Skip to main content

Flexible Single-Photon Image Sensors

  • Chapter
  • First Online:
  • 2091 Accesses

Abstract

Photon-counting imaging technology has applications in many fields such as fluorescence lifetime imaging microscopy (FLIM), time-resolved Raman spectroscopy, 3D imaging, and even space communications. The requirement to detect single photons with picosecond temporal resolution makes single-photon avalanche photodiode (SPAD) a popular choice. Advanced biomedical imaging applications such as pill cameras, retinal prosthesis, and implantable biocompatible monitoring sensors require a compact image system, which can be implanted into a living body. To meet these requirements, novel single-photon image sensor solution needs to be developed, in which new substrate post-processing and backside illumination or even dual-side illumination are core technologies, with inherent CMOS compatibility as a prerequisite. This chapter proposed and demonstrated the world’s first flexible CMOS single-photon avalanche diode image sensor, providing a suitable solution for implantable biomedical imaging or monitoring applications, and wherever a curved imaging plane is essential.

This is a preview of subscription content, log in via an institution.

References

  1. A. Webb, G.C. Kagadis, Introduction to biomedical imaging. Med. Phys. 30(8), 2267 (2003)

    Article  Google Scholar 

  2. L.V. Wang, H.-I. Wu, Biomedical Optics: Principles and Imaging (Wiley, Chicester, 2012)

    Google Scholar 

  3. A.F. Laine, In the spotlight: biomedical imaging. IEEE Rev. Biomed. Eng. 1, 4–7 (2008)

    Article  Google Scholar 

  4. Acikel, V., & E. Atalar, Intravascular magnetic resonance imaging (MRI). In Biomedical Imaging: Applications and Advances (Elsevier Inc., 2014), pp. 186–213

    Google Scholar 

  5. S. Chua, A. Groves, Biomedical Imaging. (Elsevier, 2014)

    Google Scholar 

  6. Z. Gorocs, A. Ozcan, On-chip biomedical imaging. IEEE Rev. Biomed. Eng. 6, 29–46 (2013)

    Article  Google Scholar 

  7. C.M. Tempany, B.J. McNeil, Advances in biomedical imaging. JAMA 285(5), 562–567 (2001)

    Article  Google Scholar 

  8. W. Becker, A. Bergmann, G. Biscotti, A. Rueck, Advanced time-correlated single photon counting technique for spectroscopy and imaging of biological systems. Proc. SPIE Commer. Biomed. Appl. Ultrafast Lasers IV 5340, 1–9 (2004)

    Google Scholar 

  9. N. Bertone, M. Wabuyele, A. Kapanidis, H. Dautet, M. Davies, “Single photon counting with a focus on biomedical applications”, Application Note PerkinElmer Optoelectronics. (2003)

    Google Scholar 

  10. S. Lebid, R. O’Neill, C. Markham, T. Ward, S. Coyle, Functional brain signals: a photon counting system for brain activity monitoring, in IEEE Conference Proceedings of the Irish Signals and Systems Conference (Ireland, 2004), pp. 469–474

    Google Scholar 

  11. J. Ohta, Implantable CMOS imaging devices for bio-medical applications, in IEEE 54th International Midwest Symposium on Circuits and Systems (Seoul, Korea, 2011), pp. 1–4

    Google Scholar 

  12. J. Ohta, T. Tokuda, K. Sasagawa, T. Noda, Implantable CMOS biomedical devices. Sensors 9(11), 9073–9093 (2009)

    Article  Google Scholar 

  13. M. S. Humayun, J. D. Weiland, G. Chader, E. Greenbaum, Artificial Sight. (Springer, 2007)

    Google Scholar 

  14. T. Tokuda, M. Takahashi, K. Uejima, K. Masuda, T. Kawamura, Y. Ohta, M. Motoyama, T. Noda, K. Sasagawa, T. Okitsu, S. Takeuchi, J. Ohta, CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel. Biomed. Opt. Express 5(11), 3859–3870 (2014)

    Article  Google Scholar 

  15. T. Noda, K. Sasagawa, T. Tokuda, Fabrication of fork-shaped retinal stimulator integrated with CMOS microchips for extension of viewing angle. Sensors Mater. 26(8), 637–648 (2014)

    Google Scholar 

  16. G. Park, H.J. Chung, K. Kim, S.A. Lim, J. Kim, Y.S. Kim, Y. Liu, W.H. Yeo, R.H. Kim, S.S. Kim, J.S. Kim, Y.H. Jung, T.-i. Kim, C. Yee, J.A. Rogers, K.M. Lee, Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics. Adv. Healthc. Mater. 3(4), 515–525 (2014)

    Article  Google Scholar 

  17. J. Yoon, S.M. Lee, D. Kang, M.A. Meitl, C.A. Bower, J.A. Rogers, Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing. Adv. Opt. Mater. 3(10), 1313–1335 (2015)

    Article  Google Scholar 

  18. S.G. Wuu, C.C. Wang, B.C. Hseih, Y.L. Tu, C.H. Tseng, T.H. Hs R.S. Hsiao, S. Takahashi, R.J. Lin, C.S. Tsai, Y.P. Chao, K.Y. Chou, P.S. Chou, H.Y. Tu, F.L. Hsueh, L. Tran, A leading-edge 0.9μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling, in Technical Digest – International Electron Devices Meeting, IEDM (San Francisco, USA, 2010)

    Google Scholar 

  19. P. Webb, A. Jones, Large area reach-through avalanche diodes for radiation monitoring. IEEE Trans. Nucl. Sci. 21(1), 151–158 (1974)

    Article  Google Scholar 

  20. M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, E. Charbon, A low-noise single-photon detector implemented in a 130 nm CMOS imaging process. Solid State Electron. 53(7), 803–808 (2009)

    Article  Google Scholar 

  21. M.A. Karami, M. Gersbach, H.-J. Yoon, E. Charbon, A new single-photon avalanche diode in 90nm standard CMOS technology. Opt. Express 18(21), 22158–22166 (2010)

    Article  Google Scholar 

  22. R.K. Henderson, E.A. G. Webster, R. Walker, J.A. Richardson, L.A. Grant, A 3 × 3, 5μm pitch, 3-transistor single photon avalanche diode array with integrated 11V bias generation in 90nm CMOS technology, in Technical Digest – International Electron Devices Meeting, IEDM (San Francisco, USA, 2010)

    Google Scholar 

  23. F. Zappa, S. Tisa, A. Tosi, S. Cova, Principles and features of single-photon avalanche diode arrays. Sensors Actuators A Phys. 140(1), 103–112 (2007)

    Article  Google Scholar 

  24. H. Jansen, H. Gardeniers, M. De Boer, M. Elwenspoek, J. Fluitman, A survey on the reactive ion etching of silicon in microtechnology. J. Micromech. Microeng. 6, 14–28 (1996)

    Article  Google Scholar 

  25. K.R. Williams, K. Gupta, M. Wasilik, Etch rates for micromachining processing – Part II. J. Microelectromech. Syst. 12(6), 761–778 (2003)

    Article  Google Scholar 

  26. P. Sun, B. Mimoun, E. Charbon, R. Ishihara, A flexible ultra-thin-body SOI single-photon avalanche diode. Int. Electron Devices Meet. 11(1), 284–287 (2013)

    Google Scholar 

  27. P. Sun, E. Charbon, R. Ishihara, A flexible ultrathin-body single-photon avalanche diode with dual-side illumination. IEEE J. Sel. Top. Quantum Electron. 20(6), 276–283 (2014)

    Article  Google Scholar 

  28. S. Nikzad, T.J. Cunningham, M.E. Hoenk, R.P. Ruiz, D.M. Soules, S.E. Holland, Direct detection of 0.1–20 keV electrons with delta doped, fully depleted, high purity silicon p-i-n diode arrays. Appl. Phys. Lett. 89(18) (2006)

    Google Scholar 

  29. P. Sun, R. Ishihara, E. Charbon, Flexible ultrathin-body single-photon avalanche diode sensors and CMOS integration. Opt. Express 24(4), 3734–3748 (2016)

    Article  Google Scholar 

  30. P. Sun, R. Ishihara, E. Charbon, A flexible 32 × 32 SPAD image sensor with integrated microlenses, in International Image Sensor Workshop (IISW), Session 11, paper 3 (2015)

    Google Scholar 

  31. J. Pavia, M. Wolf, E. Charbon, Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery. Opt. Express 22(4), 4203–4213 (2014)

    Article  Google Scholar 

  32. P. Sun, J. Weng, R. Ishihara, E. Charbon, A flexible 32 × 32 dual-side single-photon image sensor, in International Image Sensor Workshop (IISW), Session 5, paper 6 (2017)

    Google Scholar 

  33. I.M. Antolovic, S. Burri, C. Bruschini, R. Hoebe, E. Charbon, Nonuniformity analysis of a 65-kpixel CMOS SPAD imager. IEEE Trans. Electron Devices 63(1), 1–8 (2015)

    Google Scholar 

  34. B. Sajadi, D. Qoc-Lai, A.T. Ihler, M. Gopi, A. Majumder, Image enhancement in projectors via optical pixel shift and overlay, in IEEE International Conference on Computational Photography (Cambridge, USA, 2013), pp. 1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Charbon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, P., Ishihara, R., Charbon, E. (2018). Flexible Single-Photon Image Sensors. In: Mitra, S., Cumming, D. (eds) CMOS Circuits for Biological Sensing and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-67723-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67723-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67722-4

  • Online ISBN: 978-3-319-67723-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics