Skip to main content

Compressed Sensing for High Density Neural Recording

  • Chapter
  • First Online:
  • 2025 Accesses

Abstract

One of the major challenges in large scale electrophysiology recording devices is the volume of data generated. Typically, each electrode samples the neural signal at 30 KHz with 10 bits digital resolution, a typical speed for neural action potentials acquisition. Hence, a 1000 channel neural probe generates data on the order of 300 Mbits per second. For neuroscientists, this presents an enormous problem in both data transmission and data analysis. Recently, as the demand for high density and distributed neural recording devices grows, tackling the problem of data compression and transmission has become extremely urgent. In this chapter, we first summarize a number of techniques used for neural signal compression. We then focus on the recent development on the use of compressed sensing theory to design more efficient high density neural recording circuits.

This is a preview of subscription content, log in via an institution.

References

  1. M.A. Wilson, B.L. McNaughton, Dynamics of the hippocampal ensemble code for space. Science 261(5124), 1055–1059 (1993)

    Article  Google Scholar 

  2. S. Mitra, J. Putzeys, F. Battaglia, C.M. Lopez, M. Welkenhuysen, C. Pennartz, C. Van Hoof, R.F. Yazicioglu, 24-channel dual-band wireless neural recorder with activity-dependent power consumption, in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, New York, 2013), pp. 292–293

    Book  Google Scholar 

  3. R.J. Staba, C.L. Wilson, A. Bragin, I. Fried, J. Engel, Sleep states differentiate single neuron activity recorded from human epileptic hippocampus, entorhinal cortex, and subiculum. J. Neurosci. 22(13), 5694–5704 (2002)

    Google Scholar 

  4. J.N. Aziz, K. Abdelhalim, R. Shulyzki, R. Genov, B.L. Bardakjian, M. Derchansky, D. Serletis, P.L. Carlen, 256-channel neural recording and delta compression microsystem with 3d electrodes. IEEE J. Solid State Circuits 44(3), 995–1005 (2009)

    Article  Google Scholar 

  5. D.H. Hubel, T.N. Wiesel, Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148(3), 574–591 (1959)

    Article  Google Scholar 

  6. E.M. Maynard, C.T. Nordhausen, R.A. Normann, The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephalogr. Clin. Neurophysiol. 102(3), 228–239 (1997)

    Article  Google Scholar 

  7. C.M. Lopez, A. Andrei, S. Mitra, M. Welkenhuysen, W. Eberle, C. Bartic, R. Puers, R.F. Yazicioglu, G.G. Gielen, An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J. Solid State Circuits 49(1), 248–261 (2014)

    Article  Google Scholar 

  8. R. Shulyzki, K. Abdelhalim, A. Bagheri, M.T. Salam, C.M. Florez, J.L. Perez Velazquez, P.L. Carlen, R. Genov, 320-channel active probe for high-resolution neuromonitoring and responsive neurostimulation. IEEE Trans. Biomed. Circuits Syst. 9(1), 34–49 (2015)

    Article  Google Scholar 

  9. D. Seo, J.M. Carmena, J.M. Rabaey, M.M. Maharbiz, E. Alon, Model validation of untethered, ultrasonic neural dust motes for cortical recording. J. Neurosci. Methods 244, 114–122 (2015)

    Article  Google Scholar 

  10. A. Khalifa, J. Zhang, M. Leistner, R. Etienne-Cummings, A compact, low-power, fully analog implantable microstimulator, in 2016 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, New York, 2016)

    Google Scholar 

  11. F. Chen, A.P. Chandrakasan, V.M. Stojanović, Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J. Solid State Circuits 47(3), 744–756 (2012)

    Article  Google Scholar 

  12. A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power CMOS digital design. IEICE Trans. Electron. 75(4), 371–382 (1992)

    Google Scholar 

  13. S. Kim, R. Normann, R. Harrison, F. Solzbacher et al., Preliminary study of the thermal impact of a microelectrode array implanted in the brain, in 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006. EMBS’06 (IEEE, New York, 2006), pp. 2986–2989

    Google Scholar 

  14. D.A. Borton, M. Yin, J. Aceros, A. Nurmikko, An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J. Neural Eng. 10(2), 026010 (2013)

    Google Scholar 

  15. H. Gao, R.M. Walker, P. Nuyujukian, K.A. Makinwa, K.V. Shenoy, B. Murmann, T.H. Meng, Hermese: a 96-channel full data rate direct neural interface in 0.13μm CMOS. IEEE J. Solid State Circuits 47(4), 1043–1055 (2012)

    Google Scholar 

  16. J. Zhang, K. Duncan, Y. Suo, T. Xiong, S. Mitra, T.D. Tran, R. Etienne-Cummings, Communication channel analysis and real time compressed sensing for high density neural recording devices. IEEE Trans. Circuits Syst. Regul. Pap. 63(5), 599–608 (2016)

    Article  Google Scholar 

  17. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Needell, J.A. Tropp, Cosamp: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. M.S. Lewicki, B.A. Olshausen, Probabilistic framework for the adaptation and comparison of image codes. JOSA A 16(7), 1587–1601 (1999)

    Article  Google Scholar 

  23. M.S. Lewicki, T.J. Sejnowski, Learning overcomplete representations. Neural Comput. 12(2), 337–365 (2000)

    Article  Google Scholar 

  24. K. Engan, S.O. Aase, J.H. Husøy, Multi-frame compression: theory and design. Signal Process. 80(10), 2121–2140 (2000)

    Article  MATH  Google Scholar 

  25. M. Aharon, M. Elad, A. Bruckstein, K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  26. M. Mangia, R. Rovatti, G. Setti, Rakeness in the design of analog-to-information conversion of sparse and localized signals. IEEE Trans. Circuits Syst. Regul. Pap. 59(5), 1001–1014 (2012)

    Article  MathSciNet  Google Scholar 

  27. J.M. Duarte-Carvajalino, G. Sapiro, Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. DTIC Document, Technical Report (2008)

    MATH  Google Scholar 

  28. M. Elad, Optimized projections for compressed sensing. IEEE Trans. Signal Process. 55(12), 5695–5702 (2007)

    Article  MathSciNet  Google Scholar 

  29. D. Gangopadhyay, E.G. Allstot, A.M. Dixon, K. Natarajan, S. Gupta, D.J. Allstot, Compressed sensing analog front-end for bio-sensor applications. IEEE J. Solid State Circuits 49(2), 426–438 (2014)

    Article  Google Scholar 

  30. Z. Charbiwala, V. Karkare, S. Gibson, D. Marković, M.B. Srivastava, Compressive sensing of neural action potentials using a learned union of supports, in 2011 International Conference on Body Sensor Networks (BSN) (IEEE, New York, 2011), pp. 53–58

    Book  Google Scholar 

  31. M. Shoaran, M.H. Kamal, C. Pollo, P. Vandergheynst, A. Schmid, Compact low-power cortical recording architecture for compressive multichannel data acquisition. IEEE Trans. Biomed. Circuits Syst. 8(6), 857–870 (2014)

    Article  Google Scholar 

  32. J. Zhang, Y. Suo, S. Mitra, S.P. Chin, S. Hsiao, R.F. Yazicioglu, T.D. Tran, R. Etienne-Cummings, An efficient and compact compressed sensing microsystem for implantable neural recordings. IEEE Trans. Biomed. Circuits Syst. 8(4), 485–496 (2014)

    Article  Google Scholar 

  33. M. Zhang, A. Bermak, Compressive acquisition CMOS image sensor: from the algorithm to hardware implementation. IEEE Trans. Very Large Scale Integr. VLSI Syst. 18(3), 490–500 (2010)

    Article  Google Scholar 

  34. D.E. Bellasi, L. Benini, Energy-efficiency analysis of analog and digital compressive sensing in wireless sensors. IEEE Trans. Circuits Syst. Regul. Pap. 62(11), 2718–2729 (2015)

    Article  MathSciNet  Google Scholar 

  35. C. Bulach, U. Bihr, M. Ortmanns, Evaluation study of compressed sensing for neural spike recordings, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, New York, 2012), pp. 3507–3510

    Google Scholar 

  36. Q. Zhang, B. Li, Discriminative k-svd for dictionary learning in face recognition, in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, New York, 2010), pp. 2691–2698

    Google Scholar 

  37. R.Q. Quiroga, Z. Nadasdy, Y. Ben-Shaul, Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16(8), 1661–1687 (2004)

    Article  MATH  Google Scholar 

  38. T. Sasaki, N. Matsuki, Y. Ikegaya, Action-potential modulation during axonal conduction. Science 331(6017), 599–601 (2011)

    Article  Google Scholar 

  39. P.H. Thakur, H. Lu, S.S. Hsiao, K.O. Johnson, Automated optimal detection and classification of neural action potentials in extra-cellular recordings. J. Neurosci. Methods 162(1), 364–376 (2007)

    Article  Google Scholar 

  40. B. Sun, W. Zhao, X. Zhu, Training-free compressed sensing for wireless neural recording using analysis model and group weighted-minimization. J. Neural Eng. 14(3), 036018 (2017)

    Google Scholar 

  41. C.M. Gray, P.E. Maldonado, M. Wilson, B. McNaughton, Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J. Neurosci. Methods 63(1), 43–54 (1995)

    Article  Google Scholar 

  42. K.D. Harris, D.A. Henze, J. Csicsvari, H. Hirase, G. Buzsáki, Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84(1), 401–414 (2000)

    Article  Google Scholar 

  43. A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in Advances in Neural Information Processing Systems, vol. 14 (2001), pp. 849–856

    Google Scholar 

  44. W.F. Asaad, E.N. Eskandar, Encoding of both positive and negative reward prediction errors by neurons of the primate lateral prefrontal cortex and caudate nucleus. J. Neurosci. 31(49), 17772–17787 (2011)

    Article  Google Scholar 

  45. D.A. Henze, Z. Borhegyi, J. Csicsvari, A. Mamiya, K.D. Harris, G. Buzsáki, Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84(1), 390–400 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Xiong, T., Mitra, S., Etienne-Cummings, R. (2018). Compressed Sensing for High Density Neural Recording. In: Mitra, S., Cumming, D. (eds) CMOS Circuits for Biological Sensing and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-67723-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67723-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67722-4

  • Online ISBN: 978-3-319-67723-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics