The Evolution of the Chilean-Argentinean Andes pp 363-385 | Cite as
Mantle Influence on Andean and Pre-Andean Topography
Abstract
Mantle convection can drive long-wavelength and low-amplitude topography, which can occur synchronously and superimposed to tectonics. The discrimination between these two topographic components, however, is difficult to assert. This is because there are still several uncertainties and debates in the geodynamic community, for example, the scales and rates of dynamic topography. Geological, geomorphological, geophysical measurements, and/or landscape analyses might assist to validate models. In this contribution, we provide new geological evidences along the Central and Patagonian Andes, which demonstrate that dynamic topography has been an important component on the South American landscape formation as well as in the ancient western Gondwana. Our examples in the Argentine Pampas show that dynamic topography is required to explain not only the basin subsidence but also the whole observed topography. We also suggest that the dynamic components in this region are much lower than numerical models (average dynamic subsidence rates of ~0.04 mm/yr—this work— which contrast with the ~0.1 mm/yr estimated in the US). We also propose two strategies to analyze ancient cases. The first requires of comparing a total elevation proxy, like the equilibrium lines (or ELA) in glaciated areas, with model topography derived from geochemical studies of mantle rocks. A second strategy was the analysis of the Triassic rifting evolution of western Argentina (post-rift sag deposits). Sag deposit thicknesses exceed 2 km, which do not correlate with the 100 m thick thermal calculated by rift subsidence modeling.
Keywords
Dynamic uplift Dynamic subsidence Mantle Flat subduction zone Glaciations Triassic riftingNotes
Acknowledgements
FONCyT, PUE 2016 CICTERRA CONICET, and SECyT-UNC (Argentina), the Royal Society and UCL (UK), and the Marie Curie Fellowship IIF Program (ANDYN Project, EU) supported our studies in South America.
References
- Astini RA, Dávila FM, López Gamundí OR, Gómez F, Collo G, Ezpeleta M, Martina F, Ortiz A (2005) Cuencas de la región precordillerana. In: Chebli G, Spalletti L (eds) Frontera Exploratoria de la Argentina, Buenos Aires, pp 115–145Google Scholar
- Astini RA, Dávila FM, Martina F (2011) La Formación Los Llantenes en la Precordillera de Jagüé (La Rioja) y la identificación de un episodio de rifting en la evolución de las cuencas del Paleozoico superior en el oeste argentine. Revista Geológica de Chile 38:245–267Google Scholar
- Astini RA, Tauber AA, Marengo HG, Oviedo N, Del V (2014) Cubierta cenozoica (Paleógeno-Neógeno). In: Relatorio de la geología y recursos Naturales de la Provincia de Córdoba, Asociación Geológica Argentina, pp 539–591Google Scholar
- Bajolet F, Galeano J, Funiciello F, Moroni M, Negredo AM, Faccenna C (2012) Continental delamination: insights from laboratory models. Geochemistry Geophysics Geosystems 13:Q02009. https://doi.org/10.1029/2011GC003896
- Baristeas N, Anka Z, Di Primio R, Rodriguez JF, Marchal D, Domínguez F (2012) Distribution of hydrocarbon leakage indicators in the Malvinas Basin, offshore Argentine continental margin. Mar Geol 332:56–74CrossRefGoogle Scholar
- Boutonnet E, Arnaud N, Guivel C, Lagabrielle Y, Scalabrino B, Espinoza F (2010) Subduction of the South Chile active spreading ridge: A 17Ma to 3Ma magmatic record in central Patagonia (western edge of Meseta del Lago Buenos Aires, Argentina). J Volcanol Geoth Res 189(3):319–339Google Scholar
- Breitsprecher K, Thorkelson DJ (2009) Neogene kinematic evolution of the Nazca e Antarctice Phoenix slab windows beneath Patagonia and the Antarctic Peninsula. Tectonophysics 464, pp 10–20Google Scholar
- Burgess PM, Gurnis M, Moresi L, (1997) Formation of sequences in the cratonic interior of North America by interaction between mantle, eustatic, and stratigraphic processes. Geol Soc Am Bull 109(12):1515–1535Google Scholar
- Cawood PA (2005) Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Sci Rev 69(3):249–279CrossRefGoogle Scholar
- Colli L, Fichtner A, Bunge HP (2013) Full waveform tomography of the upper mantle in the South Atlantic region: Imaging a westward fluxing shallow asthenosphere? Tectonophysics 604:26–40CrossRefGoogle Scholar
- Condom T, Coudrain A, Sicart JE, Théry S (2007) Computation of the space and time evolution of equilibrium-line altitudes on Andean glaciers (10°N–55° S). Global Planet Change 59(1):189–202CrossRefGoogle Scholar
- Conrad CP, Husson L (2009) Influence of dynamic topography on sea level and its rate of change. Lithosphere 1:110–120. https://doi.org/10.1130/L32.1CrossRefGoogle Scholar
- Cuitiño JI, Scasso RA (2010) Sedimentología y paleoambientes del Patagoniano y su transición a la Formación Santa Cruz al sur del Lago Argentino, Patagonia Austral. Rev Asoc Geol Argent 66(3):406–417Google Scholar
- Dahlquist JA, Alasino PH, Bello C (2014) Devonian F-rich peraluminous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis from the western-central region of the Achala batholith. Mineral Petrol 108(3):391–417Google Scholar
- Dahlquist JA, Verdecchia SO, Baldo EG, Basei MA, Alasino PH, Urán GA, Zandomeni PS (2016) Early Cambrian U-Pb zircon age and Hf-isotope data from the Guasayán pluton, Sierras Pampeanas, Argentina: implications for the northwestern boundary of the Pampean arc. Andean Geol 43(1)Google Scholar
- Dávila FM, Carter A (2013) Exhumation history of the Andean broken foreland revisited. Geology 41(4):443–446CrossRefGoogle Scholar
- Dávila FM, Lithgow-Bertelloni C (2013) Dynamic topography in South America. J South Am Earth Sci 43:127–144CrossRefGoogle Scholar
- Dávila FM, Lithgow-Bertelloni C (2015) Dynamic uplift during slab flattening. Earth Planet Sci Lett 425:34–43CrossRefGoogle Scholar
- Dávila FM, Lithgow-Bertelloni C, Giménez M (2010) Tectonic and dynamic controls on the topography and subsidence of the Argentine Pampas: The role of the flat slab. Earth Planet Sci Lett 295(1):187–194CrossRefGoogle Scholar
- Divins DL (2008) NGDC Total sediment thickness of the world’s oceans and marginal seas. http://www.ngdc.noaa.gov/mgg/sedthick/sedthick.html
- Eakin CM, Lithgow-Bertelloni C, Dávila FM (2014) Influence of Peruvian flat-subduction dynamics on the evolution of the Amazon basin. Earth Planet Sci Lett 404:250–260. https://doi.org/10.1016/j.epsl.2014.07.027CrossRefGoogle Scholar
- Enkelmann E, Ridgway KD, Carignano C, Linnemann U (2014) A thermochronometric view into an ancient landscape: Tectonic setting, development, and inversion of the Paleozoic eastern Paganzo basin, Argentina. Lithosphere 6(2):93–107CrossRefGoogle Scholar
- Espurt N, Baby P, Brusset S, Roddaz M, Hermoza W, Regard V, Antoine P-O, Salas-Gismondi R, Bolaños R (2007) How does the Nazca Ridge subduction influence the modern Amazonian foreland basin? Geology 35:515–518CrossRefGoogle Scholar
- Flament N, Gurnis M, Muller RD (2013) A review of observations and models of dynamic topography. Lithosphere 5(2):189–210. https://doi.org/10.1130/L245.1
- Flament N, Gurnis M, Müller RD, Bower DJ, Husson L (2015) Influence of subduction history on South American topography. Earth Planet Sci Lett 430:9–18CrossRefGoogle Scholar
- Fosdick JC, Romans BW, Fildani A, Bernhardt A, Calderón M, Graham SA (2011) Kinematic evolution of the Patagonian retroarc fold-and-thrust belt and Magallanes foreland basin, Chile and Argentina, 51 30′ S. Geol Soc Am Bull 123(9–10):1679–1698Google Scholar
- Flament N, Gurnis M, Müller RD, Bower DJ, Husson L (2015) Influence of subduction history on South American topography. Earth Planet Sci Lett 430:9–18CrossRefGoogle Scholar
- Garcia‐Castellanos D, Fernandez M, Torné M (2002) Modeling the evolution of the Guadalquivir foreland basin (southern Spain). Tectonics 21(3)Google Scholar
- Gibson SA, Geist D (2010) Geochemical and geophysical estimates of lithospheric thickness variation beneath Galápagos. Earth Planet Sci Lett 300(3):275–286Google Scholar
- Gilbert H, Beck S, Zandt G (2006) Lithospheric and upper mantle structure of central Chile and Argentina. Geophys J Int 165(1):383–398CrossRefGoogle Scholar
- Gorring ML, Kay SM (2001) Mantle processes and sources of Neogene slab-window magmas in southern Patagonia. J Petrol 42(6):1067–1094CrossRefGoogle Scholar
- Gorring M, Kay S, Zeitler P, Ramos V, Rubiolo D, Fernandez M, Panza J (1997) Neogene Patagonian plateau lavas: continental magmas associated with ridge collision at the Chile Triple Junction. Tectonics 16(1):1–17CrossRefGoogle Scholar
- Gorring M, Singer B, Gowers J, Kay S (2003) Plio-Pleistocene basalts from the Meseta del Lago Buenos Aires, Argentina: evidence for asthenosphere lithosphere interactions during slab window magmatism. Chem Geol 193:215–235CrossRefGoogle Scholar
- Grand SP (2002) Mantle shear–wave tomography and the fate of subducted slabs. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 360(1800):2475–2491CrossRefGoogle Scholar
- Gruetzner J, Uenzelmann‐Neben G, Franke D (2012) Variations in sediment transport at the Central Argentine continental margin during the Cenozoic. Geochem Geophys Geosyst 13(10)Google Scholar
- Guillaume B, Martinod J, Husson L, Roddaz M, Riquelme R (2009) Neogene uplift of central eastern Patagonia: dynamic response to active spreading ridge subduction? Tectonics 28(TC2009). https://doi.org/10.1029/2008TC002324
- Guillaume B, Moroni M, Funiciello F, Martinod J, Faccenna C (2010) Mantle flow and dynamic topography associated with slab window opening: Insights from laboratory models. Tectonophysics 496(1):83–98CrossRefGoogle Scholar
- Guillaume B, Gautheron C, Simon-Labric T, Martinod J, Roddaz M, Douville E (2013) Dynamic topography control on Patagonian relief evolution as inferred from low temperature thermochronology. Earth Planet Sci Lett 364:157–167CrossRefGoogle Scholar
- Gulbranson EL, Montañez IP, Schmitz MD, Limarino CO, Isbell JL, Marenssi SA, Crowley JL (2010) High-precision U-Pb calibration of Carboniferous glaciation and climate history, Paganzo Group, NW Argentina. Geol Soc Am Bulletin 122(9–10):1480–1498CrossRefGoogle Scholar
- Gurnis M (1990) Ridge spreading, subduction and sea level fluctuations. Science 250:970–972CrossRefGoogle Scholar
- Gurnis M (1992) Rapid continental subsidence following the initiation and evolution of subduction. Science 255(5051):1556–1558CrossRefGoogle Scholar
- Gurnis M, Mitrovica JX, Ritsema J, van Heijst H (2000) Constraining mantle density structure using geological evidence of surface uplift rates: The case of the African Superplume. Geochem Geophys Geosyst 1:1525–2027. https://doi.org/10.1029/1999GC000035CrossRefGoogle Scholar
- Gutscher MA (2002) Andean subduction styles and their effect on thermal structure and interplate coupling. J South Am Earth Sci 15(1):3–10CrossRefGoogle Scholar
- Hager BH, O’Connell RJ (1981) A simple model of plate dynamics and mantle convection. J Geophys Res 86(B6):4843–4867CrossRefGoogle Scholar
- Hager BH, O’Connell RJ (1979) Kinematic models of large-scale flow in the Earth’s mantle. J Geophys Res 84:1031–1048CrossRefGoogle Scholar
- Hager BH, Clayton RW, Richards MA, Dziewonski AM, Comer RP (1985) Lower mantle heterogeneity, dynamic topography, and the geoid. Nature 313:541–545CrossRefGoogle Scholar
- Han L, Gurnis M (1999) How valid are dynamic models of subduction and convection when plate motions are prescribed? Physics of Earth and Planetary Interiors 110:235–246CrossRefGoogle Scholar
- Heine C, Müller RD, Steinberger B, Torsvikb TH (2008) Subsidence in intracontinental basins due to dynamic topography. Phys Earth Planet Inter 171:252–264CrossRefGoogle Scholar
- Hohertz WL, Carlson RL (1998) An independent test of thermal subsidence and asthenosphere flow beneath the Argentine Basin. Earth Planet Sci Lett 161:73–83CrossRefGoogle Scholar
- Husson L, Conrad CP, Faccenna C (2012) Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell. Earth Planet Sci Lett 317:126–135CrossRefGoogle Scholar
- Isbell JL, Henry LC, Gulbranson EL, Limarino CO, Fraiser ML, Koch ZJ, Dineen AA (2012) Glacial paradoxes during the late Paleozoic ice age: evaluating the equilibrium line altitude as a control on glaciation. Gondwana Res 22(1):1–19CrossRefGoogle Scholar
- Jordan TE, Zeitler P, Ramos VA, Gleadow AJW (1989) Thermochronometric data on the development of the basement peneplain in the Sierras Pampeanas, Argentina. J South Am Earth Sci 2:207–222CrossRefGoogle Scholar
- Kay SM, Gordillo CE (1994) Pocho volcanic rocks and the melting of depleted continental lithosphere above a shallowly dipping subduction zone in the Central Andes. Contrib Mineral Petr 117:25–44CrossRefGoogle Scholar
- Lachenbruch AH, Morgan P (1990) Continental extension, magmatism and elevation: Formal relations and rules of thumb. Tectonophysics 174:39–62. https://doi.org/10.1016/0040-1951(90)90383-JCrossRefGoogle Scholar
- Lagabrielle Y, Suárez M, Rossello EA, Hérail G, Martinod J, Régnier M, de la Cruz R (2004) Neogene to Quaternary tectonic evolution of the Patagonian Andes at the latitude of the Chile Triple Junction. Tectonophysics 385(1):211–241CrossRefGoogle Scholar
- Lithgow-Bertelloni C, Richards MA (1998) The dynamics of Cenozoic and Mesozoic plate motions. Rev Geophys 36: 27–78 Magoon, LB. y Dow, WG (eds) 1994. The petroleum system from source to trap. AAPG Memoir 60Google Scholar
- Lithgow-Bertelloni C, Silver PG (1998) Dynamic topography, plate driving forces and the African superswell. Nature 395(6699):269–272CrossRefGoogle Scholar
- Lithgow-Bertelloni C, Gurnis M (1997) Cenozoic subsidence and uplift of continents from time-varying dynamic topography. Geology 25(8):735–738CrossRefGoogle Scholar
- Lithgow‐Bertelloni C, Guynn JH (2004) Origin of the lithospheric stress field. J Geophys Res: Solid Earth 109(B1)Google Scholar
- Liu L, Gurnis M (2008) Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection. J Geophys Res 113(B08405). https://doi.org/10.1029/2008JB005594
- Liu S, Nummedal D (2004) Late Cretaceous subsidence in Wyoming: quantifying the dynamic component. Geology 32:397–400CrossRefGoogle Scholar
- Liu L, Spasojevi´c S, Gurnis M (2008) Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science 322:934–938Google Scholar
- Liu S, Nummedal D, Liu L (2011) Migration of dynamic subsidence across the Late Cretaceous United States Western Initerior Basin in response to Farallon plate subduction. Geology 39:555–558CrossRefGoogle Scholar
- Loegering MJ, Anka Z, Autin J, Di Primio R, Marchal D, Rodriguez JF, Vallejo E (2013) Tectonic evolution of the Colorado Basin, offshore Argentina, inferred from seismo-stratigraphy and depositional rates analysis. Tectonophysics 604:245–263CrossRefGoogle Scholar
- Mantle GW, Collins WJ (2008) Quantifying crustal thickness variations in evolving orogens: Correlation between arc basalt composition and Moho depth. Geology 36(1):87–90CrossRefGoogle Scholar
- Marengo HG (2006) Micropaleontología y estratigrafía del Mioceno marino de la Argentina: Las transgresiones de Laguna Paiva y del “Entrerriense-Paranense”. M. S. thesis. Buenos Aires University, p 124. UnpublishedGoogle Scholar
- Martinelli RV, Franzin HJ (1996) Cuencas de Rawson y Península Valdés. In: Ramos VA, Turic MA (eds) Geología y recursos naturales de la Plataforma continental Argentina. Relatorio del XIIIº Congreso Geológico Argentino y IIIº Congreso de Exploración de Hidrocarburos, Buenos Aires, pp 159–170Google Scholar
- McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40(1):25–32CrossRefGoogle Scholar
- Milana JP, Alcober OA (1994) Modelo tectosedimentario de la cuenca triásica de Ischigualasto (San Juan, Argentina). Rev Asoc Geol Argent 49:217–235Google Scholar
- Mitrovica JX, Beaumont C, Jarvis GT (1989) Tilting of the continental interior by the dynamical effects of subduction. Tectonics 8:1079–1094CrossRefGoogle Scholar
- Moresi L, Gurnis M (1996) Constraints on the lateral strength of slabs from three-dimensional dynamic flow models. Earth Planet Sci Lett 138(1):15–28CrossRefGoogle Scholar
- Müller RD, Roest WR, Royer JY, Gahagan LM, Sclater JG (1997) Digital isochrons of the world’s ocean floor. J Geophys Res: Solid Earth 102(B2):3211–3214CrossRefGoogle Scholar
- Nóbile JC, Collo G, Dávila FM, Martina F, Wemmer K (2015) Successive reactivation of older structures under variable heat flow conditions evidenced by K-Ar fault gouge dating in Sierra de Ambato, northern Argentine broken foreland. J South Am Earth Sci 64:152–165CrossRefGoogle Scholar
- O’Reilly SY, Zhang M, Griffin WL, Begg G, Hronsky J (2009) Ultradeep continental roots and their oceanic remnants: A solution to the geochemical “mantle reservoir” problem? Lithos 112:1043–1054CrossRefGoogle Scholar
- Parsons B, McKenzie D (1978) Mantle convection and the thermal structure of the plates. J Geophysic Res 83(B9):4485–4496CrossRefGoogle Scholar
- Pedoja K, Husson L, Regard V, Cobbold PR, Ostanciaux E, Johnson ME, Kershaw S, Saillard M, Martinod J, Furgerot L, Weill P, Delcaillau B (2011) Relative sea-level fall since the last interglacial stage: are coasts uplifting worldwide? Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2011.05.002Google Scholar
- Pysklywec RN, Mitrovica JX (1999) The role of subduction-induced subsidence in the evolution of the Karoo Basin. J Geol 107:155–164CrossRefGoogle Scholar
- Ramos VA (2009) Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle. In: Kay SM, Ramos VA, Dickinson W (eds) Backbone of the Americas: Shallow subduction, Plateau uplift, and Ridge and Terrane collision. Geol Soc Am, Memoir 204, pp 31–65Google Scholar
- Ramos VA, Jordan TE, Allmendinger RW, Mpodozis C, Kay SM, Cortés JM, Palma M (1986) Paleozoic terranes of the central Argentine-Chilean Andes. Tectonics 5(6):855–880CrossRefGoogle Scholar
- Ricard Y, Chambat F, Lithgow-Bertelloni C (2006) Gravity observations and 3D structure of the Earth. Comptes Rendus de l’Acad (c)mie des Sciences. Comptes Rendus Geoscience 338:992–1001Google Scholar
- Richards MA, Hager BH (1984) Geoid anomalies in a dynamic earth. J Geophys Res 89:5987–6002CrossRefGoogle Scholar
- Roberts GG, White N (2010) Estimating uplift rate histories from river profiles using African examples. J Geophys Res: Solid Earth 115(B2)Google Scholar
- Roberts GG, White NJ, Martin‐Brandis GL, Crosby AG (2012) An uplift history of the Colorado Plateau and its surroundings from inverse modeling of longitudinal river profiles. Tectonics 31(4)Google Scholar
- Ruskin BG, Dávila FM, Hoke GD, Jordan TE, Astini RA, Alonso R (2011) Stable isotope composition of middle Miocene carbonates of the Frontal Cordillera and Sierras Pampeanas: Did the Paranaense seaway flood western and central Argentina? Palaeogeogr Palaeoclimatol Palaeoecol 308(3):293–303CrossRefGoogle Scholar
- Russo RM, VanDecar JC, Comte D, Mocanu VI, Gallego A, Murdie RE (2010) Subduction of the Chile ridge: uppermantle structure and flow. GSA Today 20(9):4–10CrossRefGoogle Scholar
- Scalabrino B, Lagabrielle Y, Malavieille J, Dominguez S, Melnick D, Espinoza F, Rossello E (2010) A morphotectonic analysis of central Patagonian Cordillera: Negative inversion of the Andean belt over a buried spreading center? Tectonics 29(2)Google Scholar
- Shephard GE, Liu L, Gurnis M, Muller RD (2010) Miocene drainage reversal of the Amazon River driven by plate-mantle interaction. Nat Geosci 3:870–875CrossRefGoogle Scholar
- Shephard GE, Liu L, Müller RD, Gurnis M (2012) Dynamic topography and anomalously negative residual depth of the Argentine Basin. Gondwana Res 22(2):658–663CrossRefGoogle Scholar
- Shephard GE, Müller RD, Seton M (2013) The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure. Earth-Sci Rev 124:148–183Google Scholar
- Spasojevic S, Liu L, Gurnis M, Muller RD (2008) The case for dynamic subsidence of the United States east coast since the Eocene. Geophys Res Lett 35, L08305. http://dx.doi.org/10.1029/2008GL033511
- Spasojevic S, Liu L, Gurnis M (2009) Adjoint models of mantle convection with seismic, plate motion, and stratigraphic constraints: North America since the Late Cretaceous. Geochem Geophys Geosyst 10(Q05W02). https://doi.org/10.1029/2008GC002345
- Steinberger B (2007) Effects of latent heat release at phase boundaries on flow in the Earth’s mantle, phase boundary topography and dynamic topography at the Earth’s surface. Phys Earth Planet Inter 164(1–2):2–20. https://doi.org/10.1016/j.pepi.2007.04.021CrossRefGoogle Scholar
- Tackley PJ, Stevenson DJ, Glatzmaier GA, Schubert G (1993) Effects of an endothermic phase transition at 670 km depth on a spherical model of convection in the Earth’s mantle. Nature 361:699–704CrossRefGoogle Scholar
- Torsvik TH, Rousse S, Labails C, Smethurst MA (2009) A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys J Int 177(3):1315–1333CrossRefGoogle Scholar
- Turcotte D, Schubert G (2002) Geodynamics. Cambridge University PressGoogle Scholar
- Tyrrell T, Zeebe RE (2004) History of carbonate ion concentration over the last 100 million years. Geochim Cosmochim Acta 68(17):3521–3530CrossRefGoogle Scholar
- Winterbourne J, Crosby A, White NJ (2009) Depth, age and dynamic topography of oceanic lithosphere beneath heavily sedimented Atlantic margin. Earth Planet Sci Lett 287(1–2):137–151. https://doi.org/10.1016/j.epsl.2009.08.019CrossRefGoogle Scholar
- Zeebe RE (2012) History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu Rev Earth Planet Sci 40:141–165CrossRefGoogle Scholar