Skip to main content

Immune Response to PEGylated Nanomedicines: Impact of IgM Response

  • Chapter
  • First Online:
Radionanomedicine

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 822 Accesses

Abstract

PEGylation is one of the most commonly applied approaches to realize the stealthiness of the conjugated nanomaterials in the systemic circulation. Nevertheless, despite the fact that Polyethylene glycol (PEG) is biologically inert, a mounting body of evidences has confirmed the presence of anti-PEG antibodies (anti-PEG Abs) that trigger an immunogenic response against PEG conjugates in a manner wherein PEG acts as a hapten. Since anti-PEG Abs are correlated with the accelerated clearance of subsequently administered doses of PEGylated nanocarriers, via a phenomenon known as “accelerated blood clearance” phenomenon, the existence of anti-PEG Abs has been claimed for the reduced efficiency of PEGylated therapeutics and/or development of severe adverse effects. Accordingly, careful monitoring for anti-PEG Abs is necessary prior to and throughout a course of treatment with PEGylated therapeutics. Furthermore, strategies to avert the challenges of PEG-specific immunity are needed with a deeper understanding of the mechanism of anti-PEG immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.D. Lasic, F.J. Martin, A. Gabizon, S.K. Huang, D. Papahadjopoulos, Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim. Biophys. Acta 1070(1), 187–192 (1991)

    Article  Google Scholar 

  2. T.M. Allen, C. Hansen, Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim. Biophys. Acta 1068(2), 133–141 (1991)

    Article  Google Scholar 

  3. V.P. Torchilin, Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4(2), 145–160 (2005)

    Article  Google Scholar 

  4. J.M. Harris, R.B. Chess, Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2(3), 214–221 (2003)

    Article  Google Scholar 

  5. B. Gorovits, A. Clements-Egan, M. Birchler, M. Liang, H. Myler, K. Peng et al., Pre-existing antibody: biotherapeutic modality-based review. AAPS J. 18(2), 311–320 (2016)

    Article  Google Scholar 

  6. H. Schellekens, W.E. Hennink, V. Brinks, The immunogenicity of polyethylene glycol: facts and fiction. Pharm. Res. 30(7), 1729–1734 (2013)

    Article  Google Scholar 

  7. R.P. Garay, R. El-Gewely, J.K. Armstrong, G. Garratty, P. Richette, Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin. Drug Deliv. 9(11), 1319–1323 (2012)

    Article  Google Scholar 

  8. C. Li, J. Cao, Y. Wang, X. Zhao, C. Deng, N. Wei et al., Accelerated blood clearance of pegylated liposomal topotecan: influence of polyethylene glycol grafting density and animal species. J. Pharm. Sci. 101(10), 3864–3876 (2012)

    Article  Google Scholar 

  9. T. Suzuki, M. Ichihara, K. Hyodo, E. Yamamoto, T. Ishida, H. Kiwada et al., Influence of dose and animal species on accelerated blood clearance of PEGylated liposomal doxorubicin. Int. J. Pharm. 476(1–2), 205–212 (2014)

    Article  Google Scholar 

  10. E.T. Dams, P. Laverman, W.J. Oyen, G. Storm, G.L. Scherphof, J.W. van Der Meer et al., Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J. Pharmacol. Exp. Ther. 292(3), 1071–1079 (2000)

    Google Scholar 

  11. P. Laverman, M.G. Carstens, O.C. Boerman, E.T. Dams, W.J. Oyen, N. van Rooijen et al., Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J. Pharmacol. Exp. Ther. 298(2), 607–612 (2001)

    Google Scholar 

  12. R. Saadati, S. Dadashzadeh, Z. Abbasian, H. Soleimanjahi, Accelerated blood clearance of PEGylated PLGA nanoparticles following repeated injections: effects of polymer dose, PEG coating, and encapsulated anticancer drug. Pharm. Res. 30(4), 985–995 (2013)

    Article  Google Scholar 

  13. H.J. Im, C.G. England, L. Feng, S.A. Graves, R. Hernandez, R.J. Nickles et al., Accelerated blood clearance phenomenon reduces the passive targeting of PEGylated nanoparticles in peripheral arterial disease. ACS Appl. Mater. Interfaces. 8(28), 17955–17963 (2016)

    Article  Google Scholar 

  14. T. Ishida, R. Maeda, M. Ichihara, Y. Mukai, Y. Motoki, Y. Manabe et al., The accelerated clearance on repeated injection of pegylated liposomes in rats: laboratory and histopathological study. Cell. Mol. Biol. Lett. 7(2), 286 (2002)

    Google Scholar 

  15. A.S. Abu Lila, H. Kiwada, T. Ishida, The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J. Control Release 172(1), 38–47 (2013)

    Article  Google Scholar 

  16. T.J. Povsic, M.G. Lawrence, A.M. Lincoff, R. Mehran, C.P. Rusconi, S.L. Zelenkofske et al., Pre-existing anti-PEG antibodies are associated with severe immediate allergic reactions to pegnivacogin, a PEGylated aptamer. J. Allergy Clin. Immunol. 138(6), 1712–1715 (2016)

    Article  Google Scholar 

  17. J.K. Armstrong, G. Hempel, S. Koling, L.S. Chan, T. Fisher, H.J. Meiselman et al., Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 110(1), 103–111 (2007)

    Article  Google Scholar 

  18. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/

  19. I. Wala, S.J. Swanson, S. Jing, A non-radioactive method for detecting neutralizing antibodies against therapeutic proteins in serum. J. Pharm. Biomed. Anal. 45(4), 583–589 (2007)

    Article  Google Scholar 

  20. P.S. Sorensen, Neutralizing antibodies against interferon-Beta. Ther. Adv. Neurol. Disord. 1(2), 125–141 (2008)

    Article  MathSciNet  Google Scholar 

  21. T. Ishida, H. Kiwada, Anti-polyethyleneglycol antibody response to PEGylated substances. Biol. Pharm. Bull. 36(6), 889–891 (2013)

    Article  Google Scholar 

  22. E.A. Bell, G.C. Wall, Pediatric constipation therapy using guidelines and polyethylene glycol 3350. Ann. Pharmacother. 38(4), 686–693 (2004)

    Article  Google Scholar 

  23. R. Webster, E. Didier, P. Harris, N. Siegel, J. Stadler, L. Tilbury et al., PEGylated proteins: evaluation of their safety in the absence of definitive metabolism studies. Drug Metab. Dispos. 35(1), 9–16 (2007)

    Article  Google Scholar 

  24. Y. Mima, Y. Hashimoto, T. Shimizu, H. Kiwada, T. Ishida, Anti-PEG IgM is a major contributor to the accelerated blood clearance of polyethylene glycol-conjugated protein. Mol. Pharm. 12(7), 2429–2435 (2015)

    Article  Google Scholar 

  25. Q. Yang, S.K. Lai, Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(5), 655–677 (2015)

    Article  Google Scholar 

  26. A.W. Richter, E. Akerblom, Antibodies against polyethylene glycol produced in animals by immunization with monomethoxy polyethylene glycol modified proteins. Int. Arch. Allergy Appl. Immunol. 70(2), 124–131 (1983)

    Article  Google Scholar 

  27. T. Shimizu, M. Ichihara, Y. Yoshioka, T. Ishida, S. Nakagawa, H. Kiwada, Intravenous administration of polyethylene glycol-coated (PEGylated) proteins and PEGylated adenovirus elicits an anti-PEG immunoglobulin M response. Biol. Pharm. Bull. 35(8), 1336–1342 (2012)

    Article  Google Scholar 

  28. A.W. Richter, E. Akerblom, Polyethylene glycol reactive antibodies in man: titer distribution in allergic patients treated with monomethoxy polyethylene glycol modified allergens or placebo, and in healthy blood donors. Int. Arch. Allergy Appl. Immunol. 74(1), 36–39 (1984)

    Article  Google Scholar 

  29. P. Caliceti, O. Schiavon, F.M. Veronese, Immunological properties of uricase conjugated to neutral soluble polymers. Bioconjug. Chem. 12(4), 515–522 (2001)

    Article  Google Scholar 

  30. P.E. Lipsky, L.H. Calabrese, A. Kavanaugh, J.S. Sundy, D. Wright, M. Wolfson et al., Pegloticase immunogenicity: the relationship between efficacy and antibody development in patients treated for refractory chronic gout. Arthritis Res. Ther. 16(2), R60 (2014)

    Article  Google Scholar 

  31. M.S. Hershfield, N.J. Ganson, S.J. Kelly, E.L. Scarlett, D.A. Jaggers, J.S. Sundy, Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients. Arthritis Res. Ther. 16(2), R63 (2014)

    Article  Google Scholar 

  32. J.T. White, S.D. Newsome, B.C. Kieseier, R.A. Bermel, Y. Cui, A. Seddighzadeh et al., Incidence, characterization, and clinical impact analysis of peginterferon beta1a immunogenicity in patients with multiple sclerosis in the ADVANCE trial. Ther. Adv. Neurol. Disord. 9(4), 239–249 (2016)

    Article  Google Scholar 

  33. A. Tocoian, P. Buchan, H. Kirby, J. Soranson, M. Zamacona, R. Walley et al., First-in-human trial of the safety, pharmacokinetics and immunogenicity of a PEGylated anti-CD40L antibody fragment (CDP7657) in healthy individuals and patients with systemic lupus erythematosus. Lupus 24(10), 1045–1056 (2015)

    Article  Google Scholar 

  34. S.K. Nune, P. Gunda, P.K. Thallapally, Y.Y. Lin, M.L. Forrest, C.J. Berkland, Nanoparticles for biomedical imaging. Expert Opin. Drug Deliv. 6(11), 1175–1194 (2009)

    Article  Google Scholar 

  35. A. Makino, S. Kimura, Solid tumor-targeting theranostic polymer nanoparticle in nuclear medicinal fields. Sci. World J. 2014, 424513 (2014)

    Article  Google Scholar 

  36. L. Yildirimer, N.T. Thanh, M. Loizidou, A.M. Seifalian, Toxicology and clinical potential of nanoparticles. Nano Today 6(6), 585–607 (2011)

    Article  Google Scholar 

  37. Y. Barenholz, Doxil(R)–the first FDA-approved nano-drug: lessons learned. J. Control Release 160(2), 117–134 (2012)

    Article  Google Scholar 

  38. T.M. Allen, P.R. Cullis, Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65(1), 36–48 (2013)

    Article  Google Scholar 

  39. J. Szebeni, Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals. Mol. Immunol. 61(2), 163–173 (2014)

    Article  Google Scholar 

  40. T. Ishida, M. Harada, X.Y. Wang, M. Ichihara, K. Irimura, H. Kiwada, Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes. J. Control Release 105(3), 305–317 (2005)

    Article  Google Scholar 

  41. S.M. Moghimi, T. Gray, A single dose of intravenously injected poloxamine-coated long-circulating particles triggers macrophage clearance of subsequent doses in rats. Clin. Sci. (Lond.) 93(4), 371–379 (1997)

    Article  Google Scholar 

  42. T. Ishida, X. Wang, T. Shimizu, K. Nawata, H. Kiwada, PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J. Control Release 122(3), 349–355 (2007)

    Article  Google Scholar 

  43. M. Ichihara, T. Shimizu, A. Imoto, Y. Hashiguchi, Y. Uehara Y, T. Ishida et al., Anti-PEG IgM Response against PEGylated liposomes in mice and rats. Pharmaceutics 3(1), 1–11 (2010)

    Article  Google Scholar 

  44. T. Ishida, K. Masuda, T. Ichikawa, M. Ichihara, K. Irimura, H. Kiwada, Accelerated clearance of a second injection of PEGylated liposomes in mice. Int. J. Pharm. 255(1–2), 167–174 (2003)

    Article  Google Scholar 

  45. T. Ishida, R. Maeda, M. Ichihara, K. Irimura, H. Kiwada, Accelerated clearance of PEGylated liposomes in rats after repeated injections. J. Control Release 88(1), 35–42 (2003)

    Article  Google Scholar 

  46. T. Ishida, M. Ichihara, X. Wang, H. Kiwada, Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes. J. Control Release 115(3), 243–250 (2006)

    Article  Google Scholar 

  47. S.C. Semple, T.O. Harasym, K.A. Clow, S.M. Ansell, S.K. Klimuk, M.J. Hope, Immunogenicity and rapid blood clearance of liposomes containing polyethylene glycol-lipid conjugates and nucleic Acid. J. Pharmacol. Exp. Ther. 312(3), 1020–1026 (2005)

    Article  Google Scholar 

  48. H. Koide, T. Asai, K. Hatanaka, S. Akai, T. Ishii, E. Kenjo et al., T cell-independent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes. Int. J. Pharm. 392(1–2), 218–223 (2010)

    Article  Google Scholar 

  49. X. Wang, T. Ishida, H. Kiwada, Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J. Control Release 119(2), 236–244 (2007)

    Article  Google Scholar 

  50. T. Ishida, K. Atobe, X. Wang, H. Kiwada, Accelerated blood clearance of PEGylated liposomes upon repeated injections: effect of doxorubicin-encapsulation and high-dose first injection. J. Control Release 115(3), 251–258 (2006)

    Article  Google Scholar 

  51. Q. Yang, Y. Ma, Y. Zhao, Z. She, L. Wang, J. Li et al., Accelerated drug release and clearance of PEGylated epirubicin liposomes following repeated injections: a new challenge for sequential low-dose chemotherapy. Int. J. Nanomed. 8, 1257–1268 (2013)

    Google Scholar 

  52. C.A. Janeway Jr., How the immune system works to protect the host from infection: a personal view. Proc. Natl. Acad. Sci. U.S.A. 98(13), 7461–7468 (2001)

    Article  ADS  Google Scholar 

  53. Y. Hashimoto, T. Shimizu, A.S. Abu Lila, T. Ishida, H. Kiwada, Relationship between the concentration of anti-polyethylene glycol (PEG) immunoglobulin M (IgM) and the intensity of the accelerated blood clearance (ABC) phenomenon against PEGylated liposomes in mice. Biol. Pharm. Bull. 38(3), 417–424 (2015)

    Article  Google Scholar 

  54. A. Cerutti, M. Cols, I. Puga, Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat. Rev. Immunol. 13(2), 118–132 (2013)

    Article  Google Scholar 

  55. T.L. Cheng, P.Y. Wu, M.F. Wu, J.W. Chern, S.R. Roffler, Accelerated clearance of polyethylene glycol-modified proteins by anti-polyethylene glycol IgM. Bioconjug. Chem. 10(3), 520–528 (1999)

    Article  Google Scholar 

  56. M.G. Saifer, L.D. Williams, M.A. Sobczyk, S.J. Michaels, M.R. Sherman, Selectivity of binding of PEGs and PEG-like oligomers to anti-PEG antibodies induced by methoxyPEG-proteins. Mol. Immunol. 57(2), 236–246 (2014)

    Article  Google Scholar 

  57. K. Shiraishi, M. Hamano, H. Ma, K. Kawano, Y. Maitani, T. Aoshi et al., Hydrophobic blocks of PEG-conjugates play a significant role in the accelerated blood clearance (ABC) phenomenon. J. Control Release 165(3), 183–190 (2013)

    Article  Google Scholar 

  58. J.J. Verhoef, J.F. Carpenter, T.J. Anchordoquy, H. Schellekens, Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics. Drug Discov. Today 19(12), 1945–1952 (2014)

    Article  Google Scholar 

  59. L.M. Kaminskas, V.M. McLeod, C.J. Porter, B.J. Boyd, Differences in colloidal structure of PEGylated nanomaterials dictate the likelihood of accelerated blood clearance. J. Pharm. Sci. 100(11), 5069–5077 (2011)

    Article  Google Scholar 

  60. N. Longo, C.O. Harding, B.K. Burton, D.K. Grange, J. Vockley, M. Wasserstein et al., Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-label, multicentre, phase 1 dose-escalation trial. Lancet 384(9937), 37–44 (2014)

    Article  Google Scholar 

  61. N.J. Ganson, T.J. Povsic, B.A. Sullenger, J.H. Alexander, S.L. Zelenkofske, J.M. Sailstad et al., Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J. Allergy Clin. Immunol. 137(5), 1610–1613 (2016)

    Article  Google Scholar 

  62. H.L. Tillmann, A,J. Thompson, K. Patel, M. Wiese, H. Tenckhoff, H.D. Nischalke et al., A polymorphism near IL28B is associated with spontaneous clearance of acute hepatitis C virus and jaundice. Gastroenterology 139(5), 1586–1592 (2010)

    Article  Google Scholar 

  63. P. Dewachter, C. Mouton-Faivre, Anaphylaxis to macrogol 4000 after a parenteral corticoid injection. Allergy 60(5), 705–706 (2005)

    Article  Google Scholar 

  64. N.J. Ganson, S.J. Kelly, E. Scarlett, J.S. Sundy, M.S. Hershfield, Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase. Arthritis Res. Ther. 8(1), R12 (2006)

    Article  Google Scholar 

  65. I.A. Ivens, W. Achanzar, A. Baumann, A. Brandli-Baiocco, J. Cavagnaro, M. Dempster et al., PEGylated biopharmaceuticals: current experience and considerations for nonclinical development. Toxicol. Pathol. 43(7), 959–983 (2015)

    Article  Google Scholar 

  66. S. Sharma, R.W. Johnson, T.A. Desai, XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. Biosens. Bioelectron. 20(2), 227–239 (2004)

    Article  Google Scholar 

  67. P. Bedocs, J. Capacchione, L. Potts, R. Chugani, Z. Weiszhar, J. Szebeni et al., Hypersensitivity reactions to intravenous lipid emulsion in swine: relevance for lipid resuscitation studies. Anesth. Analg. 119(5), 1094–1101 (2014)

    Article  Google Scholar 

  68. J. Szebeni, Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 216(2–3), 106–121 (2005)

    Article  Google Scholar 

  69. J. Szebeni, G. Storm, Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs. Biochem. Biophys. Res. Commun. 468(3), 490–497 (2015)

    Article  Google Scholar 

  70. D.S. Alberts, D.J. Garcia, Safety aspects of pegylated liposomal doxorubicin in patients with cancer. Drugs 54(Suppl 4), 30–35 (1997)

    Article  Google Scholar 

  71. A.J. Andersen, S.H. Hashemi, T.L. Andresen, A.C. Hunter, S.M. Moghimi, Complement: alive and kicking nanomedicines. J. Biomed. Nanotechnol. 5(4), 364–372 (2009)

    Article  Google Scholar 

  72. J. Szebeni, Complement activation-related pseudoallergy caused by liposomes, micellar carriers of intravenous drugs, and radiocontrast agents. Crit. Rev. Ther. Drug Carrier Syst. 18(6), 567–606 (2001)

    Google Scholar 

  73. B. Uziely, S. Jeffers, R. Isacson, K. Kutsch, D. Wei-Tsao, Z. Yehoshua et al., Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J. Clin. Oncol. 13(7), 1777–1785 (1995)

    Article  Google Scholar 

  74. O. Ringden, E. Andstrom, M. Remberger, B.M. Svahn, J. Tollemar, Allergic reactions and other rare side-effects of liposomal amphotericin. Lancet 344(8930), 1156–1157 (1994)

    Article  Google Scholar 

  75. J.P. Sculier, A. Coune, C. Brassinne, C. Laduron, G. Atassi, J.M. Ruysschaert et al., Intravenous infusion of high doses of liposomes containing NSC 251635, a water-insoluble cytostatic agent. A pilot study with pharmacokinetic data. J. Clin. Oncol. 4(5), 789–797 (1986)

    Article  Google Scholar 

  76. S.J. Levine, T.J. Walsh, A. Martinez, P.Q. Eichacker, G. Lopez-Berestein, C. Natanson, Cardiopulmonary toxicity after liposomal amphotericin B infusion. Ann. Intern. Med. 114(8), 664–666 (1991)

    Article  Google Scholar 

  77. A.H. Brouwers, D.J. De Jong, E.T. Dams, W.J. Oyen, O.C. Boerman, P. Laverman et al., Tc-99m-PEG-Liposomes for the evaluation of colitis in Crohn’s disease. J. Drug Target. 8(4), 225–233 (2000)

    Article  Google Scholar 

  78. J. Szebeni, P. Bedocs, Z. Rozsnyay, Z. Weiszhár, R. Urbanics, L. Rosivall et al., Liposome-induced complement activation and related cardiopulmonary distress in pigs: factors promoting reactogenicity of Doxil and Am Bisome. Nanomedicine 8(2), 176–184 (2012)

    Article  Google Scholar 

  79. A. Chanan-Khan, J. Szebeni, S. Savay, L. Liebes, N.M. Rafique, C.R. Alving et al., Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann. Oncol. 14(9), 1430–1437 (2003)

    Article  Google Scholar 

  80. R.B. Laing, L.J. Milne, C.L. Leen, G.P. Malcolm, A.J. Steers, Anaphylactic reactions to liposomal amphotericin. Lancet 344(8923), 682 (1994)

    Article  Google Scholar 

  81. A.S. Abu Lila, Y. Uehara, T. Ishida, H. Kiwada, Application of polyglycerol coating to plasmid DNA lipoplex for the evasion of the accelerated blood clearance phenomenon in nucleic acid delivery. J. Pharm. Sci. 103(2), 557–566 (2014)

    Article  Google Scholar 

  82. A.S. Abu Lila, K. Nawata, T. Shimizu, T. Ishida, H. Kiwada, Use of polyglycerol (PG), instead of polyethylene glycol (PEG), prevents induction of the accelerated blood clearance phenomenon against long-circulating liposomes upon repeated administration. Int. J. Pharm. 456(1), 235–242 (2013)

    Article  Google Scholar 

  83. P. Zhang, F. Sun, S. Liu, S. Jiang, Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J. Control Release 244, 184–193 (2016)

    Article  Google Scholar 

  84. Y. Mima, A.S. Abu Lila, T. Shimizu, M. Ukawa, H. Ando, Y. Kurata et al., Ganglioside inserted into PEGylated liposome attenuates anti-PEG immunity. J. Control Release 250, 20–26 (2017)

    Article  Google Scholar 

  85. T. Moro, Y. Takatori, K. Ishihara, T. Konno, Y. Takigawa, T. Matsushita et al., Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat. Mater. 3(11), 829–836 (2004)

    Article  ADS  Google Scholar 

  86. S. Jiang, Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22(9), 920–932 (2010)

    Article  Google Scholar 

  87. P. Zhang, F. Sun, C. Tsao et al., Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. Proc. Natl. Acad. Sci. U.S.A. 112(39), 12046–12051 (2015)

    Article  ADS  Google Scholar 

  88. V. Schellenberger, C.W. Wang, N.C. Geething, B.J. Spink, A. Campbell, W. To et al., A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat. Biotechnol. 27(12), 1186–1190 (2009)

    Article  Google Scholar 

  89. N.C. Geething, W. To, B.J. Spink, M.D. Scholle, C.W. Wang, Y. Yin et al., Gcg-XTEN: an improved glucagon capable of preventing hypoglycemia without increasing baseline blood glucose. PLoS ONE 5(4), e10175 (2010)

    Article  ADS  Google Scholar 

  90. J.L. Cleland, N.C. Geething, J.A. Moore, B.C. Rogers, B.J. Spink, C.W. Wang et al., A novel long-acting human growth hormone fusion protein (VRS-317): enhanced in vivo potency and half-life. J. Pharm. Sci. 101(8), 2744–2754 (2012)

    Article  Google Scholar 

  91. S.E. Alters, B. McLaughlin, B. Spink, T. Lachinyan, C.W. Wang, V. Podust et al., GLP2-2G-XTEN: a pharmaceutical protein with improved serum half-life and efficacy in a rat Crohn’s disease model. PLoS ONE 7(11), e50630 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. J. L. McDonald for his helpful advice in writing the manuscript. This study was supported, in part, by a Grant-in-Aid for Scientific Research (B) 15H04639, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Disclosures and Conflicts of Interest

The authors declare that they have no conflicts of interest. The authors have received no payment for the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiro Ishida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abu Lila, A.S., Ishida, T. (2018). Immune Response to PEGylated Nanomedicines: Impact of IgM Response. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_20

Download citation

Publish with us

Policies and ethics