Structure and Tectonics of the Chilean Convergent Margin from Wide-Angle Seismic Studies: A Review

Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

Based on a compilation of published 2-D velocity-depth models along the Chilean margin (22°–48° S), I review the structure and tectonic processes that govern this convergent margin in terms of subduction erosion and sediment accretion/subduction. North of the collision point between the Juan Fernández Ridge with the overriding continental South American plate (Chile at ~32.5° S), subduction erosion has been active since Jurassic resulting in large-scale crustal thinning and long-term subsidence of the outermost forearc. Published 2-D velocity–depth models show a prominent lateral velocity contrast that propagates deep into the continental crust defining a major lateral seismic discontinuity (interpreted as the volcanic-continental basement contact of the submerged Coastal Cordillera characterized by a gravitational collapse of the outermost fore arc). Between the Juan Fernández Ridge and the Chile Triple Junction (CTJ) of the Nazca-Antarctic-South American plates (Chile at ~46.5° S), an accretionary prism 5–50 km wide has been formed due to an increase of trench sedimentation triggered by denudation processes of the Andes after the last Pleistocene Glaciation. However, the relatively small size of the accretionary prism is not compatible with an efficient history of sediment accretion since the Pleistocene, and sediment subduction is a dominant process especially south of the oceanic Mocha Fracture Zone (Chile at ~38° S) and north of the CTJ. In the overriding plate, seismic studies reveal two prominent velocity transition zones characterized by steep lateral velocity gradients, resulting in a seismic segmentation of the marine fore arc. The southern central Chilean margin is composed of three main domains: (1) a frontal prism at the toe of the continental slope, (2) a paleoaccretionary complex, and (3) the seaward edge of the Paleozoic continental framework that forms part of the Coastal Cordillera. Near the CTJ, where the Nazca-Antarctic spreading center (Chile Rise) collides with the margin, subduction erosion is active, and rapid uplift followed by subsidence of the forearc area, normal faulting and intensive sedimentary mass wasting are documented. South of the CTJ, the convergence between the oceanic Antarctic and continental South American plate is slow allowing more time sediment accumulation at the trench enhancing the formation of relatively large accretionary prisms (width of 70–90 km).

Keywords

Wide-angle seismic studies Fore-arc Crustal erosion Accretion Subsidence Uplift 

Notes

Acknowledgements

This work was supported by the Chilean National Science Foundation (FONDECYT) projects 1130004 and 1170009. I gratefully acknowledge Juan Becerra for the illustrative graphics, and greatly appreciate the constructive reviews of David Voelker and Orlando Álvarez.

References

  1. Alvarez O, Nacif S, Spagnotto S, Folguera A, Gimenez M, Chlieh M, Braitenberg C (2015) Gradients from GOCE reveal gravity changes before Pisagua Mw = 8.2 and Iquique Mw = 7.7 large megathrust earthquakes. J South Am Earth Sci 64(2):273–287CrossRefGoogle Scholar
  2. Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171(3):329–334CrossRefGoogle Scholar
  3. Armijo R, Thiele R (1990) Active faulting in northern Chile: ramp stacking and lateral decoupling along a subduction plate boundary? Earth Planet Sci Lett 98(1):40–61Google Scholar
  4. Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16:489–503CrossRefGoogle Scholar
  5. Barrientos SE, Ward SN (1990) The 1960 Chile earthquake: inversion for slip distribution from surface deformation. Geophys J Int 103:589–598.  https://doi.org/10.1111/j.1365-246X.1990.tb05673.xCrossRefGoogle Scholar
  6. Becerra J, Arriagada C, Contreras-Reyes E, Bascuñan S, De Pascale G, Reichert C, Díaz-Naveas J, Cornejo N (2016) Gravitational deformation and inherited structural control on slope morphology in the subduction zone of north-central Chile (~29°–33° S). Basin Res.  https://doi.org/10.1111/bre.12205Google Scholar
  7. Behrmann JH, Lewis SD, Cande SC (1994) Tectonics and geology of spreading ridge subduction at the Chile triple junction: a synthesis of results from leg 141 of the ocean drilling program. Geol Rundsch 83(4):832–852Google Scholar
  8. Béjar-Pizarro M, Socquet A, Armijo R, Carrizo D, Genrich J, Simons M (2013) Andean structural control on interseismic coupling in the North Chile subduction zone. Nat Geosci 6(6):462–467Google Scholar
  9. Blumberg S, Lamy F, Arz HW, Echtler HP, Wiedicke M, Haug GH, Oncken O (2008) Turbiditic trench deposits at the south-Chilean active margin: a Pleistocene-Holocene record of climatic and tectonics. Earth Planet Sci Lett 268:526–539CrossRefGoogle Scholar
  10. Bourgois J, Guivel C, Lagabrielle Y, Calmus T, Boulegue J, Daux V (2000) Glacial–interglacial trench supply variation, spreading-ridge subduction, and feedback controls on the Andean margin development at the Chile triple junction area (45–48° S). J Geophys Res 105(B4):8355–8386CrossRefGoogle Scholar
  11. Byrne DE, Davis DM, Sykes LR (1988) Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics 7(4):833–857CrossRefGoogle Scholar
  12. Cande SC, Leslie RB (1986) Late cenozoic tectonics of the southern Chile trench. J Geophys Res: Solid Earth 91(B1):471–496Google Scholar
  13. Cande SC, Leslie RB, Parra JC, Hobart M (1987) Interaction between the Chile ridge and Chile trench: geophysical and geotermal evidence. J Geophys Res 92(B1):495–520 CrossRefGoogle Scholar
  14. Charrier R, Pinto L, Rodríguez MP (2007) Tectonostratigraphic evolution of the Andean Orogen in Chile. In: The Geology of ChileGoogle Scholar
  15. Cifuentes IL (1989) The 1960 Chilean earthquakes. J Geophys Res 94:665–680.  https://doi.org/10.1029/JB094iB01p00665CrossRefGoogle Scholar
  16. Clift P, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys 42(RG2001). https://doi.org/10.1029/2003RG000127
  17. Comte D, Carrizo D, Roecker S, Ortega-Culaciati F, Peyrat S (2016) Three-dimensional elastic wave speeds in the northern Chile subduction zone: variations in hydration in the supraslab mantle. Geophys J Int 207(2):1080–1105.  https://doi.org/10.1093/gji/ggw318CrossRefGoogle Scholar
  18. Comte D, Pardo M (1991) Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps. Nat Hazards 4(1):23–44Google Scholar
  19. Contardo X, Cembrano J, Jensen A, Díaz-Naveas J (2008) Tectono-sedimentary evolution of marine slope basins in the Chilean forearc (33 30′–36 50′ S): insights into their link with the subduction process. Tectonophysics 459(1):206–218Google Scholar
  20. Contreras-Reyes E, Carrizo D (2011) Control of high oceanic features and subduction channel on earthquake ruptures along the Chile–Peru subduction zone. Phys Earth Planet Inter 186(1):49–58Google Scholar
  21. Contreras-Reyes E, Grevemeyer I, Flueh ER, Reichert C (2008) Upper lithospheric structure of the subduction zone offshore of southern Arauco peninsula, Chile, at 38° S. J Geophys Res 113(B07303). https://doi.org/10.1029/2007JB005569
  22. Contreras-Reyes E, Jara J, Maksymowicz A, Weinrebe W (2013) Sediment loading at the southern Chile trench and its tectonic implications. J Geodyn 66:134–145. https://doi.org/10.1016/j.jog.2013.02.009
  23. Contreras-Reyes E, Jara J, Grevemeyer I, Ruiz S, Carrizo D (2012) Abrupt change in the dip of the subducting plate beneath north Chile. Nat Geosci 5:342–345.  https://doi.org/10.1038/ngeo1447CrossRefGoogle Scholar
  24. Contreras-Reyes E, Ruiz J, Becerra J, Kopp H, Reichert C, Maksymowicz A, Arriagada C (2015) Structure and tectonics of the central Chilean margin (31°–33° S): implications for subduction erosion and shallow crustal seismicity. Geophys J Int 653(2):776–791.  https://doi.org/10.1093/gji/ggv309CrossRefGoogle Scholar
  25. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181(1):1–80CrossRefGoogle Scholar
  26. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194Google Scholar
  27. Delouis B, Philip H, Dorbath L, Cisternas A (1998) Recent crustal deformation in the Antofagasta region (northern Chile) and the subduction process. Geophys J Int 132(2):302–338Google Scholar
  28. Delouis B, Pardo M, Legrand D, Monfret T (2009) The Mw 7.7 Tocopilla earthquake of 14 November 2007 at the southern edge of the northern Chile seismic gap: rupture in the deep part of the coupled plate interface. Bull Seismol Soc Am 99(1):87–94Google Scholar
  29. Díaz-Naveas JL (1999) Sediment subduction and accretion at the Chilean convergent margin, between 35 ̊and 40S.̊ Doctoral dissertation, Christian-Albrechts-UniversitätGoogle Scholar
  30. Flueh ER, Vidal N, Ranero CR, Hojka A, Von Huene R, Bialas J, Hinz K, Cordoba D, Danobeitia JJ, Zelt C (1998) Seismic investigation of the continental margin off-and onshore Valparaiso, Chile. Tectonophysics 288(1):251–263Google Scholar
  31. Folguera A, Gianni G, Sagripanti L, Rojas Vera E, Novara I, Colavitto B, Alvarez O, Orts D, Tobal J, Giménez M, Introcaso A, Ruiz F, Martínez P, Ramos VA (2015) A review about the mechanisms associated with active deformation, regional uplift and subsidence in southern South America. J South Am Earth Sci 64(2):511–529CrossRefGoogle Scholar
  32. Fuenzalida A, Schurr B, Lancieri M, Sobiesiak M, Madariaga R (2013) High-resolution relocation and mechanism of aftershocks of the 2007 Tocopilla (Chile) earthquake. Geophys J Int 194(2):1216–1228Google Scholar
  33. Fujie G, Ito A, Kodaira S, Takahashi N, Kaneda Y (2006) Confirming sharp bending of the Pacific plate in the northern Japan trench subduction zone by applying a traveltime mapping method. Phys Earth Planet Int 157:72–85CrossRefGoogle Scholar
  34. Geersen J, Behrmann JH, Völker D, Krastel S, Ranero CR, Diaz‐Naveas J, Weinrebe W (2011) Active tectonics of the South Chilean marine fore arc (35 S–40 S). Tectonics 30(3)Google Scholar
  35. Guivel C, Lagabrielle Y, Bourgois J, Martin H, Arnaud N, Fourcade S, Cotten J, Maury RC (2003) Very shallow melting of oceanic crust during spreading ridge subduction: origin of near-trench quaternary volcanism at the Chile Triple Junction. J Geophys Res 108:2345–2463CrossRefGoogle Scholar
  36. Hartley AJ, May G, Chong G, Turner P, Kape SJ, Jolley EJ (2000) Development of a continental forearc: a Cenozoic example from the central Andes, northern Chile. Geology 28:331–334CrossRefGoogle Scholar
  37. Herron EM, Cande SC, Hall BR (1981) An active spreading center collides with a subduction zone: a geophysical survey of the Chile margin triple junction. Geol Soc Am Mem 154:683–702Google Scholar
  38. Ito A, Fujie G, Miura S, Kodaira S, Kaneda Y, Hino R (2005) Bending of the subducting oceanic plate and its implication for rupture propagation of large interplate earthquakes off Miyagi, Japan, in the Japan trench subduction zone. Geophys Res Lett 32(5). https://doi.org/10.1029/2004GL022307
  39. Khazaradze G, Klotz J (2003) Short- and long-term effects of GPS measured crustal deformation rates along the south central Andes. J Geophys Res 108(B6). https://doi.org/10.1029/2002JB001879
  40. Kopp H, Flueh E, Papenberg C, Klaeschen D (2004) Seismic investigations of the O’Higgins Seamount Group and Juan Fernández Ridge: aseismic ridge emplacement and lithosphere hydration. Tectonics 23(2). https://doi.org/10.1029/2003TC001590
  41. Kukowski N, Oncken O (2006) Subduction erosion: the normal mode of forearc material transfer along the Chilean margin? In: Oncken O et al (eds) The Andes: Active Subduction Orogeny. Frontiers in Earth Sci 3, pp 217–236Google Scholar
  42. Lagabrielle Y, Guivel C, Maury RC, Bourgois J, Fourcade S, Martin H (2000) Magmatic–tectonic effects of high thermal regime at the site of active ridge subduction: the Chile triple junction model. Tectonophysics 326(3):255–268Google Scholar
  43. Laursen J, Scholl DW, von Huene R (2002) Neotectonic deformation of the central Chile margin: deepwater forearc basin formation in response to hot spot ridge and seamount subduction. Tectonics 21(5):1038.  https://doi.org/10.1029/2001TC901023CrossRefGoogle Scholar
  44. León-Ríos S, Ruiz S, Maksymowicz A, Leyton F, Fuenzalida A, Madariaga R (2016) Diversity of the 2014 Iquique’s foreshocks and aftershocks: clues about the complex rupture process of a Mw 8.1 earthquake. J Seismology, 1–15. https://doi.org/10.1007/s10950-016-9568-6
  45. Maksymowicz, A (2015) The geometry of the Chilean continental wedge: Tectonic segmentation of subduction processes off Chile. Tectonophysics 659:183–196Google Scholar
  46. Maksymowicz A, Contreras-Reyes E, Grevemeyer I, Flueh ER (2012) Structure and geodynamics of the post-collision zone between the Nazca-Antartic spreading center and South America. Earth Planet Sci Lett 345–318:27–37.  https://doi.org/10.1016/j.epsl.2012.06.023CrossRefGoogle Scholar
  47. Marquardt C, Lavenu A, Ortlieb L, Godoy E, Comte D (2004) Coastal neotectonics in Southern Central Andes: uplift and deformation of marine terraces in Northern Chile (27 S). Tectonophysics 394(3):193–219Google Scholar
  48. Melnick D (2016) Rise of the central Andean coast by earthquakes straddling the Moho. Nat Geosc 9:401–407CrossRefGoogle Scholar
  49. Métois M, Socquet A, Vigny C, Carrizo D, Peyrat S, Delorme A, Maureira E, Valderas-Bermejo M-C, Ortega I (2013) Revisiting the north Chile seismic gap segmentation using gps-derived interseismic coupling. Geophys J Int 194(3):1283–1294CrossRefGoogle Scholar
  50. Métois M, Vigny C, Socquet A (2016) Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38°–18° S). Pure Appl Geophys 173(5):1431–1449.  https://doi.org/10.1007/s00024-016-1280-5CrossRefGoogle Scholar
  51. Moreno MS, Bolte J, Klotz J, Melnick D (2009) Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake. Geophys Res Lett 36(16)Google Scholar
  52. Moscoso E, Grevemeyer I, Contreras-Reyes E, Flueh ER, Dzierma Y, Rabbel W, Thorwart M (2011) Revealing the deep structure and rupture plane of the 2010 Maule, Chile Earthquake (Mw = 8.8) using wide angle seismic data. Earth Planet Sci Lett 307(1–2):147–155.  https://doi.org/10.1016/j.epsl.2011.04.025CrossRefGoogle Scholar
  53. Muñoz P (2015) Caracterización sísmica del antearco marino en la zona epicentral del mega-terremoto del Maule 2010. M. S. C. thesis. Departamento de Geofísica. Chile UniversityGoogle Scholar
  54. Peyrat S, Madariaga R, Buforn E, Campos J, Asch G, Vilotte JP (2010) Kinematic rupture process of the 2007 Tocopilla earthquake and its main aftershocks from teleseismic and strong-motion data. Geophys J Int 182(3):1411–1430Google Scholar
  55. Ranero CR, von Huene R, Weinrebe W, Reichert C (2006) Tectonic processes along the Chile Convergent Margin. In: Oncken et al (eds) The andes: active subduction Orogeny Frontiers in Earth Sci. 3, pp 91–121Google Scholar
  56. Ruiz S, Grandin R, Dionicio V, Satriano C, Fuenzalida A, Vigny C, Madariaga R (2013) The Constitución earthquake of 25 March 2012: a large aftershock of the Maule earthquake near the bottom of the seismogenic zone. Earth Planet Sci Lett 377:347–357CrossRefGoogle Scholar
  57. Ruiz S, Metois M, Fuenzalida A, Ruiz J, Leyton F, Grandin R, Vigny C, Madariaga R, Campos J (2014). Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science 345(6201):1165–1169Google Scholar
  58. Rutland RWR (1971) Andean orogeny and ocean floor spreading. Nature 233:252–255CrossRefGoogle Scholar
  59. Sallares V, Ranero CR (2005) Structure and tectonics of the erosional convergent margin off Antofagasta, north Chile (23° 30’S). J Geophys Res 110(B6). https://doi.org/10.1029/2004JB003418
  60. Scherwath M, Contreras-Reyes E, Flueh ER, Grevemeyer I, Krabbenhoeft A, Papenberg C, Petersen CJ, Weinrebe RW (2009) Deep lithospheric structures along the southern central Chile margin from wide-angle P-wave modelling. Geophys J Int 179(1):579–600.  https://doi.org/10.1111/j.1365-246X.2009.04298.xCrossRefGoogle Scholar
  61. Scherwath M, Flueh E, Grevemeyer I, Tilmann F, Contreras-Reyes E, Weinrebe W (2006) Investigating subduction zone processes in Chile. Eos Trans AGU 87(27).  https://doi.org/10.1029/2006EO270001
  62. Scholl DW, von Huene R (2009) Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens. Geol Soc 318(1):105–125 Special Publications, LondonGoogle Scholar
  63. SERNAGEOMIN: Chilean Geological and Mining Service (2003) Geologic map of Chile: Digital version, scale 1:1.000.000, Santiago, ChileGoogle Scholar
  64. Somoza R (1998) Updated Nazca-South America relative motions during the last 40 My: implications for mountain building in the central Andean region. J South Am Earth Sci 11:211–215.  https://doi.org/10.1016/S0895-9811(98)00012-1CrossRefGoogle Scholar
  65. Stern CR (2011) Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res 20:284–308.  https://doi.org/10.1016/j.gr.2011.03.006CrossRefGoogle Scholar
  66. Tebbens SF, Cande SC, Kovacs L, Parra JC, LaBrecque JL, Vergara H (1997) The Chile ridge: a tectonic framework. J Geophy Res 102(B6):12035–12060.  https://doi.org/10.1029/96JB02581CrossRefGoogle Scholar
  67. Thornburg TM, Kulm DM, Hussong DM (1990) Submarine-fan development in the southern Chile trench: a dynamic interplay of tectonics and sedimentation. Geol Soc Am Bulletin 102:1658–1680CrossRefGoogle Scholar
  68. von Huene R, Corvalán J, Flueh ER, Hinz K, Korstgard J, Ranero CR, Weinrebe W, CONDOR Scientists (1997) Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaíso, Chile. Tectonics 16(3):474–488Google Scholar
  69. von Huene R, Ranero CR. (2003) Subduction erosion and basal friction along the sediment‐starved convergent margin off Antofagasta, Chile. J Geophys Res: Solid Earth 108(B2)Google Scholar
  70. von Huene R, Ranero CR, Scholl DW (2009) Convergent margin structure in high-quality geophysical images and current kinematic and dynamic models. In Subduction Zone Geodynamics. Springer, Berlin, Heidelberg, pp. 137–157Google Scholar
  71. von Huene R, Ranero CR, Vannucchi P (2004) Generic model of subduction erosion. Geology 32(10):913–916Google Scholar
  72. von Huene R, Weinrebe W, Heeren F (1999) Subduction erosion along the north Chile margin. J Geodyn 27:345–358CrossRefGoogle Scholar
  73. Voelker D, Geersen J, Contreras-Reyes E, Reichert C (2013) Sedimentary fill of the Chile Trench (32°–46° S): volumetric distribution and causal factors. J Geol Soc London 170(5):723–736.  https://doi.org/10.1144/jgs2012-119CrossRefGoogle Scholar
  74. Wang K, Hu Y (2006) Accretionary prisms in subduction earthquake cycles: the theory of dynamic Coulomb wedge. J Geophys Res 111(B6).  https://doi.org/10.1029/2005JB004094
  75. Yáñez G, Ranero CR Díaz J (2001) Magnetic Anomaly interpretation across the southern central Andes (32°–34° S): the role of the Juan Fernández Ridge in the late Tertiary evolution of the margin. J Geophys Res 106:6325–6345Google Scholar
  76. Zelt CA (1999) Modeling strategies and model assessment for wide-angle seismic travel time data. Geophys J Int 139:183–204CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad de ChileSantiagoChile

Personalised recommendations