Skip to main content

Implantable Microsystems for Personalised Anticancer Therapy

  • Chapter
  • First Online:
Book cover CMOS Circuits for Biological Sensing and Processing

Abstract

The Implantable Microsystems for Personalised Anti-Cancer Therapy (IMPACT) project aims to produce an implantable wireless sensor device for monitoring tumour physiology. Real-time measurements will be used to improve radiotherapy by allowing treatment to be responsively delivered at the most effective time and location. We are developing miniaturised microfabricated sensors for measuring local oxygen concentration and pH within the tumour, using technologies that are amenable to integration on CMOS. In addition, we have established proof of concept for a range of electrochemical biosensors that can respond to enzyme biomarkers. Together these sensors will allow comprehensive monitoring of tissue physiology before and after radiotherapy treatment. For clinical use, the complete system will be equipped with circuits for wireless power and communications and packaged in biocompatible materials. This is a very challenging application for sensors integrated on CMOS. Here we provide a brief background to medical aspects of the work and describe our progress towards solving the engineering challenges it has presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. IARC, Globocan 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012 (WHO, Geneva, Switzerland, 2012)

    Google Scholar 

  2. M. Baumann, M. Krause, J. Overgaard, J. Debus, S.M. Bentzen, J. Daartz, et al., Radiation oncology in the era of precision medicine. Nat. Rev. Cancer 16, 234–249 (2016)

    Article  Google Scholar 

  3. J.C. Mottram, A factor of importance in the radio sensitivity of tumours. Br. J. Radiol. 9, 606–614 (1936)

    Article  Google Scholar 

  4. L.H. Gray, A.D. Conger, M. Ebert, S. Hornsey, O.C.A. Scott, The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 26, 638–648 (1953)

    Article  Google Scholar 

  5. J.P. Ward, Oxygen sensors in context. Biochim. Biophys. Acta 1777, 1–14 (2008)

    Article  Google Scholar 

  6. J.A. Bertout, S.A. Patel, M.C. Simon, The impact of O2 availability on human cancer. Nat. Rev. Cancer 8, 967–975 (2008)

    Article  Google Scholar 

  7. C. Ward, S.P. Langdon, P. Mullen, A.L. Harris, D.J. Harrison, C.T. Supuran, et al., New strategies for targeting the hypoxic tumour microenvironment in breast cancer. Cancer Treat. Rev. 39, 171–179 (2013)

    Article  Google Scholar 

  8. C. Bayer, K. Shi, S.T. Astner, C.A. Maftei, P. Vaupel, Acute versus chronic hypoxia: why a simplified classification is simply not enough. Int. J. Radiat. Oncol. Biol. Phys. 80, 965–968 (2011)

    Article  Google Scholar 

  9. D.J. Chaplin, P.L. Olive, R.E. Durand, Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res. 47, 597–601 (1987)

    Google Scholar 

  10. P. Vaupel, F. Kallinowski, P. Okunieff, Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989)

    Google Scholar 

  11. J. Overgaard, Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck – a systematic review and meta-analysis. Radiother. Oncol. 100, 22–32 (2011)

    Article  Google Scholar 

  12. A.L. Harris, Hypoxia – a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38–47 (2002)

    Article  Google Scholar 

  13. G.L. Semenza, Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003)

    Article  Google Scholar 

  14. J.P. Dales, S. Garcia, S. Meunier-Carpentier, L. Andrac-Meyer, O. Haddad, M.N. Lavaut, et al., Overexpression of hypoxia-inducible factor HIF-1alpha predicts early relapse in breast cancer: retrospective study in a series of 745 patients. Int. J. Cancer 116, 734–739 (2005)

    Article  Google Scholar 

  15. G.L. Semenza, Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin. Cancer Biol. 19, 12–16 (2009)

    Article  Google Scholar 

  16. M.S. Ullah, A.J. Davies, A.P. Halestrap, The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J. Biol. Chem. 281, 9030–9037 (2006)

    Article  Google Scholar 

  17. B.A. Webb, M. Chimenti, M.P. Jacobson, D.L. Barber, Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011)

    Article  Google Scholar 

  18. R.A. Gatenby, K. Smallbone, P.K. Maini, F. Rose, J. Averill, R.B. Nagle, et al., Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br. J. Cancer 97, 646–653 (2007)

    Article  Google Scholar 

  19. R.J. Gillies, Z. Liu, Z. Bhujwalla, 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am. J. Physiol. 267, C195–C203 (1994)

    Article  Google Scholar 

  20. K. Goetze, S. Walenta, M. Ksiazkiewicz, L.A. Kunz-Schughart, W. Mueller-Klieser, Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int. J. Oncol. 39, 453–463 (2011)

    Google Scholar 

  21. F. Vegran, R. Boidot, C. Michiels, P. Sonveaux, O. Feron, Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 71, 2550–2560 (2011)

    Article  Google Scholar 

  22. U.G. Sattler, S.S. Meyer, V. Quennet, C. Hoerner, H. Knoerzer, C. Fabian, et al., Glycolytic metabolism and tumour response to fractionated irradiation. Radiother. Oncol. 94, 102–109 (2010)

    Article  Google Scholar 

  23. D.M. Brizel, T. Schroeder, R.L. Scher, S. Walenta, R.W. Clough, M.W. Dewhirst, et al., Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 51, 349–353 (2001)

    Article  Google Scholar 

  24. S. Walenta, M. Wetterling, M. Lehrke, G. Schwickert, K. Sundfor, E.K. Rofstad, et al., High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 60, 916–921 (2000)

    Google Scholar 

  25. C. Groussard, I. Morel, M. Chevanne, M. Monnier, J. Cillard, A. Delamarche, Free radical scavenging and antioxidant effects of lactate ion: an in vitro study. J. Appl. Physiol. 89(2000), 169–175 (1985)

    Google Scholar 

  26. M.R. Horsman, L.S. Mortensen, J.B. Petersen, M. Busk, J. Overgaard, Imaging hypoxia to improve radiotherapy outcome. Nat. Rev. Clin. Oncol. 9, 674–687 (2012)

    Article  Google Scholar 

  27. M. Nordsmark, J. Alsner, M. Busk, J. Overgaard, M.R. Horsman, Hypoxia and radiation therapy, in Hypoxia and Cancer: Biological Implications and Therapeutic Opportunities, ed. by G. Melillo (Springer, New York, 2014), pp. 265–281.

    Google Scholar 

  28. L.C. Clark, Electrochemical device for chemical analysis, U.S. Patent Office, 1959

    Google Scholar 

  29. W.P. Chan, M. Narducci, Y. Gao, M.-Y. Cheng, J.H. Cheong, A.K. George, et al., A monolithically integrated pressure/oxygen/temperature sensing SoC for multimodality intracranial neuromonitoring. IEEE J. Solid-State Circuits 49, 2449–2461 (2014)

    Article  Google Scholar 

  30. P. Wang, Y. Liu, H.D. Abruña, J.A. Spector, W.L. Olbricht, Micromachined dissolved oxygen sensor based on solid polymer electrolyte. Sens. Actuators B 153, 145–151 (2011)

    Article  Google Scholar 

  31. C.-C. Wu, T. Yasukawa, H. Shiku, T. Matsue, Fabrication of miniature Clark oxygen sensor integrated with microstructure. Sens. Actuators B 110, 342–349 (2005)

    Article  Google Scholar 

  32. A.M. Otto, M. Brischwein, E. Motrescu, B. Wolf, Analysis of drug action on tumor cell metabolism using electronic sensor chips. Arch. Pharm. 337, 682–686 (2004)

    Article  Google Scholar 

  33. M. Brischwein, E.R. Motrescu, E. Cabala, A.M. Otto, H. Grothe, B. Wolf, Functional cellular assays with multiparametric silicon sensor chips. Lab Chip 3, 234–240 (2003)

    Article  Google Scholar 

  34. R. Pethig, S. Smith, Electrochemical Principles and Electrode Reactions, in Introductory Bioelectronics: For Engineers and Physical Scientists, 1st edn., (Wiley, Chichester, 2012), pp. 177–213

    Chapter  Google Scholar 

  35. M.W. Shinwari, D. Zhitomirsky, I.A. Deen, P.R. Selvaganapathy, M.J. Deen, D. Landheer, Microfabricated reference electrodes and their biosensing applications. Sensors 10, 1679–1715 (2010)

    Article  Google Scholar 

  36. C. Duarte-Guevara, V.V. Swaminathan, M. Burgess, B. Reddy, E. Salm, Y.-S. Liu, et al., On-chip metal/polypyrrole quasi-reference electrodes for robust ISFET operation. Analyst 140, 3630–3641 (2015)

    Article  Google Scholar 

  37. K.K. Kasem, S. Jones, Platinum as a reference electrode in electrochemical measurements. Platinum Metals Review 52, 100–106 (2008)

    Article  Google Scholar 

  38. H. Suzuki, T. Hirakawa, S. Sasaki, I. Karube, An integrated module for sensing pO2, pCO2, and pH. Anal. Chim. Acta 405, 57–65 (2000)

    Article  Google Scholar 

  39. H. Suzuki, A. Hiratsuka, S. Sasaki, I. Karube, Problems associated with the thin-film Ag/AgCl reference electrode and a novel structure with improved durability. Sens. Actuators B 46, 104–113 (1998)

    Article  Google Scholar 

  40. P. Hashemi, P.L. Walsh, T.S. Guillot, J. Gras-Najjar, P. Takmakov, F.T. Crews, et al., Chronically implanted, nafion-coated Ag/AgCl reference electrodes for neurochemical applications. ACS Chem. Nerosci. 2, 658–666 (2011)

    Article  Google Scholar 

  41. K.A. Mauritz, R.B. Moore, State of understanding of nafion. Chem. Rev. 104, 4535–4586 (2004)

    Article  Google Scholar 

  42. J.R.K. Marland, C. Dunare, A. Tsiamis, E. González-Fernández, E. Blair, S. Smith, et al., Test structures for optimizing polymer electrolyte performance in a microfabricated electrochemical oxygen sensor, in International Conference on Microelectronic Test Structures, (Grenoble, 2017), pp. 145–149

    Google Scholar 

  43. R. Pethig, S. Smith, Basic Sensor Instrumentation and Electrochemical Sensor Interfaces, in Introductory Bioelectronics: For Engineers and Physical Scientists, 1st edn., (Wiley, Chichester, 2012), pp. 259–296

    Chapter  Google Scholar 

  44. P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 17, 70–71 (1970)

    Article  Google Scholar 

  45. K. Nakazato, M. Ohura, S. Uno, Source-drain follower for monolithically integrated sensor array. Electronics Letters 43, 1255–1257 (2007)

    Article  Google Scholar 

  46. K. Nakazato, M. Ohura, S. Uno, CMOS cascode source-drain follower for monolithically integrated biosensor array. IEICE Trans. Electron. E91c, 1505–1515 (2008)

    Article  Google Scholar 

  47. D.R. Thévenot, K. Toth, R.A. Durst, G.S. Wilson, Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron. 16, 121–131 (2001)

    Google Scholar 

  48. J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2008)

    Article  Google Scholar 

  49. S. Azzouzi, L. Rotariu, A.M. Benito, W.K. Maser, M. Ben Ali, C. Bala, A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of l-lactate tumor biomarker. Biosens. Bioelectron. 69, 280–286 (2015)

    Article  Google Scholar 

  50. K. Rathee, V. Dhull, R. Dhull, S. Singh, Biosensors based on electrochemical lactate detection: a comprehensive review. Biochemistry and Biophysics Reports 5, 35–54 (2016)

    Article  Google Scholar 

  51. M.P. Massafera, S.I.C. de Torresi, Urea amperometric biosensors based on a multifunctional bipolymeric layer: comparing enzyme immobilization methods. Sens. Actuators B Chem. 137, 476–482 (2009)

    Google Scholar 

  52. A. Makaraviciute, A. Ramanaviciene, Site-directed antibody immobilization techniques for immunosensors. Biosens. Bioelectron. 50, 460–471 (2013)

    Article  Google Scholar 

  53. V. Serafín, L. Agüí, P. Yáñez-Sedeño, J.M. Pingarrón, Electrochemical immunosensor for the determination of insulin-like growth factor-1 using electrodes modified with carbon nanotubes-poly(pyrrole propionic acid) hybrids. Biosens. Bioelectron. 52, 98–104 (2014)

    Article  Google Scholar 

  54. G. Lai, H. Zhang, T. Tamanna, A. Yu, Ultrasensitive immunoassay based on electrochemical measurement of enzymatically produced polyaniline. Anal. Chem. 86, 1789–1793 (2014)

    Article  Google Scholar 

  55. P.E. Nielsen, Peptide nucleic acids (PNA) in chemical biology and drug discovery. Chem. Biodivers. 7, 786–804 (2010)

    Article  Google Scholar 

  56. A.A. Lubin, K.W. Plaxco, Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc. Chem. Res. 43, 496–505 (2010)

    Article  Google Scholar 

  57. A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990)

    Article  Google Scholar 

  58. C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990)

    Article  Google Scholar 

  59. E. González-Fernández, N. Avlonitis, A.F. Murray, A.R. Mount, M. Bradley, Methylene blue not ferrocene: optimal reporters for electrochemical detection of protease activity. Biosens. Bioelectron. 84, 82–88 (2016)

    Google Scholar 

  60. A. Bard, L. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001)

    Google Scholar 

  61. F. Lisdat, D. Schäfer, The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 391, 1555–1567 (2008)

    Google Scholar 

  62. E.P. Randviir, C.E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal. Methods 5, 1098–1115 (2013)

    Article  Google Scholar 

  63. I.S. Kucherenko, D.Y. Kucherenko, O.O. Soldatkin, F. Lagarde, S.V. Dzyadevych, A.P. Soldatkin, A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate. Talanta 150, 469–475 (2016)

    Article  Google Scholar 

  64. T.T. Nguyen-Boisse, J. Saulnier, N. Jaffrezic-Renault, F. Lagarde, Highly sensitive conductometric biosensors for total lactate, D- and L-lactate determination in dairy products. Sens. Actuators B Chem. 179, 232–239 (2013)

    Google Scholar 

  65. C. López-Otín, L.M. Matrisian, Emerging roles of proteases in tumour suppression. Nat. Rev. Cancer 7, 800–808 (2007)

    Article  Google Scholar 

  66. Q. Liu, J. Wang, B.J. Boyd, Peptide-based biosensors. Talanta 136C, 114–127 (2015)

    Article  Google Scholar 

  67. J. Adjémian, A. Anne, G. Cauet, C. Demaille, Cleavage-sensing redox peptide monolayers for the rapid measurement of the proteolytic activity of trypsin and α-thrombin enzymes. Langmuir 26, 10347–10356 (2010)

    Article  Google Scholar 

  68. P.S. Singh, From sensors to systems: CMOS-integrated electrochemical biosensors. IEEE Access 3, 249–259 (2015)

    Article  Google Scholar 

  69. E.D. Minot, A.M. Janssens, I. Heller, H.A. Heering, C. Dekker, S.G. Lemay, Carbon nanotube biosensors: the critical role of the reference electrode. Appl. Phys. Lett. 91, 093507 (2007)

    Article  Google Scholar 

  70. O.Y.F. Henry, J.L.A. Sanchez, C.K. O’Sullivan, Bipodal PEGylated alkanethiol for the enhanced electrochemical detection of genetic markers involved in breast cancer. Biosens. Bioelectron. 26, 1500–1506 (2010)

    Article  Google Scholar 

  71. T. Bertok, E. Dosekova, S. Belicky, A. Holazova, L. Lorencova, D. Mislovicova, et al., Mixed zwitterion-based self-assembled monolayer interface for impedimetric glycomic analyses of human IgG samples in an array format. Langmuir 32, 7070–7078 (2016)

    Article  Google Scholar 

  72. D. Lu, C.P. Wong, Materials for Advanced Packaging (Springer, Boston, 2009)

    Book  Google Scholar 

  73. S.F. Al-Sarawi, D. Abbott, P.D. Franzon, A review of 3-D packaging technology. IEEE Trans. Compon. Packag. Manuf. Technol. Part B 21, 2–14 (1998)

    Article  Google Scholar 

  74. W.H. Ko, Packaging of microfabricated devices and systems. Mater. Chem. Phys. 42, 169–175 (1995)

    Article  MathSciNet  Google Scholar 

  75. C.P. Wong, K.-S. Moon, Y. Li, Nano-bio-electronic, Photonic and MEMS Packaging, 1st edn. (Springer, New York, 2010)

    Google Scholar 

  76. N. Abramova, A. Bratov, Photocurable polymers for ion selective field effect transistors. 20 years of applications. Sensors 9, 7097–7110 (2009)

    Google Scholar 

  77. C. Cotofana, A. Bossche, P. Kaldenberg, J. Mollinger, Low-cost plastic sensor packaging using the open-window package concept. Sensors and Actuators A: Physical 67, 185–190 (1998)

    Article  Google Scholar 

  78. D.J. Apple, N. Mamalis, S.E. Brady, K. Loftfield, D. Kavka-Van Norman, R.J. Olson, Biocompatibility of implant materials: a review and scanning electron microscopic study. American Intra-Ocular Implant Soc. J. 10, 53–66 (1984)

    Article  Google Scholar 

  79. M. Frost, M.E. Meyerhoff, In vivo chemical sensors: tackling biocompatibility. Anal. Chem. 78, 7370–7377 (2006)

    Article  Google Scholar 

  80. Y. Onuki, U. Bhardwaj, F. Papadimitrakopoulos, D.J. Burgess, A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J. Diabetes Sci. Technol. 2, 1003–1015 (2008)

    Article  Google Scholar 

  81. S. Kirsten, M. Schubert, M. Braunschweig, G. Woldt, T. Voitsekhivska, K.-J. Wolter, Biocompatible packaging for implantable miniaturized pressure sensor device used for stent grafts: Concept and choice of materials, in Electronics Packaging Technology Conference (EPTC), 2014 IEEE 16th, (Singapore, 2014), pp. 719–724

    Google Scholar 

  82. ISO, ISO 10993-1:2009 Biological evaluation of medical devices – part 1: evaluation and testing within a risk management process, (2009)

    Google Scholar 

  83. Y. Qin, M.M.R. Howlader, M.J. Deen, Y.M. Haddara, P.R. Selvaganapathy, Polymer integration for packaging of implantable sensors. Sens. Actuators B 202, 758–778 (2014)

    Article  Google Scholar 

  84. M. Leineweber, G. Pelz, M. Schmidt, H. Kappert, G. Zimmer, New tactile sensor chip with silicone rubber cover. Sensors and Actuators A: Physical 84, 236–245 (2000)

    Article  Google Scholar 

  85. T. Datta-Chaudhuri, P. Abshire, E. Smela, Packaging commercial CMOS chips for lab on a chip integration. Lab Chip 14, 1753 (2014)

    Article  Google Scholar 

  86. J.B. Fortin, T.-M. Lu, Chemical Vapor Deposition Polymerization: The Growth and Properties of Parylene Thin Films (Springer, Boston, 2004)

    Book  Google Scholar 

  87. E.M. Schmidt, J.S. McIntosh, M.J. Bak, Long-term implants of Parylene-C coated microelectrodes. Med. Biol. Eng. Comput. 26, 96–101 (1988)

    Article  Google Scholar 

  88. M.A. Eddings, M.A. Johnson, B.K. Gale, Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J. Micromech. Microeng. 18, 067001 (2008)

    Article  Google Scholar 

  89. J.C. Lötters, W. Olthuis, P.H. Veltink, P. Bergveld, The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 7, 145–147 (1997)

    Article  Google Scholar 

  90. E.O. Blair, A. Buchoux, A. Tsiamis, C. Dunare, J.R.K. Marland, J.G. Terry, et al., Test structures for the characterisation of sensor packaging technology, in 2017 International Conference on Microelectronic Test Structures, (Bordeaux, 2017)

    Google Scholar 

  91. International Commission on Non-Ionizing Radiation Protection, Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 99, 818–836 (2010)

    Google Scholar 

  92. International Commission on Non-Ionizing Radiation Protection, Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys. 74, 494–522 (1998)

    Google Scholar 

  93. IEEE, C95.1-2005 – IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, (New York, 2006)

    Google Scholar 

  94. P.T. Theilmann, Wireless power transfer for scaled electronic biomedical implants: UC San Diego, (2012)

    Google Scholar 

  95. F. Zhang, S.A. Hackworth, W. Fu, C. Li, Z. Mao, M. Sun, Relay effect of wireless power transfer using strongly coupled magnetic resonances. IEEE Trans. Magn. 47, 1478–1481 (2011)

    Article  Google Scholar 

  96. K. Townsend, R. Davidson, Akiba, C. Cufí, Getting started with Bluetooth low energy: tools and techniques for low-power networking, Revised 1st edn. (O’Reilly, Sebastopol, 2014)

    Google Scholar 

  97. I. Dove, Analysis of Radio Propagation Inside the Human Body for in-Body Localization Purposes, University of Twente, (2014)

    Google Scholar 

  98. G. Kennedy, Electronic Communication Systems, McGraw-Hill Inc., US 1992, p. 509

    Google Scholar 

Download references

Acknowledgements

This work was supported by the funding from the UK Engineering and Physical Sciences Research Council, through the Implantable Microsystems for Personalised Anti-Cancer Therapy (IMPACT) programme grant (EP/K034510/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie R. K. Marland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marland, J.R.K. et al. (2018). Implantable Microsystems for Personalised Anticancer Therapy. In: Mitra, S., Cumming, D. (eds) CMOS Circuits for Biological Sensing and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-67723-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67723-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67722-4

  • Online ISBN: 978-3-319-67723-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics