Skip to main content

Photonic Interaction with the Nervous System

  • Chapter
  • First Online:
CMOS Circuits for Biological Sensing and Processing

Abstract

Optogenetics is a technique to genetically photosensitize neural tissue for both sensing and stimulus. Since its discovery in 2003, it has led to numerous scientific discoveries in basic neuroscience. Now, various groups are attempting to utilise the technique for neuroprosthetic therapies. This chapter explores the background of the technique and engineering approaches to its utilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, et al., Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. PNAS 100, 13940–13945 (2003)

    Article  Google Scholar 

  2. E.S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth, Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005)

    Article  Google Scholar 

  3. K. Nikolic, N. Grossman, M.S. Grubb, J. Burrone, C. Toumazou, P. Degenaar, Photocycles of Channelrhodopsin-2. Photochem. Photobiol. 85, 400–411 (2009)

    Article  Google Scholar 

  4. N. Grossman, K. Nikolic, C. Toumazou, P. Degenaar, Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. I.E.E.E. Trans. Biomed. Eng. 58, 1742–1751 (2011)

    Article  Google Scholar 

  5. N. Grossman, V. Poher, M.S. Grubb, G.T. Kennedy, K. Nikolic, B. McGovern, et al., Multi-site optical excitation using ChR2 and micro-LED array. J. Neural Eng. 7, 16004 (2010)

    Article  Google Scholar 

  6. I. Reutsky-Gefen, L. Golan, N. Farah, A. Schejter, L. Tsur, I. Brosh, et al., Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nat. Commun. 4, 1509 (2013)

    Article  Google Scholar 

  7. F. Zhang, M. Prigge, F. Beyriere, S. Tsunoda, J. Mattis, O. Yizhar, et al., Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Nerosci. 11, 631–633 (2008)

    Article  Google Scholar 

  8. J.Y. Lin, P.M. Knutsen, A. Muller, D. Kleinfeld, R.Y. Tsien, ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013)

    Article  Google Scholar 

  9. E.A. Ferenczi, J. Vierock, K. Atsuta-Tsunoda, S.P. Tsunoda, C. Ramakrishnan, C. Gorini, K. Thompson, S.Y. Lee, A. Berndt, S. Delp, K. Deisseroth, P. Hegemann, Optogenetic approaches addressing extracellular modulation of neural excitability. Sci. Rep. 6, 23947 (2016). https://doi.org/10.1038/srep23947

    Article  Google Scholar 

  10. F. Zhang, J. Vierock, O. Yizhar, L.E. Fenno, S. Tsunoda, A. Kianianmomeni, et al., The microbial opsin family of optogenetic tools. Cell 147, 1446–1457 (2011)

    Article  Google Scholar 

  11. A. Matsuno-Yagi, Y. Mukohata, Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation, in Biochem. Biophys. Res. Comm., vol. 78, pp. 237-243, 1977/09/09, (1977)

    Google Scholar 

  12. Y. Mukohata, Y. Kaji, Light-induced membrane-potential increase, ATP synthesis, and proton uptake in Halobacterium-halobium R1mR catalyzed by halorhodopsin – effects of N,N'-dicyclohexylcarbodiimide, triphenyltin chloride, and 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). Arch. Biochem. Biophys. 206, 72–76 (1981)

    Article  Google Scholar 

  13. F. Zhang, L.P. Wang, M. Brauner, J.F. Liewald, K. Kay, N. Watzke, et al., Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–6U4 (2007)

    Article  Google Scholar 

  14. X. Han, E.S. Boyden, Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2, e299 (2007)

    Article  Google Scholar 

  15. K. Nikolic, J. Loizu, P. Degenaar, C. Toumazou, Noise reduction in analogue computation of Drosophila photoreceptors. J. Comp. Electron. 7, 458–461 (2008)

    Article  Google Scholar 

  16. Z. Melyan, E.E. Tarttelin, J. Bellingham, R.J. Lucas, M.W. Hankins, Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741–745 (2005)

    Article  Google Scholar 

  17. X. Qiu, T. Kumbalasiri, S. Carlson, K. Wong, V. Krishna, I. Provencio, et al., Induction of photosensitivity by heterologous expression of melanopsin. Nature 433, 745–749 (2005)

    Article  Google Scholar 

  18. B. Lin, A. Koizumi, N. Tanaka, S. Panda, R.H. Masland, Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc. Natl. Acad. Sci. U. S. A. 105, 16009–16014 (2008)

    Article  Google Scholar 

  19. T.W. Chen, T.J. Wardill, Y. Sun, S.R. Pulver, S.L. Renninger, A. Baohan, et al., Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013)

    Article  Google Scholar 

  20. P. Degenaar, N. Grossman, M.A. Memon, J. Burrone, M. Dawson, E. Drakakis, et al., Optobionic vision—a new genetically enhanced light on retinal prosthesis. J. Neural Eng. 6, 035007 (2009)

    Article  Google Scholar 

  21. A. Bi, J. Cui, Y.P. Ma, E. Olshevskaya, M. Pu, A.M. Dizhoor, et al., Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration. Neuron 50, 23–33 (2006)

    Article  Google Scholar 

  22. R. Airan, K. Thompson, L. Fenno, H. Bernstein, K. Deisseroth, Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029 (2009)

    Article  Google Scholar 

  23. X. Han, X. Qian, J.G. Bernstein, H.-h. Zhou, G.T. Franzesi, P. Stern, R.T. Bronson, A.M. Graybiel, R. Desimone, E.S. Boyden, Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62, 191–198 (2009)

    Article  Google Scholar 

  24. S.R. Schultz, C.S. Copeland, A.J. Foust, P. Quicke, R. Schuck, Advances in two-photon scanning and scanless microscopy technologies for functional neural circuit imaging. Proc. IEEE 105, 139–157 (2017)

    Article  Google Scholar 

  25. V. Poher, N. Grossman, G.T. Kennedy, K. Nikolic, H.X. Zhang, Z. Gong, et al., Micro-LED arrays: a tool for two-dimensional neuron stimulation. J. Phys. D-Appl. Phys. 41, 094014 (2008)

    Article  Google Scholar 

  26. A. Soltan, B. McGovern, E. Drakakis, M. Neil, P. Maaskant, M. Akhter, et al., High density, high radiance μLED matrix for optogenetic retinal prostheses and planar neural stimulation. IEEE Trans. BioCAS 11, 347–359 (2017)

    Google Scholar 

  27. P.P. Maaskant, H. Shams, M. Akhter, W. Henry, M.J. Kappers, D. Zhu, et al., High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance. Applied Physics Express 6, 22102–022102 (2013)

    Article  Google Scholar 

  28. N. Grossman, K. Nikolic, et al., A non-invasive retinal prosthesis testing the concept. Proc. EMBC Conf. 2007, 6364–6367 (2007)

    Google Scholar 

  29. D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, et al., Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature. Appl. Phys. Express 4, 072103 (2011)

    Article  Google Scholar 

  30. L. Chaudet, M. Neil, P. Degenaar, K. Mehran, R. Berlinguer-Palmini, B. Corbet, et al., Development of optics with micro-LED arrays for improved opto-electronic neural stimulation, presented at the Proc. Photonics West, (2013)

    Google Scholar 

  31. K. Tamura, Y. Ohashi, T. Tsubota, D. Takeuchi, T. Hirabayashi, M. Yaguchi, et al., A glass-coated tungsten microelectrode enclosing optical fibers for optogenetic exploration in primate deep brain structures. J. Neurosci. Methods 211, 49–57 (2012)

    Article  Google Scholar 

  32. J. Wang, F. Wagner, D.A. Borton, J. Zhang, I. Ozden, R.D. Burwell, et al., Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J. Neural Eng. 9, 016001 (2011)

    Article  Google Scholar 

  33. T.V.F. Abaya, S. Blair, P. Tathireddy, L. Rieth, F. Solzbacher, A 3D glass optrode array for optical neural stimulation. Biomed. Opt. Express 3, 3087–3104 (2012)

    Article  Google Scholar 

  34. A.N. Zorzos, J. Scholvin, E.S. Boyden, C.G. Fonstad, Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt. Lett. 37, 4841–4843 (2012)

    Article  Google Scholar 

  35. N. McAlinden, D. Massoubre, E. Richardson, E. Gu, S. Sakata, M.D. Dawson, et al., Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation. Opt. Lett. 38, 992–994 (2013)

    Article  Google Scholar 

  36. M. M. Doroudchi, K. P. Greenberg, A. N. Zorzos, W. W. Hauswirth, C. G. Fonstad, A. Horsager, et al., Towards optogenetic sensory replacement, presented at the 2011 IEEE EMBC conference, (2011)

    Google Scholar 

  37. H. Cao, L. Gu, S.K. Mohanty, J.C. Chiao, An integrated μLED optrode for optogenetic stimulation and electrical recording. I.E.E.E. Trans. Biomed. Eng. 60, 225–229 (2013)

    Article  Google Scholar 

  38. H.B. Zhao, F. Dehkhoda, R. Ramezani, D. Sokolov, P. Degenaar, Y. Liu, et al., A CMOS-based Neural implantable optrode for optogenetic stimulation and electrical recording, in 2015 Ieee Biomedical Circuits and Systems Conference, (2015), pp. 286–289

    Google Scholar 

  39. V.S. Polikov, P.A. Tresco, W.M. Reichert, Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18 (2005)

    Article  Google Scholar 

  40. F.Y.B. Chen, D.M. Budgett, Y. Sun, S. Malpas, D. McCormick, P.S. Freestone, Pulse-width modulation of Optogenetic photo-stimulation intensity for application to full-implantable light sources. IEEE Trans Biomed Circuits Syst 11(1), 28–34 (2017)

    Article  Google Scholar 

  41. B. McGovern, R.B. Palmini, N. Grossman, E. Drakakis, V. Poher, M.A. Neil, et al., A New individually addressable micro-LED Array for photogenetic neural stimulation. IEEE T. BioCAS 4, 469–476 (2010)

    Google Scholar 

  42. W. Al-Atabany, B. McGovern, K. Mehran, R. Berlinguer-Palmini, P. Degenaar, A processing platform for optoelectronic/Optogenetic retinal prosthesis. IEEE Trans Biomed Eng 60(3), 781–791 (2013). https://doi.org/10.1109/TBME.2011.2177498

    Article  Google Scholar 

  43. J.L. Stone, W.E. Barlow, M.S. Humayan, E. de Juan Jr, A.H. Milam, Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch. Ophthalmol. 110, 1634–1639 (1992)

    Article  Google Scholar 

  44. J.D. Dorn, A.K. Ahuja, A. Caspi, L.d. Cruz, G. Dagnelie, J.A. Sahel, et al., The detection of motion by blind subjects with the epiretinal 60-electrode (Argus II) retinal prosthesis. JAMA Ophthalmol. 131, 183–189 (2013)

    Article  Google Scholar 

  45. K. Stingl, K.U. Bartz-Schmidt, D. Besch, A. Braun, A. Bruckmann, F. Gekeler, et al., Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. R. Soc. B Biol. Sci. 280, 20130077 (2013)

    Article  Google Scholar 

  46. S. Picaud, J.-A. Sahel, Retinal prostheses: clinical results and future challenges. C. R. Biol. 337, 214–222 (2014)

    Article  Google Scholar 

  47. R.K. Shepherd, M.N. Shivdasani, D.A.X. Nayagam, C.E. Williams, P.J. Blamey, Visual prostheses for the blind. Trends Biotechnol. 31, 562–571 (2013)

    Article  Google Scholar 

  48. J.M. Barrett, R. Berlinguer-Palmini, P. Degenaar, Optogenetic approaches to retinal prosthesis. Vis. Neurosci. 31, 345–354 (2014)

    Article  Google Scholar 

  49. V. Busskamp, J. Duebel, D. Balya, M. Fradot, T.J. Viney, S. Siegert, et al., Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329, 413–417 (2010)

    Article  Google Scholar 

  50. W. Al-Atabany, B. McGovern, K. Mehran, R. Berlinguer-Palmini, P. Degenaar, A processing platform for optoelectronic/optogenetic retinal prosthesis. IEEE T. BME PP, 1–1 (2011)

    Google Scholar 

  51. W.I. Al-Atabany, M.A. Memon, S.M. Downes, P.A. Degenaar, Designing and testing scene enhancement algorithms for patients with retina degenerative disorders. Biomed. Eng. Online 9, 27 (2010)

    Article  Google Scholar 

  52. W.I. Al-Atabany, T. Tong, P.A. Degenaar, Improved content aware scene retargeting for retinitis pigmentosa patients. Biomed. Eng. Online 9, 52 (Sep 2010)

    Article  Google Scholar 

  53. S. Nirenberg, C. Pandarinath, Retinal prosthetic strategy with the capacity to restore normal vision. PNAS 109, 15012–15017 (2012)

    Article  Google Scholar 

  54. S.E. Boye, S.L. Boye, A.S. Lewin, W.W. Hauswirth, A comprehensive review of retinal gene therapy. Mol. Ther. 21, 509–519 (2013)

    Article  Google Scholar 

  55. J.S. Pezaris, R.C. Reid, Demonstration of artificial visual percepts generated through thalamic microstimulation. Proc. Natl. Acad. Sci. U. S. A. 104, 7670–7675 (2007)

    Article  Google Scholar 

  56. R.A. Normann, B.A. Greger, P. House, S.F. Romero, F. Pelayo, E. Fernandez, Toward the development of a cortically based visual neuroprosthesis. J. Neural Eng. 6, 035001 (2009)

    Article  Google Scholar 

  57. O. Förster, Beiträge zur Pathophysiologie der Sehbahn und der Sehsphare. J. für Psychologie und Neurologie 39, 463–485 (1929)

    Google Scholar 

  58. G.S. Brindley, W.S. Lewin, The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196, 479–493 (1968)

    Article  Google Scholar 

  59. W.H. Dobelle, M.G. Mladejovsky, J.P. Girvin, Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183, 440–444 (1974)

    Article  Google Scholar 

  60. T. Parittotokkaporn, D.G.T. Thomas, A. Schneider, E. Huq, B.L. Davies, P. Degenaar, et al., Microtextured surfaces for deep-brain stimulation electrodes: a biologically inspired design to reduce lead migration. World Neurosurg. 77, 569–576 (2012)

    Article  Google Scholar 

  61. Nat.Meth.Editorial, Method of the Year 2010. Nat. Methods 8, 1 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Degenaar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Degenaar, P. (2018). Photonic Interaction with the Nervous System. In: Mitra, S., Cumming, D. (eds) CMOS Circuits for Biological Sensing and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-67723-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67723-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67722-4

  • Online ISBN: 978-3-319-67723-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics