Advertisement

Mechanisms and Episodes of Deformation Along the Chilean–Pampean Flat-Slab Subduction Segment of the Central Andes in Northern Chile

  • Fernando Martínez
  • César Arriagada
  • Sebastián Bascuñán
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

The knowledge of the tectonic architecture, timing, and the mechanisms of deformation that affected the western slope of the Chilean–Pampean flat-slab subduction segment of the Central Andes in northern Chile are a key to understand the complete evolution of this Andean segment. In Chile, this segment is composed of two tectonic provinces: The Coastal and the Frontal Cordilleras. Traditionally, this broad intracontinental deformation zone that characterized this segment has been compared with the Rocky Mountains, in terms of structural styles and age of deformation, although the complex interaction between extensional Mesozoic structures and different styles of contractional structures suggest that this segment resulted from multiple episodes of deformation. We present the results of a study developed along the Coastal and Frontal Cordillera of northern Chile (27°–28° S), based on regional fieldwork, structural analysis, and geochronological dating of synorogenic deposits. Our results have revealed that the structure of this region consists of NNE-striking inverted and basement-involved contractional structures. The occurrence of these structural styles suggests that a hybrid tectonic mechanism dominated by tectonic inversion and basement-involving thrusting was responsible of its current configuration. On the other hand, the U–Pb ages determined in the synorogenic deposits exposed on the footwall of the main faults indicate that the Andean deformation could have initiated during the Late Cretaceous in the Coastal Cordillera associated with tectonic inversion and then this migrated to the east as basement-involved thrusting during the Paleocene–Miocene times.

Keywords

Chilean–Pampean flat subduction zone Cretaceous deformations Cenozoic deformations Tectonic inversion Basement-involved structures Northern Chile 

Notes

Acknowledgements

This work has been supported by the research project “The crustal structure and timing deformation along the Chilean flat-slab subduction segment (27°–29° S), Central Andes,” funded by the Fondo Nacional de Desarrollo Científico y Tecnológico (Fondecyt), Chile (grant 3140557). We would like to thank Midland Valley Company for providing the academic license for the Move software used in this study. We also acknowledge Laura Giambiagi and Guido Gianni whose reviews greatly enriched earlier versions of this article. Finally, we thank Sergio Villagrán and Marco Vaccaris for their assistance in the field and J. Vargas and R. Valles (Geology Department, Universidad de Chile), for zircon sample preparation, as well as L. Solari for the U–Pb LA-ICP-MS analyses (LEI, UNAM).

References

  1. Aguirre-Urreta B (1993) Neocomian ammonite biostratigraphy of the Andean basins of Argentina and Chile. Rev. Española de Paleontología 8:57–74Google Scholar
  2. Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna Plateau of the central Andes. Annu Rev Earth Planet Sci 25:139–174CrossRefGoogle Scholar
  3. Amilibia A, Sàbat F, McClay KR, Muñoz JA, Roca E, Chong G (2008) The role of inherited tectono-sedimentary architecture in the development of the central Andean mountain belt: insights from the Cordillera de Domeyko. J Struct Geol 30:1520–1539CrossRefGoogle Scholar
  4. Arévalo C (1994) Mapa geológico de la Hoja Los Loros, Región de Atacama (1:100.000). Servicio Nacional de Geología y Minería, Documentos de, Trabajo No 6Google Scholar
  5. Arévalo C (1999) The Coastal Cordillera–Precordillera boundary in the Copiapó area, northern Chile, and the structural setting of the Candelaria Cu–Au ore deposit. Unpublished Ph.D. Thesis. Kingston University, Kingston-upon-Thames, UK, p. 244Google Scholar
  6. Arévalo C (2005) Carta los Loros, Región de Atacama, Carta Geológica Básica. Servicio Nacional de Geología y Minería, Santiago 92: 54Google Scholar
  7. Balgord E, Carrapa B (2014) Basin evolution of Upper Cretaceous–Lower Cenozoic strata in the Malargüe fold-and-thrust belt: northern Neuquén Basin, Argentina. Basin Res: 1–24Google Scholar
  8. Baraganzi M, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geol 4:686–692CrossRefGoogle Scholar
  9. Bonini M, Sani F, Antonielli B (2012) Basin inversion and contractional reactivation of inherent normal faults: A review based on previous and new experimental models. Tectonophysics 522:55–88CrossRefGoogle Scholar
  10. Burkhard M, Caritg S, Helg U, Robert-Charrue C, Soulaimani A (2006) Tectonics of the Anti-Atlas of Morocco. CR Geosci 338:11–24CrossRefGoogle Scholar
  11. Carrapa B, Trimble JD, Stockli D (2011) Patterns and timing of exhumation and deformation in the Eastern Cordillera of NW Argentina revealed by (U–Th)/He thermochronology. Tectonics 30:1–30CrossRefGoogle Scholar
  12. Charrier R (1979) El Triásico en Chile y regiones adyacentes de Argentina: Una reconstrucción paleogeográfica y paleoclimática. Comunicaciones 26:1–47Google Scholar
  13. Cornejo P, Mpodozis C, Kay S, Tomlinson A, Ramirez C (1993) Upper cretaceous lower eocene potasic volcanism in an extensional regime in the precordillera of Copiapó, Chile. In: Second IASG (Oxford). pp 347–350Google Scholar
  14. Cornejo P, Matthews S, Pérez de Arce C (2003) The K-T compressive deformation event in northern Chile (24°–27°). In: 10° Congreso Geológico Chileno (Concepción), ChileGoogle Scholar
  15. Coutand I, Cobbold P, Urreiztieta M, Gautier P, Chauvin A, Gapais D, Rossello E, Gamundi O (2001) Style and history of Andean deformation, Puna plateau, northwestern Argentina. Tectonics 20:210–234Google Scholar
  16. Cristallini E, Comínguez A, Ramos V, Mercerat ED (2004) Basement double wedge thrusting in the northern Sierras Pampeanas of Argentina (27° S). Constraints from deep seismic reflection. In: McClay KR (ed) Thrust Tectonics and Hydrocarbon Systems. AAPG Mem 82:1–26Google Scholar
  17. Del Rey A, Dejkart K, Arriagada C, Martínez F (2016) Resolving the paradigm of the late Paleozoic-Triassic Chilean magmatism: isotopic approach. Gondwana Res 37:172–181CrossRefGoogle Scholar
  18. Echaurren A, Folguera A, Gianni G, Orts D, Tassara A, Encinas A, Giménez M, Valencia V (2016) Tectonic evolution of the North Patagonian Andes (41°–44° S) through recognition of syntectonic strata. Tectonophysics 677–678:99–114CrossRefGoogle Scholar
  19. Fennell L, Folguera A, Naipauer M, Gianni G, Rojas Vera E, Bottesi G, Ramos V (2015) Cretaceous deformation of the southern Central Andes: synorogenic growth strata in the Neuquén Group (35°30’–37° S). Basin Res: 1–22. https://doi.org/10.1111/bre.12135
  20. Folguera A, Bottesi G, Duddy I, Martín-Gonzalez Orts D, Sagripanti L, Vera, Rojas, Ramos VA (2015) Exhumation of the Neuquén Basin in southern Central Andes (Malargüe fold and thrust belt) from field data and low-temperature thermochronology. J S Am Earth Sci 1–18Google Scholar
  21. Giambiagi L, Ramos V, Godoy E, Álvarez P, Orts D (2003) Cenozoic deformation and tectonic style of the Andes, between 33° and 34° south latitude. Tectonics 22(4):1–18. https://doi.org/10.1029/2001TC001354CrossRefGoogle Scholar
  22. Godoy E, Davidson JD (1976) Pilares en compresión de edad Mioceno superior en los Andes del Norte de Chile (22°–30° Latitud Sur). In: I Congreso Geológico Chileno. pp 87–103Google Scholar
  23. Grocott J, Taylor G (2002) Magmatic arc fault systems, deformation partitioning and emplacement of granitic complexes in the Coastal Cordillera, north Chilean Andes (25°30′ to 27°00′S). J Geol Soc Lond 159:425–442CrossRefGoogle Scholar
  24. Heredia N, Rodríguez Fernández L, Gallastegui G, Busquest B, Colombo F (2002) Geological setting of the Argentine Frontal Cordillera in the flat-slab segment (30°00’-31°30’S latitude). J S Am Earth Sci 15:79–99CrossRefGoogle Scholar
  25. Iaffa D, Sàbat F, Muñoz JA, Mon R, Gutierrez AA (2011) The role of inherited structures in a foreland basin evolution. The Metán Basin in NW Argentina. J Struct Geol 33:1816–1828CrossRefGoogle Scholar
  26. Ingersoll R (2012) Tectonic of sedimentary basins, with revised nomenclature, in Tectonic of sedimentary basins recent advances. In: Bushy C and Azor A (ed). Wiley-Blackwell publication, pp 3–47Google Scholar
  27. Isacks BL (1988) Uplift of the Central Andes Plateau and bending of the Bolivian Orocline. J Geophys Res 93:3211–3231CrossRefGoogle Scholar
  28. Jensen O (1976) Geología de las nacientes del río Copiapó, entre los 27°53′ y 28°20′ de latitud Sur, provincia de Atacama. Memoria de Titulo (Inédito), Universidad de Chile, Departamento de Geología, p 249Google Scholar
  29. Jordan T, Allmendinger R (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am J Sci 286:737–764CrossRefGoogle Scholar
  30. Jordan T, Isacks BL, Allmendinger R, Brewer J, Ramos V, Ando C (1983) Andean tectonics related to geometry of subducted Nazca plate. Geol Soc Am Bull 94:341–361CrossRefGoogle Scholar
  31. Kley J, Monaldi C (2002) Tectonic inversión in the Santa Barbara System of the central Andean foreland thrust belt, northwestern Argentina. Tectonics 21:1–18CrossRefGoogle Scholar
  32. Lara L, Godoy E (1998) Mapa Geológico de la Hoja Quebrada Salitrosa, Región de Atacama. Servicio Nacional de Geología y Minería, Santiago, scale: 1:100.000Google Scholar
  33. Ludwing KR (2008) Isoplot 3.6. 4. Berkley Geochronology Center Special, PublicationGoogle Scholar
  34. Maksaev V, Munizaga F, Valencia V, Barra F (2009) LA-ICP-MS zircón U-Pb geochronology to constrain the age of post-Neocomian continental deposits of the Cerrillos Formation, Atacama Region, northern Chile: tectonic and metallogenic implications. Andean Geol 36:264–287Google Scholar
  35. Marschik R, Fontboté L (2001) The Candelaria-Punta del Cobre iron oxide Cu–Au (–Zn–Ag) deposits, Chile. Econ Geol 96:1799–1826Google Scholar
  36. Martínez F, Arriagada C, Mpodozis C, Peña M (2012) The Lautaro Basin: a record of inversion tectonics in northern Chile. Andean Geol 39(2):258–278Google Scholar
  37. Martínez F, Arriagada C, Peña M, Del Real I, Deckart K (2013) The structure of the Chañarcillo Basin: an example of tectonic inversion in the Atacama region, northern Chile. J S Am Earth Sci 42:1–16CrossRefGoogle Scholar
  38. Martínez F, Maksymowicz A, Ochoa H, Díaz D (2015a) Geometry of the inverted Cretaceous Chañarcillo Basin based on 2D gravity and field data-an approach to the structure of the western Central Andes of northern Chile. Solid-Earth 6:1–18CrossRefGoogle Scholar
  39. Martínez F, Arriagada C, Valdivia R, Deckart K, Peña M (2015b) Geometry and kinematics of the Andean thick-skinned thrust systems: insights from the Chilean Frontal Cordillera (28°–28.5° S), Central Andes. J S Am Earth Sci 34:307–324CrossRefGoogle Scholar
  40. Martínez F, Arriagada C, Peña M, Deckart K, Charrier R (2016) Tectonic styles and crustal shortening of the Central Andes “Pampean” flat-slab segment in northern Chile (27°–29° S). Tectonophysics 667:144–162CrossRefGoogle Scholar
  41. Martinod J, Husson L, Roperch P, Guillaume B, Espurt N (2010) Horizontal subduction zones, convergence velocity and the building of the Andes. Earth Planet Sci Lett 299:299–309CrossRefGoogle Scholar
  42. Mescua J, Giambiagi L (2012) Fault inversion vs. new thrust generation: A case study in the Malargüe fold-and-thrust belt, Andes of Argentina. J Struct Geol 31:51–63CrossRefGoogle Scholar
  43. Mora A, Gaona T, Kley J, Montoya D, Parra M, Quiroz LI, Reyes G, Strecker MR (2009) The role of inherited extensional fault segmentation and linkage in contractional orogenesis: a reconstruction of Lower Cretaceous inverted rift basins in the Eastern Cordillera of Colombia. Basin Res 21:111–137CrossRefGoogle Scholar
  44. Mortimer C (1973) The Cenozoic history of the southern Atacama Desert, Chile. J Geol Soc Lond 129:505–526CrossRefGoogle Scholar
  45. Moscoso R, Mpodozis C (1988) Estilos estructurales en el Norte Chico de Chile (28°–31° S), regiones de Atacama y Coquimbo. Rev Geol Chile 15:155–158Google Scholar
  46. Moscoso R, Mpodozis C, Nassi C, Ribba L, Arévalo C (Compilador) (2010) Geología de la Hoja El Tránsito, Región de Atacama. Servicio Nacional de Geología y Minería de Chile, Serie Preliminar, 7, scale: 1:250.000, 3 anexos, SantiagoGoogle Scholar
  47. Mourgues FA (2004) Advances in ammonite biostratigraphy of the marine Atacama basin (Lower Cretaceous), northern Chile, and its relationship with the Neuquén basin, Argentina. J S Am Earth Sci 17:3–10CrossRefGoogle Scholar
  48. Mpodozis C, Cornejo P (1997) El rift Triásico- Sinemuriano de Sierra Exploradora, Cordillera de Domeyko (25°–26° S): Asociaciones de facies y reconstrucción tectónica. In: VIII Congreso Geológico Chileno 1:550–554Google Scholar
  49. Mpodozis C, Ramos V (1990) The Andes of Chile and Argentina. In: Ericksen GE, Cañas Pinochet MT, Reinemud JA (ed). Geology of the Andes and its relation to hydrocarbon and mineral resources: Circumpacific Council for Energy and Mineral Resources. Earth Sci 11:59–90Google Scholar
  50. Mpodozis C, Ramos VA (2008) Tectónica jurásica en Argentina y Chile: Extensión, Subducción Oblicua, Rifting, Deriva y Colisiones? Rev Geol Argent 63:479–495Google Scholar
  51. Naranjo JA, Puig A (19849 Hojas Taltal y Chañaral, Regiones de Antofagasta y Atacama. Servicio Nacional de Geología y Minería, Santiago. pp 62–63Google Scholar
  52. Narr W, Suppe J (1994) Kinematics of basement-involved compressive structures. Am J Sci 294:802–860CrossRefGoogle Scholar
  53. Peña M, Arriagada C, Martínez F, Becerra J (2013) Carta Geológica Yerbas Buenas-Tres Morros, Región de Atacama. Servicio Nacional de Geología y Minería, Santiago, scale: 1:100.000Google Scholar
  54. Pérez N, Horton BK, Carlotto V (2016) Structural inheritance and selective reactivation in the central Andes: Cenozoic deformation guided by pre-Andean structures in southern Peru. Tectonophysics 671:264–280CrossRefGoogle Scholar
  55. Pindell J, Dewey J (1982) Permo-Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region. Tectonics 1:179–211CrossRefGoogle Scholar
  56. Poblet J, Lisle RJ (2011) Kinematic evolution and structural styles of fold-and-thrust belts. In: Poblet J, Lisle RJ (ed) Kinematic evolution and structural styles of fold-and-thrust belts. Geol Soc Spec Pub 349:1–24Google Scholar
  57. Ramos V (1999) El segmento de Subducción Subhorizontal de los Andes Centrales Argentino-Chilenos. Acta Geol Hisp 32(7):5–16Google Scholar
  58. Ramos VA (2009) Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle. In: Kay SM, Ramos VA, Dickinson WR (ed) Backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision. Geol Soc Am Mem 204:31–65Google Scholar
  59. Ramos VA, Cristallini EO, Pérez DJ (2002) The Pampean flat-slab of the Central Andes. J S Am Earth Sci 15:59–78CrossRefGoogle Scholar
  60. Rossel K, Aguilar G, Salazar E, Martinod J, Carretier S, Pinto L, Cabré A (2016) Chronology of Chilean Frontal Cordillera building from geochronological, stratigraphic and geomorphological data insights from Miocene intramontane-basin deposits. Basin Res. https://doi.org/10.1111/bre.12221
  61. Scheubert E, Reutter KJ (1992) Magmatic arc tectonics in the Central Andes between 21° and 25° S. Tectonophysics 205:127–140CrossRefGoogle Scholar
  62. Scisciani V, Tavarnelli E, Calamita F (2002) The interaction of extensional and contractional deformations in the outer zones of the Central Apennines, Italy. J Struct Geol 24:1647–1658CrossRefGoogle Scholar
  63. Segerstrom K (1960) Cuadrángulo Quebrada Paipote, Provincia de Atacama, Carta Geológica de Chile. Instituto de Investigaciones Geológicas, Santiago de Chile. p 35Google Scholar
  64. Solari LA, Gómez-Tuena A, Bernal JP, Pérez-Arvizu O, Tanner M (2010) U-Pb zircon geochronology by an integrated LAICPMS microanalytical work station: achievements in precision and accuracy. Geostand Geoanal Res 34(1):5–18CrossRefGoogle Scholar
  65. Steinman G (1929) Geologie von Peru. Carl Winters Universitats-Buchhandlung. p 448Google Scholar
  66. Suárez M, Bell CM (1992) Triassic rift-related sedimentary basins in northern Chile (24°–29° S). J S Am Earth Sci 6:109–121CrossRefGoogle Scholar
  67. Welbon AI, Butler RWH (1992) Structural styles in thrust belts developed through rift basins: a view from the western Alps, in Structural and Tectonic Modelling and its Application to Petroleum Geology. In: Larsen RM, Brekke H, Larsen BT and Talleras E (ed) Spec publ Norw Petrol Soc:464–479Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fernando Martínez
    • 1
  • César Arriagada
    • 2
  • Sebastián Bascuñán
    • 2
  1. 1.Facultad de Ingeniería y Ciencias Geológicas, Departamento de GeologíaUniversidad Católica del NorteAntofagastaChile
  2. 2.Departamento de Geología, Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile

Personalised recommendations