings of the World Geothermal Congress, AntalyaGoogle Scholar
  39. Hantschel T, Kaueraf AI (2009) Heat flow analysis. In: Kaueraf AI, Hantschel T (eds) Fundamentals of basin and petroleum systems modeling. Springer-Verlag Berlin Heidelberg, pp 103–150.  https://doi.org/10.1007/978-3-540-72318-9
  40. Harrison WE, Luza KV, Prater ML, Cheung PK (1983) Geothermal Resource Assessment in Oklahoma. Special Publications 83-1. Oklahoma Geological SurveyGoogle Scholar
  41. Hasterak D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett 307(1):59–70CrossRefGoogle Scholar
  42. Henry SG, Pollack H (1988) Terrestrial heat flow above the Andean subduction zone in Bolivia and Peru. J Geophys Res 93:15,153–15,162Google Scholar
  43. Horner DR (1951) Pressure Build-up in Wells, 3 rd World Petroleum Congress, The Hague, NL, World Petroleum Congress, May 28–June 6, 1951Google Scholar
  44. Husson L, Moretti S (2002) Thermal regime of fold and thrust belts–An application to the Bolivian sub Andean zone. Tectonophysics 345:253–280.  https://doi.org/10.1016/S0040-1951(01)00216-5CrossRefGoogle Scholar
  45. Jaupart C, Labrosse S, Mareschal JC (2007) Temperatures, heat and energy in the mantle of the Earth. In: Shubert G, Bercovici D (eds) Treatise on geophysics: mantle dynamics 7(6):253–303Google Scholar
  46. Jordan T, Isacks BL, Allmendinger RW, Brewer J, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca Plate. Geol Soc Am Bull 94:341–361CrossRefGoogle Scholar
  47. Jordan TE, Schlunegger F, Cardozo N (2001) Unsteady and spatially variable evolution of the Neogene Andean Bermejo foreland basin, Argentina. J South Am Earth Sci 14:775–798CrossRefGoogle Scholar
  48. Kay SM, Coira B (2009) Shallowing and steepening subduction zones, continental lithosphere loss, magmatism and crustal flow under the Central Andean Altiplano-Puna Plateau. In: Kay SM, Ramos VA, Dickinson W (eds) Backbone of the Americas, Geological Society of América, GSA, Boulder: Memoir 404: 229–259Google Scholar
  49. Kay SM, Mpodozis C (2002) Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab. J South Am Earth Sci 15:39–57CrossRefGoogle Scholar
  50. Kay SM, Mpodozis C, Ramos VA, Munizaga F (1991) Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28° to 33°S) Argentina. In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting: Boulder, Colorado, Geological Society of America Special Paper, vol 265, pp 113–137Google Scholar
  51. Kirby SH, Engdahl ER, Denlinger R (1996) Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs, in subduction: top to bottom. Geophys Monogr Ser 96:195–214Google Scholar
  52. Manea VC, Manea M (2011) Flat-slab thermal structure and evolution beneath central Mexico. Pure App Geophys 168(8):1475–1487CrossRefGoogle Scholar
  53. Manea VC, Manea M, Kostoglodov V, Sewell G (2005) Thermo-mechanical model of the mantle wedge in Central Mexican subduction zone and a blob tracing approach for the magma transport. Phys Earth Planet Inter 149:165–186.  https://doi.org/10.1016/JPEPI2004.08.024.
  54. Mareschal JC, Jaupart C (2013) Radiogenic heat production, thermal regime and evolution of continental crust. Tectonophysics 609:524–534.  https://doi.org/10.1016/j.tecto.2012.12.001CrossRefGoogle Scholar
  55. Marot M, Monfret T, Gerbault M, Nolet G, Ranalli G, Pardo M (2014) Flat vs. normal subduction zones: a comparison based on 3D regional traveltime tomography and petrological modeling of central Chile and western Argentina (29–35S). Geophys J Int 199:1633–1654CrossRefGoogle Scholar
  56. Martinod J, Funiciello F, Faccenna C, Regard V (2005) Dynamical effects of subducting ridges: insights from 3-D laboratory models. Geophys J Int 163:1137–1150CrossRefGoogle Scholar
  57. McGeary S, Nur A, Ben-Avraham Z (1985) Spatial gaps in arc volcanism: the effect of collision or subduction of oceanic plateaus. Tectonophysics 119:195–221CrossRefGoogle Scholar
  58. Milana JP, Bercowsky F, Jordan T (2003) Paleoambientes y magnetoestratigrafía de l Neógeno de la Sierra de Mogna, y su relación con la Cuenca de Antepaís Andina. Revista de la Asociación Geológica Argentina 58(3):447–473Google Scholar
  59. Miranda FJ, Pesce AH (1997) Argentina geothermal resources: new trends in development. GRC Transactions 21:337–339Google Scholar
  60. Muñoz M (2005) No flat Wadati–Benioff Zone in the central and Southern Central Andes. Tectonophysics 395:41–65.  https://doi.org/10.1016/j.tecto.2004.09.002
  61. Nacif S, Triep EG, Spagnotto SL, Aragon E, Furlani R, Álvarez O (2015) The flat to normal subduction transition study to obtain the Nazca plate morphology using high resolution seismicity data from the Nazca plate in Central Chile. Tectonophysics 657:102–112CrossRefGoogle Scholar
  62. Pardo M, Comte D, Monfret T (2002) Seismotectonic and stress distribution in the central Chile subduction zone. J South Am Earth Sci 15:11–22CrossRefGoogle Scholar
  63. Pesce AH (1995) Argentina Country update. In: Proceedings of the World Geothermal Congress, Florence, pp 35–43Google Scholar
  64. Pesce AH (2000) Argentina Country update. In: Proceedings of the World Geothermal Congress, Kyushu-Tohoku, pp 35–43Google Scholar
  65. Pesce AH (2005) Argentina Country update. In: Proceedings of the World Geothermal Congress, Antalya, pp 24–29Google Scholar
  66. Pilger RH (1981) Plate reconstructions, aseismic ridges, and low angle subduction beneath the Andes. Geol Soc Am Bull 92:448–456CrossRefGoogle Scholar
  67. Ramos VA, Folguera A (2009) Andean flat slab subduction through time. In: Murphy B (ed) Ancient orogens and modern analogues. London, The Geological Society, Special Publication 327, pp31–54Google Scholar
  68. Ramos VA, Cristallini EO, Perez DJ (2002) The Pampean flatslab of the central Andes. J S Am Earth Sci 15:59–78CrossRefGoogle Scholar
  69. Ravat D, Pignatelli A, Nicolosi I, Chiappini M (2007) A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophys J Int:421–434.  https://doi.org/10.1111/j.1365-246x.2007.03305.x
  70. Reinante SM, Olivieri G, Salinas A, Lovecchio JP, Basile Y (2014) La cuenca Chacoparaná: estratigrafía y recursos de hidrocarburos. In: Martino RD, Guereschi AB (eds) Geología de subsuelo, XIX Congreso Geológico Argentino. Asociación Geológica Argentina, Córdoba, pp 895–912Google Scholar
  71. Ruiz F, Introcaso A (2004) Curie point depths beneath Precordillera Cuyana and Sierras Pampeanas obtained from spectral analysis of magnetic anomalies. J Gondwana Res 8:1133–1142CrossRefGoogle Scholar
  72. Ross HE, Blakely RJ, Zoback MD (2006) Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics 71:L51.  https://doi.org/10.1190/1.2335572CrossRefGoogle Scholar
  73. Sacks S, y Okada H (1974) A comparison of the anelasticity structure beneath western South America and Japan. Phys Earth Planet Inter 9:211–219Google Scholar
  74. Sigismondi ME (2012) Estudio de la deformaciôn litosférica de la cuenca Neuquina: estructura termal, datos de gravedad y sísmica de reflexiôn. PhD thesis, Universidad de Buenos Aires, Buenos Aires, 1–367Google Scholar
  75. Sigismondi ME, Fantin FA (2014) Estructura cortical y características geodinámicas. In: Martino RD, Guereschi AB (eds) Geología de subsuelo, XIX Congreso Geológico Argentino. Asociación Geológica Argentina, Córdoba, pp 01–23Google Scholar
  76. Springer M (1999) Interpretation of heat-flow density in the central Andes. Tectonophysics 306:377–395CrossRefGoogle Scholar
  77. Soler SR (2015) Métodos Espectrales para la Determinación de la Profundidad del Punto de Curie y Espesor Elástico de la Corteza Terrestre. Facultad de Ciencias Exactas, Ingeniería y Agrimensura (FCEIA), Universidad Nacional de Rosario (UNR). Tesis de Grado para Título de Licenciado en FísicaGoogle Scholar
  78. Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem, Geophys and Geosyst 7(5).  https://doi.org/10.1029/2005GC001045
  79. Tassara A, Echaurren A (2012) Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models. Geophys J Int 189:161–168CrossRefGoogle Scholar
  80. Tassara A, Gôtze HJ, Schmidt S, Hackney R (2006) Threedimensional density model of the Nazca plate and the Andean continental margin. J geophys Res 111.  https://doi.org/10.1029/2005JB003976
  81. Uyeda S, Watanabe T, Volponi F (1978) Report of heat flow measurements in San Juan and Mendoza, Argentina. Bull Earthq Res Inst 53:165–172Google Scholar
  82. Uyeda S, Watanabe T (1982) Terrestrial heat flow in Western South America. Tectonophysics 83:63–70CrossRefGoogle Scholar
  83. van Hunen J, van Keken PE, Hynes A, Davies GF (2008) Tectonics of early Earth: some geodynamic considerations. In: Condie KC, Pease V (eds) When did plate tectonics begin on planet Earth?: Geological Society of America Special Paper, vol 440, pp 157–171.  https://doi.org/10.1130/2008.2440(08)
  84. Waples DW (2001) A new model for heat flow in extensional basins: radiogenic heat, asthenospheric heat and the McKenzie model. Natl Res Res 10Google Scholar
  85. Yañez GA, Ranero CR, von Huene R, Diaz J (2001) Magnetic anomaly interpretation across the southern central Andes (32°– 34°S): the role of the Juan Fernández Ridge in the late Tertiary evolution of the margin. J Geophys Res 106:6325–6345Google Scholar
  86. Yañez G, Cembrano J, Pardo M, Ranero C, Selle´s D (2002) The Challenger-Juan Fernández-Maipo major tectonic transition of the Nazca- Andean subduction system at 33–34° S: geodynamic evidence and implications. J South Am Earth Sci 15:23–38CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gilda Collo
    • 1
  • Miguel Ezpeleta
    • 1
  • Federico M. Dávila
    • 1
  • Mario Giménez
    • 2
    • 3
  • Santiago Soler
    • 4
  • Federico Martina
    • 1
  • Pilar Ávila
    • 1
  • Francisco Sánchez
    • 1
  • Ricardo Calegari
    • 5
  • Juan Lovecchio
    • 5
  • Mario Schiuma
    • 5
  1. 1.CICTERRACONICET—FCEFyN—Universidad Nacional de CórdobaCórdobaArgentina
  2. 2.Instituto Geofísico Sismológico Ing. Volponi (IGSV)Universidad de Nacional San JuanSan JuanArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Instituto Geofísico-Sismológico VolponiSan JuanArgentina
  5. 5.YPFBuenos AiresArgentina

Personalised recommendations