Skip to main content

Molecular Imaging Using Radionanomedicine

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Nanoparticles (NPs) have recently attracted great attention as biomedical imaging agents. Many types of NPs have been investigated with combinations of various molecular targeting groups. In addition, multiplex imaging has been studied with NPs, including surface-enhanced Raman scattering (SERS) NPs. Single-photon emission computed tomography (SPECT) or positron emission tomography (PET) by molecularly targeted, radiolabeled NPs provides several benefits over usual imaging probes in the aspect of sensitivity and quantitation. In addition, multimodal imaging probes that are combinations of both radionuclide-based and non-radionuclide-based imaging approaches, such as optical imaging or magnetic resonance imaging (MRI), could be applied to next medical studies. Furthermore, molecularly targeted probes which could be identified by more than three imaging modalities are possible. In conclusion, nanotechnologies promise to extend the limitations of current molecular imaging techniques, and nanomedicine may play an important role in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W. Cai, X. Chen, Nanoplatforms for targeted molecular imaging in living subjects. Small 3, 1840–1854 (2007)

    Article  Google Scholar 

  2. S.K. Sahoo, S. Parveen, J.J. Panda, The present and future of nanotechnology in human health care. Nanomedicine 3, 20–31 (2007)

    Article  Google Scholar 

  3. R. Weissleder, U. Mahmood, Molecular imaging. Radiology 219, 316–333 (2001)

    Article  Google Scholar 

  4. N. Beckmann, R. Kneuer, H.U. Gremlich, H. Karmouty-Quintana, F.X. Ble, M. Muller, In vivo mouse imaging and spectroscopy in drug discovery. NMR Biomed. 20, 154–185 (2007)

    Article  Google Scholar 

  5. T.F. Massoud, S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003)

    Article  Google Scholar 

  6. D.E. Lee, H. Koo, I.C. Sun, J.H. Ryu, K. Kim, I.C. Kwon, Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41, 2656–2672 (2012)

    Article  Google Scholar 

  7. M.A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264 (2001)

    Article  Google Scholar 

  8. L. Dykman, N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41, 2256–2282 (2012)

    Article  Google Scholar 

  9. N. Khlebtsov, V. Bogatyrev, L. Dykman, B. Khlebtsov, S. Staroverov, A. Shirokov et al., Analytical and theranostic applications of gold nanoparticles and multifunctional nanocomposites. Theranostics 3, 167–180 (2013)

    Article  Google Scholar 

  10. N. Khlebtsov, L. Dykman, Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 40, 1647–1671 (2011)

    Article  Google Scholar 

  11. M. Cheki, M. Moslehi, M. Assadi, Marvelous applications of quantum dots. Eur. Rev. Med. Pharmacol. Sci. 17, 1141–1148 (2013)

    Google Scholar 

  12. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)

    Article  ADS  Google Scholar 

  13. R. Hardman, A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172 (2006)

    Article  Google Scholar 

  14. X. Gao, Y. Cui, R.M. Levenson, L.W. Chung, S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004)

    Article  Google Scholar 

  15. Y. Ling, K. Wei, Y. Luo, X. Gao, S. Zhong, Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials 32, 7139–7150 (2011)

    Article  Google Scholar 

  16. E. Amstad, M. Textor, E. Reimhult, Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale 3, 2819–2843 (2011)

    Article  ADS  Google Scholar 

  17. N. Lewinski, V. Colvin, R. Drezek, Cytotoxicity of nanoparticles. Small 4, 26–49 (2008)

    Article  Google Scholar 

  18. C.W. Jung, P. Jacobs, Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn. Reson. Imaging 13, 661–674 (1995)

    Article  Google Scholar 

  19. M. Longmire, P.L. Choyke, H. Kobayashi, Dendrimer-based contrast agents for molecular imaging. Curr. Top. Med. Chem. 8, 1180–1186 (2008)

    Article  Google Scholar 

  20. H. Xu, C.A. Regino, Y. Koyama, Y. Hama, A.J. Gunn, M. Bernardo et al., Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging. Bioconjug. Chem. 18, 1474–1482 (2007)

    Article  Google Scholar 

  21. T.A. Elbayoumi, V.P. Torchilin, Current trends in liposome research. Methods Mol. Biol. 605, 1–27 (2010)

    Article  Google Scholar 

  22. A. Puri, K. Loomis, B. Smith, J.H. Lee, A. Yavlovich, E. Heldman et al., Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst. 26, 523–580 (2009)

    Article  Google Scholar 

  23. J.H. Senior, Fate and behavior of liposomes in vivo: a review of controlling factors. Crit. Rev. Ther. Drug Carrier Syst. 3, 123–193 (1987)

    Google Scholar 

  24. P. Laverman, M.G. Carstens, O.C. Boerman, E.T. Dams, W.J. Oyen, N. van Rooijen et al., Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J. Pharmacol. Exp. Ther. 298, 607–612 (2001)

    Google Scholar 

  25. P. Ehrlich, Croonian lecture: on immunity with special reference to cell life. Proc. R. Soc. Lond. 66, 424–448 (1899)

    Article  Google Scholar 

  26. D. Colcher, G. Pavlinkova, G. Beresford, B.J. Booth, A. Choudhury, S.K. Batra, Pharmacokinetics and biodistribution of genetically-engineered antibodies. Q. J. Nucl. Med. 42, 225–241 (1998)

    Google Scholar 

  27. A.M. Scott, F.T. Lee, R. Jones, W. Hopkins, D. MacGregor, J.S. Cebon et al., A phase I trial of humanized monoclonal antibody A33 in patients with colorectal carcinoma: biodistribution, pharmacokinetics, and quantitative tumor uptake. Clin. Cancer Res. 11, 4810–4817 (2005)

    Article  Google Scholar 

  28. E.N. Brody, L. Gold, Aptamers as therapeutic and diagnostic agents. J. Biotechnol. 74, 5–13 (2000)

    Google Scholar 

  29. K. Ohsawa, T. Kasamatsu, J. Nagashima, K. Hanawa, M. Kuwahara, H. Ozaki et al., Arginine-modified DNA aptamers that show enantioselective recognition of the dicarboxylic acid moiety of glutamic acid. Anal. Sci. 24, 167–172 (2008)

    Article  Google Scholar 

  30. H. Tian, Combinatorial selection of RNA ligands for complex cellular targets: the RNA liagands-based proteomics. Mol. Cell. Proteomics 1, 99–103 (2002)

    Article  Google Scholar 

  31. D.A. Daniels, H. Chen, B.J. Hicke, K.M. Swiderek, L. Gold, A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. U.S.A. 100, 15416–15421 (2003)

    Article  ADS  Google Scholar 

  32. D. Shangguan, Y. Li, Z. Tang, Z.C. Cao, H.W. Chen, P. Mallikaratchy et al., Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. U.S.A. 103, 11838–11843 (2006)

    Article  ADS  Google Scholar 

  33. A.D. Keefe, R.G. Schaub, Aptamers as candidate therapeutics for cardiovascular indications. Curr. Opin. Pharmacol. 8, 147–152 (2008)

    Article  Google Scholar 

  34. T.C. Chu, K.Y. Twu, A.D. Ellington, M. Levy, Aptamer mediated siRNA delivery. Nucleic Acids Res. 34, e73 (2006)

    Article  Google Scholar 

  35. P.E. Kish, Y. Tsume, P. Kijek, T.M. Lanigan, J.M. Hilfinger, B.J. Roessler, Bile acid-oligopeptide conjugates interact with DNA and facilitate transfection. Mol. Pharm. 4, 95–103 (2007)

    Article  Google Scholar 

  36. R.M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Tang, G. Storm et al., Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32, e149 (2004)

    Article  Google Scholar 

  37. Y.L. Xie, W. Lu, X.G. Jiang, Improvement of cationic albumin conjugated pegylated nanoparticles holding NC-1900, a vasopressin fragment analog, in memory deficits induced by scopolamine in mice. Behav. Brain Res. 173, 76–84 (2006)

    Article  Google Scholar 

  38. H. Hirabayashi, J. Fujisaki, Bone-specific drug delivery systems: approaches via chemical modification of bone-seeking agents. Clin. Pharmacokinet. 42, 1319–1330 (2003)

    Article  Google Scholar 

  39. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)

    Article  Google Scholar 

  40. M. Vendrell, K.K. Maiti, K. Dhaliwal, Y.T. Chang, Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol. 31, 249–257 (2013)

    Article  Google Scholar 

  41. J.W. Chan, D.S. Taylor, T. Zwerdling, S.M. Lane, K. Ihara, T. Huser, Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophys. J. 90, 648–656 (2006)

    Article  Google Scholar 

  42. J.W. Chan, D.S. Taylor, S.M. Lane, T. Zwerdling, J. Tuscano, T. Huser, Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy. Anal. Chem. 80, 2180–2187 (2008)

    Article  Google Scholar 

  43. K. Das, N. Stone, C. Kendall, C. Fowler, J. Christie-Brown, Raman spectroscopy of parathyroid tissue pathology. Lasers Med. Sci. 21, 192–197 (2006)

    Article  Google Scholar 

  44. B.W. de Jong, T.C. Schut, K. Maquelin, T. van der Kwast, C.H. Bangma, D.J. Kok et al., Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy. Anal. Chem. 78, 7761–7769 (2006)

    Article  Google Scholar 

  45. M.V. Chowdary, K.K. Kumar, J. Kurien, S. Mathew, C.M. Krishna, Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy. Biopolymers 83, 556–569 (2006)

    Article  Google Scholar 

  46. C.A. Lieber, S.K. Majumder, D.L. Ellis, D.D. Billheimer, A. Mahadevan-Jansen, In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy. Lasers Surg. Med. 40, 461–467 (2008)

    Article  Google Scholar 

  47. A. Nijssen, K. Maquelin, L.F. Santos, P.J. Caspers, T.C. Bakker Schut, J.C. den Hollander et al., Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy. J. Biomed. Opt. 12, 034004 (2007)

    Article  ADS  Google Scholar 

  48. J.T. Motz, S.J. Gandhi, O.R. Scepanovic, A.S. Haka, J.R. Kramer, R.R. Dasari et al., Real-time Raman system for in vivo disease diagnosis. J. Biomed. Opt. 10, 031113 (2005)

    Article  ADS  Google Scholar 

  49. J.T. Motz, M. Fitzmaurice, A. Miller, S.J. Gandhi, A.S. Haka, L.H. Galindo et al., In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque. J. Biomed. Opt. 11, 021003 (2006)

    Article  ADS  Google Scholar 

  50. A.S. Haka, Z. Volynskaya, J.A. Gardecki, J. Nazemi, J. Lyons, D. Hicks et al., In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy. Cancer Res. 66, 3317–3322 (2006)

    Article  Google Scholar 

  51. K. Peremans, B. Cornelissen, B. Van Den Bossche, K. Audenaert, C. Van de Wiele, A review of small animal imaging planar and pinhole spect Gamma camera imaging. Vet. Radiol. Ultrasound. 46, 162–170 (2005)

    Article  Google Scholar 

  52. S. Xue, C. Zhang, Y. Yang, L. Zhang, D. Cheng, J. Zhang et al., 99mTc-labeled iron oxide nanoparticles for dual-contrast (T1/T2) magnetic resonance and dual-modality imaging of tumor angiogenesis. J. Biomed. Nanotechnol. 11, 1027–1037 (2015)

    Article  Google Scholar 

  53. E. Locatelli, M. Naddaka, C. Uboldi, G. Loudos, E. Fragogeorgi, V. Molinari et al., Targeted delivery of silver nanoparticles and alisertib: in vitro and in vivo synergistic effect against glioblastoma. Nanomedicine (Lond). 9, 839–849 (2014)

    Article  Google Scholar 

  54. E. Morales-Avila, G. Ferro-Flores, B.E. Ocampo-Garcia, L.M. De Leon-Rodriguez, C.L. Santos-Cuevas, R. Garcia-Becerra et al., Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor alpha(v)beta(3) expression. Bioconjug. Chem. 22, 913–922 (2011)

    Article  Google Scholar 

  55. M. Tsuchimochi, K. Hayama, M. Toyama, I. Sasagawa, N. Tsubokawa, Dual-modality imaging with 99mTc and fluorescent indocyanine green using surface-modified silica nanoparticles for biopsy of the sentinel lymph node: an animal study. EJNMMI Res. 3, 33 (2013)

    Article  Google Scholar 

  56. Y. Seo, C.M. Aparici, C.P. Chen, C. Hsu, N. Kased, C. Schreck et al., Mapping of lymphatic drainage from the prostate using filtered 99mTc-sulfur nanocolloid and SPECT/CT. J. Nucl. Med. 52, 1068–1072 (2011)

    Article  Google Scholar 

  57. M.S. Bradbury, M. Pauliah, P. Zanzonico, U. Wiesner, S. Patel, Intraoperative mapping of sentinel lymph node metastases using a clinically translated ultrasmall silica nanoparticle. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 535–553 (2016)

    Article  Google Scholar 

  58. T.M. Shaffer, M.A. Wall, S. Harmsen, V.A. Longo, C.M. Drain, M.F. Kircher et al., Silica nanoparticles as substrates for chelator-free labeling of oxophilic radioisotopes. Nano Lett. 15, 864–868 (2015)

    Article  ADS  Google Scholar 

  59. H. Zhu, J. Zhao, X. Lin, Y. Hong, C. Li, Z. Yang, Design, synthesis and evaluation of dual-modality glyco-nanoparticles for tumor imaging. Molecules 18, 6425–6438 (2013)

    Article  Google Scholar 

  60. D. Hoffman, M. Sun, L. Yang, P.R. McDonagh, F. Corwin, G. Sundaresan et al., Intrinsically radiolabeled [59Fe]-SPIONs for dual MRI/radionuclide detection. Am. J. Nucl. Med. Mol. Imaging 4, 548–560 (2014)

    Google Scholar 

  61. A.F. Chatziioannou, Instrumentation for molecular imaging in preclinical research: micro-PET and micro-SPECT. Proc. Am. Thorac. Soc. 2(533–6), 10–11 (2005)

    Google Scholar 

  62. F. Beekman, F. van der Have, The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur. J. Nucl. Med. Mol. Imaging 34, 151–161 (2007)

    Article  Google Scholar 

  63. D.S. Berman, H. Kiat, K. Van Train, J.D. Friedman, F.P. Wang, G. Germano, Dual-isotope myocardial perfusion SPECT with rest thallium-201 and stress Tc-99m sestamibi. Cardiol. Clin. 12, 261–270 (1994)

    Google Scholar 

  64. E.P. Visser, J.A. Disselhorst, M. Brom, P. Laverman, M. Gotthardt, W.J. Oyen et al., Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J. Nucl. Med. 50, 139–147 (2009)

    Article  Google Scholar 

  65. M.E. Phelps, E.J. Hoffman, N.A. Mullani, M.M. Ter-Pogossian, Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nucl. Med. 16, 210–224 (1975)

    Google Scholar 

  66. S.R. Cherry, Y. Shao, R. Silverman, K. Meadors, S. Siegel, A. Chatziioannou et al., MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans. Nucl. Sci. 44, 1161–1166 (1997)

    Article  ADS  Google Scholar 

  67. M.E. Phelps, PET: the merging of biology and imaging into molecular imaging. J. Nucl. Med. 41, 661–681 (2000)

    Google Scholar 

  68. Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun et al., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2, 47–52 (2007)

    Article  ADS  Google Scholar 

  69. V. Schulz, I. Torres-Espallardo, S. Renisch, Z. Hu, N. Ojha, P. Bornert et al., Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur. J. Nucl. Med. Mol. Imaging 38, 138–152 (2011)

    Article  Google Scholar 

  70. M. Wiesmuller, H.H. Quick, B. Navalpakkam, M.M. Lell, M. Uder, P. Ritt et al., Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur. J. Nucl. Med. Mol. Imaging 40, 12–21 (2013)

    Article  Google Scholar 

  71. R. Sharma, Y. Xu, S.W. Kim, M.J. Schueller, D. Alexoff, S.D. Smith et al., Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging. Nanoscale 5, 7476–7483 (2013)

    Article  ADS  Google Scholar 

  72. C. Perez-Campana, V. Gomez-Vallejo, M. Puigivila, A. Martin, T. Calvo-Fernandez, S.E. Moya et al., Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles. ACS Nano 7, 3498–3505 (2013)

    Article  Google Scholar 

  73. R. Madru, T.A. Tran, J. Axelsson, C. Ingvar, A. Bibic, F. Stahlberg et al., 68Ga-labeled superparamagnetic iron oxide nanoparticles (SPIONs) for multi-modality PET/MR/Cherenkov luminescence imaging of sentinel lymph nodes. Am. J. Nucl. Med. Mol. Imaging. 4, 60–69 (2013)

    Google Scholar 

  74. T.W. Liu, T.D. MacDonald, J. Shi, B.C. Wilson, G. Zheng, Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew. Chem. Int. Ed. Engl. 51, 13128–13131 (2012)

    Article  Google Scholar 

  75. F. Chen, S. Goel, H.F. Valdovinos, H. Luo, R. Hernandez, T.E. Barnhart et al., In vivo integrity and biological fate of chelator-free zirconium-89-labeled mesoporous silica nanoparticles. ACS Nano 9, 7950–7959 (2015)

    Article  Google Scholar 

  76. W. Cai, K. Chen, Z.B. Li, S.S. Gambhir, X. Chen, Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J. Nucl. Med. 48, 1862–1870 (2007)

    Article  Google Scholar 

  77. W. Cai, D.W. Shin, K. Chen, O. Gheysens, Q. Cao, S.X. Wang et al., Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6, 669–676 (2006)

    Article  ADS  Google Scholar 

  78. C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. Munoz Javier, H.E. Gaub et al., Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5, 331–338 (2005)

    Article  ADS  Google Scholar 

  79. S.W. Zielhuis, J.H. Seppenwoolde, V.A. Mateus, C.J. Bakker, G.C. Krijger, G. Storm et al., Lanthanide-loaded liposomes for multimodality imaging and therapy. Cancer Biother. Radiopharm. 21, 520–527 (2006)

    Article  Google Scholar 

  80. Z. Medarova, W. Pham, C. Farrar, V. Petkova, A. Moore, In vivo imaging of siRNA delivery and silencing in tumors. Nat. Med. 13, 372–377 (2007)

    Article  Google Scholar 

  81. C.C. Mello, D. Conte Jr., Revealing the world of RNA interference. Nature 431, 338–342 (2004)

    Article  ADS  Google Scholar 

  82. A. Fire, S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver, C.C. Mello, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998)

    Article  ADS  Google Scholar 

  83. M. Mae, U. Langel, Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr. Opin. Pharmacol. 6, 509–514 (2006)

    Article  Google Scholar 

  84. H. Hong, Y. Zhang, J. Sun, W. Cai, Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today 4, 399–413 (2009)

    Article  Google Scholar 

  85. Y.I. Kim, S. Jeong, K.O. Jung, M.G. Song, C.H. Lee, S.J. Chung et al., Simultaneous detection of EGFR and VEGF in colorectal cancer using Fluorescence-Raman Endoscopy. Sci. Rep. 7, 1035 (2017)

    Article  ADS  Google Scholar 

  86. J.L. Houghton, B.M. Zeglis, D. Abdel-Atti, R. Aggeler, R. Sawada, B.J. Agnew et al., Site-specifically labeled CA19.9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/NIRF imaging of pancreatic cancer. Proc. Natl. Acad. Sci. U.S.A. 112, 15850–15855 (2015)

    Article  ADS  Google Scholar 

  87. Y. Xing, J. Zhao, P.S. Conti, K. Chen, Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 4, 290–306 (2014)

    Article  Google Scholar 

  88. D.S. Lee, H.J. Im, Y.S. Lee, Radionanomedicine: widened perspectives of molecular theragnosis. Nanomedicine 11, 795–810 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-il Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, Yi., Lee, D.S. (2018). Molecular Imaging Using Radionanomedicine. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_22

Download citation

Publish with us

Policies and ethics