Skip to main content

Micro-NMR on CMOS for Biomolecular Sensing

  • Chapter
  • First Online:
CMOS Circuits for Biological Sensing and Processing

Abstract

In this chapter, we reported several portable nuclear magnetic resonance (NMR) systems implemented with silicon integrated circuits (IC). Being the initial researchers in the NMR on IC field, we firstly proposed to integrate the complex NMR electronics with the customized IC for portable NMR application with a palm size magnet. Moreover, to manage the samples inside the narrow opening of the portable magnet, we proposed the integration of the digital microfluidic device with the portable NMR system to attain electronic-automated multi-sample management scheme. With the capacitive sensing module of the droplets, the samples can be guided to the NMR sensing site sequentially to reduce labor and experimental time, which facilitates the detection and supports high-throughput sensing. Lastly, we demonstrates a NMR system with magnetic field calibration. This calibration culminates in a robust NMR sensing scheme by modulating the actual magnetic field to a steady value. Thus, the Larmor frequency can be stabilized, and the NMR sensing can work at different environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. M.A. Brown, R.C. Semelka, MRI: Basic Principles and Applications, 4th edn. (Wiley-Blackwell, 2010)

    Google Scholar 

  2. D. Canet, Nuclear Magnetic Resonance: Concepts and Methods (Wiley, New York, 1996)

    Google Scholar 

  3. H. Gunther, NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry (Weinheim, Germany, 1995)

    Google Scholar 

  4. H. Lee, E. Sun, D. Ham, R. Weissleder, Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14(8), 869–874 (2008)

    Article  Google Scholar 

  5. J.M. Perez, L. Josephson, T. O’Loughlin, D. Hogemann, R. Weissleder, Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20(8), 816–820 (2002)

    Article  Google Scholar 

  6. J.A. Slichter, Principles of Magnetic Resonance (Springer, Heidelberg, 1990)

    Book  Google Scholar 

  7. K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, R.P. Martins, A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays. IEEE J. Solid State Circuits 52(1), 284–297 (2017)

    Article  Google Scholar 

  8. K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, R.P. Martins, A handheld 50pM-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016b), pp. 474–475, Feb 2016

    Google Scholar 

  9. K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A μNMR CMOS transceiver using a butterfly-coil input for integration with a digital microfluidic device inside a portable magnet. IEEE J. Solid State Circuits 51(10), 2274–2286 (2016c)

    Article  Google Scholar 

  10. K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A palm-size μNMR relaxometer using a digital microfluidic device and a semiconductor transceiver for chemical/biological diagnosis. Analyst 140(15), 5129–5137 (2015b)

    Article  Google Scholar 

  11. K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A μNMR CMOS transceiver using a butterfly-coil input for integration with a digital microfluidic device inside a portable magnet, in 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC) (2015c), pp. 1–4, 9–11 Nov 2015

    Google Scholar 

  12. Y. Liu, N. Sun, H. Lee, R. Weissleder, D. Ham, CMOS mini nuclear magnetic resonance system and its application for biomolecular sensing, in 2008 IEEE International Solid-State Circuits Conference (ISSCC) (2008), pp. 140–602, 3–7 Feb 2008

    Google Scholar 

  13. N. Sun, T.J. Yoon, H. Lee, W. Andress, R. Weissleder, D. Ham, Palm NMR and 1-Chip NMR. IEEE J. Solid State Circuits 46(1), 342–352 (2011)

    Article  Google Scholar 

  14. N. Sun, T.J. Yoon, H. Lee, W. Andress, V. Demas, P. Prado, R. Weissleder, D. Ham, Palm NMR and one-chip NMR, in 2010 IEEE International Solid-State Circuits Conference – (ISSCC) (2010), pp. 488–489, 7–11 Feb 2010

    Google Scholar 

  15. N. Sun, Y. Liu, H. Lee, R. Weissleder, D. Ham, CMOS RF biosensor utilizing nuclear magnetic resonance. IEEE J. Solid State Circuits 44(5), 1629–1643 (2009)

    Article  Google Scholar 

  16. D. Ham, A. Hajimiri, Virtual damping and Einstein relation in oscillators. IEEE J. Solid State Circuits 38(3), 407–418 (2003)

    Article  Google Scholar 

  17. X. Li, W. Zhu, D. Ham, Phase diffusion and lamb-shift-like spectrum shift in classical oscillators. (2010a). arXiv:0908.2214v3

    Google Scholar 

  18. X.F. Li, O.O. Yildirim, W.J. Zhu, D. Ham, Phase noise of distributed oscillators. IEEE Trans. Microwave Theory Tech. 58(8), 2105–2117 (2010b)

    Article  Google Scholar 

  19. D.I. Hoult, R.E. Richards, The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson. 24(1), 71–85 (1976)

    Google Scholar 

  20. R. Gruetter, Automatic, localized in vivo adjustment of all 1st-order and 2nd-order shim coils. Magn. Reson. Med. 29(6), 804–811 (1993)

    Article  Google Scholar 

  21. E. Danieli, J. Perlo, B. Blumich, F. Casanova, Small magnets for portable NMR spectrometers. Angew. Chem. Int. Ed. 49(24), 4133–4135 (2010)

    Article  Google Scholar 

  22. E. Danieli, J. Perlo, F. Casanova, B. Blümich, High-performance shimming with permanent magnets, in Magnetic Resonance Microscopy, 1st edn., (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009a), pp. 485–499

    Google Scholar 

  23. E. Danieli, J. Mauler, J. Perlo, B. Blumich, F. Casanova, Mobile sensor for high resolution NMR spectroscopy and imaging. J. Magn. Reson. 198(1), 80–87 (2009b)

    Article  Google Scholar 

  24. H.Y. Carr, E.M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94(3), 630–638 (1954)

    Article  Google Scholar 

  25. S. Meiboom, D. Gill, Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29(8), 688–691 (1958)

    Article  Google Scholar 

  26. B. Behnia, A.G. Webb, Limited-sample NMR using solenoidal microcoils perfluouocarbon plugs, and capillary spinning. Anal. Chem. 70(24), 5326–5331 (1998)

    Article  Google Scholar 

  27. D.L. Olson, T.L. Peck, A.G. Webb, R.L. Magin, J.V. Sweedler, High-resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples. Science 270(5244), 1967–1970 (1995)

    Article  Google Scholar 

  28. F.D. Doty, Probe design and construction, in Encyclopedia of Magnetic Resonance, (Wiley, New York, 2007)

    Google Scholar 

  29. A.P.M. Kentgens, J. Bart, P.J.M. van Bentum, A. Brinkmann, E.R.H. Van Eck, J.G.E. Gardeniers, J.W.G. Janssen, P. Knijn, S. Vasa, M.H.W. Verkuijlen, High-resolution liquid- and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors. J. Chem. Phys. 128(5) (2008)

    Google Scholar 

  30. K.R. Minard, R.A. Wind, Solenoidal microcoil design – part II: optimizing winding parameters for maximum signal-to-noise performance. Concepts Magn. Reson. 13(3), 190–210 (2001a)

    Article  Google Scholar 

  31. K.R. Minard, R.A. Wind, Solenoidal microcoil design. Part I: optimizing RF homogeneity and coil dimensions. Concepts Magn. Reson. 13(2), 128–142 (2001b)

    Article  Google Scholar 

  32. R.M. Fratila, A.H. Velders, Small-volume nuclear magnetic resonance spectroscopy. Annu. Rev. Anal. Chem. 4(1), 227–249 (2011)

    Article  Google Scholar 

  33. C.J. Jones, C.K. Larive, Could smaller really be better? Current and future trends in high-resolution microcoil NMR spectroscopy. Anal. Bioanal. Chem. 402(1), 61–68 (2012)

    Article  Google Scholar 

  34. C. Massin, F. Vincent, A. Homsy, K. Ehrmann, G. Boero, P.A. Besse, A. Daridon, E. Verpoorte, N.F. de Rooij, R.S. Popovic, Planar microcoil-based microfluidic NMR probes. J. Magn. Reson. 164(2), 242–255 (2003)

    Article  Google Scholar 

  35. C. Massin, C. Azevedo, N. Beckmann, P.A. Besse, R.S. Popovic, Magnetic resonance imaging using microfabricated planar coils, in 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology (2002), pp. 199–204

    Google Scholar 

  36. C. Massin, A. Daridon, F. Vincent, G. Boero, P.-A. Besse, E. Verpoorte, N.F. de Rooij, R.S. Popovic, A microfabricated probe with integrated coils and channels for on-chip NMR spectroscopy, in Micro Total Analysis Systems 2001: Proceedings of the μTAS 2001 Symposium, Held in Monterey, 1st edn., ed. by J. M. Ramsey, A. van den Berg (Springer, Dordrecht, 2001), pp. 438–440, 21–25 Oct 2001

    Google Scholar 

  37. H. Ryan, S.H. Song, A. Zass, J. Korvink, M. Utz, Contactless NMR spectroscopy on a chip. Anal. Chem. 84(8), 3696–3702 (2012)

    Article  Google Scholar 

  38. J. Anders, G. Chiaramonte, P. SanGiorgio, G. Boero, A single-chip array of NMR receivers. J. Magn. Reson. 201(2), 239–249 (2009)

    Article  Google Scholar 

  39. V. Badilita, K. Kratt, N. Baxan, J. Anders, D. Elverfeldt, G. Boero, J. Hennig, J.G. Korvink, U. Wallrabe, 3D solenoidal microcoil arrays with CMOS integrated amplifiers for parallel MR imaging and spectroscopy, in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (2011), pp. 809–812, 23–27 Jan 2011

    Google Scholar 

  40. D.I. Hoult, The NMR receiver: a description and analysis of design. Prog. Nucl. Magn. Reson. Spectrosc. 12(1), 41–77 (1978)

    Article  Google Scholar 

  41. H. Lee, T.J. Yoon, J.L. Figueiredo, F.K. Swirski, R. Weissleder, Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc. Natl. Acad. Sci. 106(30), 12459–12464 (2009)

    Article  Google Scholar 

  42. J.D. Trumbull, I.K. Glasgow, D.J. Beebe, R.L. Magin, Integrating microfabricated fluidic systems and NMR spectroscopy. I.E.E.E. Trans. Biomed. Eng. 47(1), 3–7 (2000)

    Article  Google Scholar 

  43. I. Barbulovic-Nad, H. Yang, P.S. Park, A.R. Wheeler, Digital microfluidics for cell-based assays. Lab Chip 8(4), 519–526 (2008)

    Article  Google Scholar 

  44. J. Gao, X.M. Liu, T.L. Chen, P.I. Mak, Y.G. Du, M.I. Vai, B.C. Lin, R.P. Martins, An intelligent digital microfluidic system with fuzzy-enhanced feedback for multi-droplet manipulation. Lab Chip 13(3), 443–451 (2013)

    Article  Google Scholar 

  45. F. Lapierre, M. Harnois, Y. Coffinier, R. Boukherroub, V. Thomy, Split and flow: reconfigurable capillary connection for digital microfluidic devices. Lab Chip 14(18), 3589–3593 (2014)

    Article  Google Scholar 

  46. M.G. Pollack, A.D. Shenderov, R.B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2), 96–101 (2002)

    Article  Google Scholar 

  47. M.H. Shamsi, K. Choi, A.H.C. Ng, A.R. Wheeler, A digital microfluidic electrochemical immunoassay. Lab Chip 14(3), 547–554 (2014)

    Article  Google Scholar 

  48. V. Srinivasan, V.K. Pamula, R.B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4), 310–315 (2004)

    Article  Google Scholar 

  49. A.R. Wheeler, Chemistry – putting electrowetting to work. Science 322(5901), 539–540 (2008)

    Article  Google Scholar 

  50. I. Barbulovic-Nad, S.H. Au, A.R. Wheeler, A microfluidic platform for complete mammalian cell culture. Lab Chip 10(12), 1536–1542 (2010)

    Article  Google Scholar 

  51. G.J. Shah, A.T. Ohta, E.P.Y. Chiou, M.C. Wu, C.-J. Kim, EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip 9(12), 1732–1739 (2009)

    Article  Google Scholar 

  52. Y.-H. Chang, G.-B. Lee, F.-C. Huang, Y.-Y. Chen, J.-L. Lin, Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed. Microdevices 8(3), 215–225 (2006)

    Article  Google Scholar 

  53. Z. Hua, J.L. Rouse, A.E. Eckhardt, V. Srinivasan, V.K. Pamula, W.A. Schell, J.L. Benton, T.G. Mitchell, M.G. Pollack, Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal. Chem. 82(6), 2310–2316 (2010)

    Article  Google Scholar 

  54. R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack, V. Pamula, Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12), 2091–2104 (2008)

    Article  Google Scholar 

  55. D. Witters, K. Knez, F. Ceyssens, R. Puers, J. Lammertyn, Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip 13(11), 2047–2054 (2013)

    Article  Google Scholar 

  56. P. Andreani, K. Kozmin, P. Sandrup, M. Nilsson, T. Mattsson, A TX VCO for WCDMA/EDGE in 90 nm RF CMOS. IEEE J. Solid State Circuits 46(7), 1618–1626 (2011)

    Article  Google Scholar 

  57. T. Mattsson, Method of and inductor layout for reduced VCO coupling. U.S. Patent 7,151,430, 19 Dec 2006

    Google Scholar 

  58. M. Nagata, H. Masuoka, S.I. Fukase, M. Kikuta, M. Morita, N. Itoh, 5.8 GHz RF transceiver LSI including on-chip matching circuits, in Bipolar/BiCMOS Circuits and Technology Meeting (2006), pp. 263–266, Oct 2006

    Google Scholar 

  59. F. Mugele, J.C. Baret, Electrowetting: from basics to applications. J. Phys. Condens. Matter 17(28), R705–R774 (2005)

    Article  Google Scholar 

  60. J. Gong, C.J. Kim, All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip 8(6), 898–906 (2008)

    Article  Google Scholar 

  61. W.K. Peng, L. Chen, J. Han, Development of miniaturized, portable magnetic resonance relaxometry system for point-of-care medical diagnosis. Rev. Sci. Instrum. 83(9) (2012)

    Google Scholar 

  62. J.M. Pope, N. Repin, A simple approach to T2 imaging in MRI. Magn. Reson. Imaging 6(6), 641–646 (1988)

    Article  Google Scholar 

  63. D. Ha, J. Paulsen, N. Sun, Y.Q. Song, D. Ham, Scalable NMR spectroscopy with semiconductor chips. Proc. Natl. Acad. Sci. 111(33), 11955–11960 (2014)

    Article  Google Scholar 

  64. E. Kupce, R. Freeman, Molecular structure from a single NMR sequence (fast-PANACEA). J. Magn. Reson. 206(1), 147–153 (2010)

    Article  Google Scholar 

  65. G.A. Morris, H. Barjat, T.J. Horne, Reference deconvolution methods. Prog. Nucl. Magn. Reson. Spectrosc. 31(1), 197–257 (1997)

    Article  Google Scholar 

  66. H. Heidari, E. Bonizzoni, U. Gatti, F. Maloberti, A CMOS current-mode magnetic hall sensor with integrated front-end. IEEE Trans. Circuits Syst. I Regul. Pap. 62(5), 1270–1278 (2015)

    Article  MathSciNet  Google Scholar 

  67. J. Jiang, K. Makinwa, A hybrid multipath CMOS magnetic sensor with 210μTrms resolution and 3MHz bandwidth for contactless current sensing, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016), pp. 204–205, Feb 2016

    Google Scholar 

  68. J.F. Jiang, W.J. Kindt, K.A.A. Makinwa, A continuous-time ripple reduction technique for spinning-current hall sensors. IEEE J. Solid State Circuits 49(7), 1525–1534 (2014)

    Article  Google Scholar 

  69. C. Sander, M.C. Vecchi, M. Cornils, O. Paul, From three-contact vertical hall elements to symmetrized vertical hall sensors with low offset. Sens Actuators, A 240, 92–102 (2016)

    Article  Google Scholar 

  70. G.M. Sung, C.P. Yu, 2-D differential folded vertical hall device fabricated on a p-type substrate using CMOS technology. IEEE Sensors J. 13(6), 2253–2262 (2013)

    Article  Google Scholar 

  71. M. Crescentini, M. Bennati, M. Carminati, M. Tartagni, Noise limits of CMOS current interfaces for biosensors: a review. IEEE Trans. Biomed. Circuits Syst. 8(2), 278–292 (2014)

    Article  Google Scholar 

  72. D. Kim, B. Goldstein, W. Tang, F.J. Sigworth, E. Culurciello, Noise analysis and performance comparison of low current measurement systems for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(1), 52–62 (2013)

    Article  Google Scholar 

  73. K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, Exploring the noise limits of fully-differential micro-watt transimpedance amplifiers for Sub-pA/√Hz sensitivity, in 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2015a), pp. 290–293, June 2015

    Google Scholar 

  74. L.K. Lee, S. Choi, J.O. Lee, Yoon JB, Cho GH (2012) CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection, in 2012 IEEE International Solid-State Circuits Conference, pp. 120–122, Feb 2012

    Google Scholar 

  75. A. Manickam, A. Chevalier, M. McDermott, A.D. Ellington, A. Hassibi, A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans. Biomed. Circuits Syst. 4(6), 379–390 (2010)

    Article  Google Scholar 

  76. T.C.D. Huang, S. Sorgenfrei, P. Gong, R. Levicky, K.L. Shepard, A 0.18-μm CMOS array sensor for integrated time-resolved fluorescence detection. IEEE J. Solid State Circuits 44(5), 1644–1654 (2009)

    Article  Google Scholar 

  77. H. Norian, R.M. Field, I. Kymissis, K.L. Shepard, An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics. Lab Chip 14(20), 4076–4084 (2014)

    Article  Google Scholar 

  78. K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, CMOS biosensors for in vitro diagnosis – transducing mechanisms and applications. Lab Chip 16, 3664–3681 (2016a)

    Google Scholar 

  79. J. Anders, P. SanGiorgio, G. Boero, A fully integrated IQ-receiver for NMR microscopy. J. Magn. Reson. 209(1), 1–7 (2011)

    Article  Google Scholar 

  80. J. Handwerker, M. Eder, M. Tibiletti, V. Rasche, K. Scheffler, J. Becker, M. Ortmanns, J. Anders, An array of fully-integrated quadrature TX/RX NMR field probes for MRI trajectory mapping, in 42nd European Solid-State Circuits Conference (2016b), pp. 217–220, 12–15 Sept 2016

    Google Scholar 

  81. M.J.N. Junk, Electron paramagnetic resonance theory, in Assessing the Functional Structure of Molecular Transporters by EPR Spectroscopy, (Springer, Berlin/Heidelberg, 2012), pp. 7–52

    Chapter  Google Scholar 

  82. J. Handwerker, B. Schlecker, U. Wachter, P. Radermacher, M. Ortmanns, J. Anders, A 14GHz battery-operated point-of-care ESR spectrometer based on a 0.13μm CMOS ASIC, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016a), pp. 476–477, 31 Jan–4 Feb 2016

    Google Scholar 

  83. X. Yang, A. Babakhani, A full-duplex single-chip transceiver with self-interference cancellation in 0.13μm SiGe BiCMOS for electron paramagnetic resonance spectroscopy. IEEE J. Solid State Circuits 51(10), 2408–2419 (2016)

    Article  Google Scholar 

  84. X. Yang, A. Babakhani, A single-chip electron paramagnetic resonance transceiver in 0.13-μm SiGe BiCMOS. IEEE Trans. Microwave Theory Tech. 63(11), 3727–3735 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

K.-M. Lei, P.-I. Mak, and R. Martins acknowledge the support from Macau FDCT – 047/2014/A1. N. Sun acknowledges NSF Grant No. 1254459. D. Ham acknowledges the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan Sun , Pui-In Mak or Donhee Ham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lei, KM., Sun, N., Mak, PI., Martins, R.P., Ham, D. (2018). Micro-NMR on CMOS for Biomolecular Sensing. In: Mitra, S., Cumming, D. (eds) CMOS Circuits for Biological Sensing and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-67723-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67723-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67722-4

  • Online ISBN: 978-3-319-67723-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics