Skip to main content

Exogenous Radionanomedicine: Inorganic Nanomaterials

  • Chapter
  • First Online:
Radionanomedicine

Abstract

Roles of nuclear medicine and molecular imaging in cancer diagnosis and therapy are constantly evolving. Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging allows the investigation of not only morphological but also functional characteristics of tumor tissues and possess distinct advantageous characteristics, such as high specificity and sensitivity, excellent quantifiability and virtually no tissue penetration limit. Nanoparticles, as multifunctional materials, hold the potential of being surface-engineered, conjugated to numerous targeting agents while carrying therapeutic or diagnostic agents and, thus, can provide the platforms needed for enhancing imaging and therapy efficacy and specificity; hence a large number of nanocarriers have been radiolabeled with a vast array of SPECT and PET agents for preclinical studies. In this context, radiolabeled nanoparticles hold the potential to deeply impact the science of clinical practice, from disease diagnosis to patient management. This chapter provides a comprehensive overview of the methods of synthesis, radiolabeling and further applications of the most commonly used nanoparticles in radionanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Same, A. Aghanejad, S. Akbari Nakhjavani, J. Barar, Y. Omidi, Radiolabeled theranostics: magnetic and gold nanoparticles. Bioimpacts 6, 169–181 (2016)

    Google Scholar 

  2. G. Ting, C.H. Chang, H.E. Wang, T.W. Lee, Nanotargeted radionuclides for cancer nuclear imaging and internal radiotherapy. J. Biomed. Biotechnol. (2010)

    Google Scholar 

  3. S.M. Moghimi, A.C. Hunter, J.C. Murray, Nanomedicine: current status and future prospects. FASEB J. 19, 311–330 (2005)

    Google Scholar 

  4. V. Mailander, K. Landfester, Interaction of nanoparticles with cells. Biomacromol 10, 2379–2400 (2009)

    Google Scholar 

  5. C. Fang, M. Zhang, Multifunctional magnetic nanoparticles for medical imaging applications. J. Mater. Chem. 19, 6258–6266 (2009)

    Google Scholar 

  6. A.B. de Barros, A. Tsourkas, B. Saboury, V.N. Cardoso, A. Alavi, Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res. 2, 39 (2012)

    Google Scholar 

  7. S. Parveen, R. Misra, S.K. Sahoo, Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8, 147–166 (2012)

    Google Scholar 

  8. H. Nehoff, N.N. Parayath, L. Domanovitch, S. Taurin, K. Greish, Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int. J. Nanomed. 9, 2539–2555 (2014)

    Google Scholar 

  9. S.L. Bellis, Biomaterials Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 32, 4205–4210 (2011)

    Google Scholar 

  10. A.L. de Barros, L.G. das Mota, C.A. de Ferreira, M.C. de Oliveira, A.M. de Goes, Cardoso VN. Bombesin derivative radiolabeled with technetium-99 m as agent for tumor identification. Bioorg. Med. Chem. Lett. 20, 6182–6184

    Google Scholar 

  11. A.L. Daugherty, R.J. Mrsny, Formulation and delivery issues for monoclonal antibody therapeutics. Adv. Drug Deliv. Rev. 58, 686–706 (2006)

    Google Scholar 

  12. A. Garcia-Bennett, M. Nees, B. Fadeel, In search of the holy grail: Folate-targeted nanoparticles for cancer therapy. Biochem. Pharmacol. 81, 976–984 (2011)

    Google Scholar 

  13. J.H. Lee, M.V. Yigit, D. Mazumdar, Y. Lu, Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv. Drug Deliv. Rev. 62, 592–605 (2010)

    Google Scholar 

  14. K. Knop, R. Hoogenboom, D. Fischer, U.S. Schubert, Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 49, 6288–6308 (2010)

    Google Scholar 

  15. J.V. Jokerst, T. Lobovkina, R.N. Zare, S.S. Gambhir, Nanoparticle PEGylation for imaging and therapy. Nanomedicine (London) 6, 715–728 (2011)

    Google Scholar 

  16. S. Goel, C.G. England, F. Chen, W. Cai, Positron emission tomography and nanotechnology: a dynamic duo for cancer theranostics. Adv. Drug Deliv. Rev. 113, 157–176 (2016)

    Google Scholar 

  17. D. Sarko, M. Eisenhut, U. Haberkorn, W. Mier, Bifunctional chelators in the design and application of radiopharmaceuticals for oncological diseases. Curr. Med. Chem. 19, 2667–2688 (2012)

    Google Scholar 

  18. M. Sun, D. Hoffman, G. Sundaresan, L. Yang, N. Lamichhane, J. Zweit, Synthesis and characterization of intrinsically radiolabeled quantum dots for bimodal detection. Am. J. Nucl. Med. Mol. Imaging 2, 122–135 (2012)

    Google Scholar 

  19. S. Goel, F. Chen, E.B. Ehlerding, W. Cai, Intrinsically radiolabeled nanoparticles: an emerging paradigm. Small 10, 3825–3830 (2014)

    Google Scholar 

  20. W. Cai, H. Hong, In a “nutshell”: intrinsically radio-labeled quantum dots. Am. J. Nucl. Med. Mol. Imaging 2, 136–140 (2012)

    Google Scholar 

  21. S. Goel, F. Chen, S. Luan, H.F. Valdovinos, S. Shi, S.A. Graves et al., Engineering intrinsically zirconium-89 radiolabeled self-destructing mesoporous silica nanostructures for in vivo biodistribution and tumor targeting studies. Adv. Sci. 3, 1600122 (2016)

    Google Scholar 

  22. H.Y. Yoon, S. Jeon, D.G. You, J.H. Park, I.C. Kwon, H. Koo et al., Inorganic nanoparticles for image-guided therapy. Bioconjug. Chem. 28(1), 124–134 (2017)

    Google Scholar 

  23. J. Conde, J.T. Dias, V. Grazú, M. Moros, P.V. Baptista, J.M. de la Fuente, Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front. Chem. 2, 48 (2014)

    Google Scholar 

  24. M. Longmire, P.L. Choyke, H. Kobayashi, Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (London) 3, 703–717 (2008)

    Google Scholar 

  25. T.F. Massoud, S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003)

    Google Scholar 

  26. V.I. Shubayev, T.R. Pisanic 2nd, S. Jin, Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 61, 467–477 (2009)

    Google Scholar 

  27. Y. Xing, J. Zhao, P.S. Conti, K. Chen, Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 4(3), 290–306 (2014)

    Google Scholar 

  28. P. Bouziotis, D. Psimadas, T. Tsotakos, D. Stamopoulos, C. Tsoukalas, Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents. Curr. Top. Med. Chem. 12, 2694–2702 (2012)

    Google Scholar 

  29. Y.-X.J. Wang, Superparamagnetic iron oxide based MRI contrast agents: Curr. Status Clin Appl. Quant Imaging Med. Surg. 1, 35–40 (2011)

    Google Scholar 

  30. M.G. Harisinghani, J. Barentsz, P.F. Hahn, W.M. Deserno, S. Tabatabaei, C.H. van de Kaa et al., Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003)

    Google Scholar 

  31. F.M. Kievit, M. Zhang, Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc. Chem. Res. 44, 853–862 (2011)

    Google Scholar 

  32. M.S. Judenhofer, H.F. Wehrl, D.F. Newport, C. Catana, S.B. Siegel, M. Becker et al., Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat. Med. 14, 459–465 (2008)

    Google Scholar 

  33. F. Ai, C.A. Ferreira, F. Chen, W. Cai, Engineering of radiolabeled iron oxide nanoparticles for dual-modality imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 8(4), 619–630 (2016)

    Google Scholar 

  34. M.S. Judenhofer, S.R. Cherry, Applications for preclinical PET/MRI. Semin. Nucl. Med. 43, 19–29 (2013)

    Google Scholar 

  35. H. Zaidi, A. Del Guerra, An outlook on future design of hybrid PET/MRI systems. Med. Phys. 38, 5667–5689 (2011)

    Google Scholar 

  36. R. Madru, P. Kjellman, F. Olsson, K. Wingardh, C. Ingvar, F. Stahlberg et al., 99mTc-labeled superparamagnetic iron oxide nanoparticles for multimodality SPECT/MRI of sentinel lymph nodes. J. Nucl. Med. 53, 459–463 (2012)

    Google Scholar 

  37. Y. Tang, C. Zhang, J. Wang, X. Lin, L. Zhang, Y. Yang et al., MRI/SPECT/Fluorescent tri-Modal probe for evaluating the homing and therapeutic efficacy of transplanted mesenchymal stem cells in a rat ischemic stroke model. Adv. Funct. Mater. 25, 1024–1034 (2015)

    Google Scholar 

  38. J. Chen, S. Zhu, L. Tong, J. Li, F. Chen, Y. Han et al., Superparamagnetic iron oxide nanoparticles mediated 131I-hVEGF siRNA inhibits hepatocellular carcinoma tumor growth in nude mice. BMC Cancer 14, 114 (2014)

    Google Scholar 

  39. S.I. Park, B.J. Kwon, J.H. Park, H. Jung, K.H. Yu, Synthesis and characterization of 3-[131I]iodo-L-tyrosine grafted Fe3O4@SiO2 nanocomposite for single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). J. Nanosci. Nanotechnol. 11, 1818–1821 (2011)

    Google Scholar 

  40. H. Zolata, F. Abbasi Davani, H. Afarideh, Synthesis, characterization and theranostic evaluation of Indium-111 labeled multifunctional superparamagnetic iron oxide nanoparticles. Nucl. Med. Biol. 42, 164–170 (2015)

    Google Scholar 

  41. H. Wang, R. Kumar, D. Nagesha, R.I. Duclos, S. Sridhar, S.J. Gatley, Integrity of 111In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse. Nucl. Med. Biol. 42, 65–70 (2015)

    Google Scholar 

  42. J. Cao, Y. Wang, J. Yu, J. Xia, C. Zhang, D. Yin et al., Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy. J. Magn. Mater. 277, 165–174 (2004)

    ADS  Google Scholar 

  43. R. Thomas, I.-K. Park, Y. Jeong, Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int. J. Mol. Sci. 14, 15910–15930 (2013)

    Google Scholar 

  44. B.R. Jarrett, B. Gustafsson, D.L. Kukis, A.Y. Louie, Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug. Chem. 19, 1496–1504 (2008)

    Google Scholar 

  45. X. Yang, H. Hong, J.J. Grailer, I.J. Rowland, A. Javadi, S.A. Hurley et al., cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32, 4151–4160 (2011)

    Google Scholar 

  46. R.T.M. de Rosales, R. Tavaré, R.L. Paul, M. Jauregui-Osoro, A. Protti, A. Glaria et al., Synthesis of 64Cu(II)–Bis(dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles: In vivo evaluation as dual-modality PET–MRI agent. Angew. Chem. Int. Ed. Engl. 50, 5509–5513 (2011)

    Google Scholar 

  47. S. Kim, M.K. Chae, M.S. Yim, I.H. Jeong, J. Cho, C. Lee et al., Hybrid PET/MR imaging of tumors using an oleanolic acid-conjugated nanoparticle. Biomaterials 34, 8114–8121 (2013)

    Google Scholar 

  48. N.K. Devaraj, E.J. Keliher, G.M. Thurber, M. Nahrendorf, R. Weissleder, 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug. Chem. 20, 397–401 (2009)

    Google Scholar 

  49. E. Boros, A.M. Bowen, L. Josephson, N. Vasdev, J.P. Holland, Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles. Chem Sci. 6, 225–236 (2015)

    Google Scholar 

  50. R. Chakravarty, H.F. Valdovinos, F. Chen, C.M. Lewis, P.A. Ellison, H. Luo et al., Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in-vivo dual-modality PET/MR zimaging. Adv. Mater. 26, 5119–5123 (2014)

    Google Scholar 

  51. X. Cui, S. Belo, D. Kruger, Y. Yan, R.T.M. de Rosales, M. Jauregui-Osoro et al., Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging. Biomaterials 35, 5840–5846 (2014)

    Google Scholar 

  52. F. Chen, P.A. Ellison, C.M. Lewis, H. Hong, Y. Zhang, S. Shi et al., Chelator-free synthesis of a dual-modality PET/MRI agent. Angew. Chem. Int. Ed. Engl. 52, 13319–13323 (2013)

    Google Scholar 

  53. R.A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, W.J. Parak, Biological applications of gold nanoparticles. Chem. Soc. Rev. 37, 1896–1908 (2008)

    Google Scholar 

  54. W. Cai, T. Gao, H. Hong, J. Sun, Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl. 1, 17–32 (2008)

    Google Scholar 

  55. J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951)

    Google Scholar 

  56. N. Khlebtsov, L. Dykman, Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 40, 1647–1671 (2011)

    Google Scholar 

  57. D. Goia, E. Matijević, Tailoring the particle size of monodispersed colloidal gold. Colloids Surf. Physicochem. Eng. Asp. 146, 139–152 (1999)

    Google Scholar 

  58. R. Herizchi, E. Abbasi, M. Milani, A. Akbarzadeh, Current methods for synthesis of gold nanoparticles. Artif. Cells Nanomed. Biotechnol. 44, 596–602 (2016)

    Google Scholar 

  59. C.J. Murphy, A.M. Gole, J.W. Stone, P.N. Sisco, A.M. Alkilany, E.C. Goldsmith et al., Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721–1730 (2008)

    Google Scholar 

  60. S. Mallidi, T. Larson, J. Aaron, K. Sokolov, S. Emelianov, Molecular specific optoacoustic imaging with plasmonic nanoparticles. Opt. Express 15, 6583–6588 (2007)

    ADS  Google Scholar 

  61. J.K. Young, E.R. Figueroa, R.A. Drezek, Tunable nanostructures as photothermal theranostic agents. Ann. Biomed. Eng. 40, 438–459 (2012)

    Google Scholar 

  62. X. Huang, M.A. El-Sayed, Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1, 13–28 (2010)

    Google Scholar 

  63. X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217 (2007)

    Google Scholar 

  64. N. Zhao, Y. Pan, Z. Cheng, H. Liu, Gold nanoparticles for cancer theranostics: a brief update. J. Innov. Opt. Health Sci. 9, 1–10 (2016)

    Google Scholar 

  65. M. Das, K.H. Shim, S.S.A. An, D.K. Yi, Review on gold nanoparticles and their applications. Toxicol. Environ. Health Sci. 3, 193–205 (2011)

    Google Scholar 

  66. B.E. Ocampo-García, F.M. de Ramírez, G. Ferro-Flores, L.M. De León-Rodríguez, C.L. Santos-Cuevas, E. Morales-Avila et al., 99mTc-labeled gold nanoparticles capped with HYNIC-peptide/mannose for sentinel lymph node detection. Nucl. Med. Biol. 38, 1–11 (2011)

    Google Scholar 

  67. Y. Xing, J. Zhao, X. Shi, P.S. Conti, K. Chen, Recent development of radiolabeled nanoparticles for PET imaging. Austin J. Nanomed. Nanotechnol. 2, 1016 (2014)

    Google Scholar 

  68. H. Xie, Z.J. Wang, A. Bao, B. Goins, W.T. Phillips, In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts. Int. J. Pharm. 395, 324–330 (2010)

    Google Scholar 

  69. F. Chen, S. Goel, R. Hernandez, S.A. Graves, S. Shi, R.J. Nickles et al., Dynamic positron emission tomography imaging of renal clearable gold nanoparticles. Small 12, 2775–2782 (2016)

    Google Scholar 

  70. C. Zhou, G. Hao, P. Thomas, J. Liu, M. Yu, S. Sun et al., Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew. Chem. Int. Ed. Engl. 51, 10118–10122 (2012)

    Google Scholar 

  71. L. Karmani, D. Labar, V. Valembois, V. Bouchat, P.G. Nagaswaran, A. Bol et al., Antibody-functionalized nanoparticles for imaging cancer: influence of conjugation to gold nanoparticles on the biodistribution of 89Zr-labeled cetuximab in mice. Contrast Media Mol. Imaging 8, 402–408 (2013)

    Google Scholar 

  72. T. Aweda, D. Sultan, Y. Liu, Radio-labeled nanoparticles for biomedical imaging, in Nanotechnology for Biomedical Imaging and Diagnostics, ed. by Y. Mikhail (Wiley, New York, 2014), pp. 193–221

    Google Scholar 

  73. Y. Zhao, D. Sultan, L. Detering, S. Cho, G. Sun, R. Pierce et al., Copper-64-alloyed gold nanoparticles for cancer imaging: Improved radiolabel stability and diagnostic accuracy. Angew. Chem. Int. Ed. Engl. 53, 156–159 (2014)

    Google Scholar 

  74. J. Lipka, M. Semmler-Behnke, R.A. Sperling, A. Wenk, S. Takenaka, C. Schleh et al., Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 31, 6574–6581 (2010)

    Google Scholar 

  75. L. Sun, D. Liu, Z. Wang, Functional gold nanoparticle − peptide Complexes as cell-targeting agents. Langmuir 24, 10293–10297 (2008)

    Google Scholar 

  76. D.J. Javier, N. Nitin, M. Levy, A. Ellington, R. Richards-Kortum, Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjug. Chem. 19, 1309–1312 (2008)

    Google Scholar 

  77. D.A. Giljohann, D.S. Seferos, A.E. Prigodich, P.C. Patel, C.A. Mirkin, Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc. 131, 2072–2073 (2009)

    Google Scholar 

  78. R. Marega, L. Karmani, L. Flamant, P.G. Nageswaran, V. Valembois, B. Masereel et al., Antibody-functionalized polymer-coated gold nanoparticles targeting cancer cells: an in vitro and in vivo study. J. Mater. Chem. 22, 21305–21312 (2012)

    Google Scholar 

  79. P.M. Tiwari, K. Vig, V. Dennis, S.R. Singh, Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1, 31–63

    Google Scholar 

  80. E. Sadauskas, G. Danscher, M. Stoltenberg, U. Vogel, A. Larsen, H. Wallin, Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine 5, 162–169 (2009)

    Google Scholar 

  81. W.-S. Cho, M. Cho, J. Jeong, M. Choi, H.-Y. Cho, B.S. Han et al., Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 236, 16–24 (2009)

    Google Scholar 

  82. J.F. Dorsey, L. Sun, D.Y. Joh, A. Witztum, G.D. Kao, M. Alonso-Basanta et al., Gold nanoparticles in radiation research: potential applications for imaging and radiosensitization. Transl. Cancer Res. 2, 280–291 (2013)

    Google Scholar 

  83. X. Gao, L. Yang, J.A. Petros, F.F. Marshall, J.W. Simons, S. Nie, In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16, 63–72 (2005)

    Google Scholar 

  84. W.C.W. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han, S. Nie, Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40–46 (2002)

    Google Scholar 

  85. Y. Ghasemi, P. Peymani, S. Afifi, Quantum dot: magic nanoparticle for imaging, detection and targeting. Acta Biomed. 80, 156–165 (2009)

    Google Scholar 

  86. M.J. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)

    ADS  Google Scholar 

  87. K.-H. Lee, Quantum dots: a quantum jump for molecular imaging? J. Nucl. Med. 48, 1408–1410 (2007)

    Google Scholar 

  88. L.A. Bentolila, X. Michalet, F.F. Pinaud, J.M. Tsay, S. Doose, J.J. Li et al., Quantum dots for molecular imaging and cancer medicine. Discov. Med. 5, 213–218 (2005)

    Google Scholar 

  89. J.K. Jaiswal, H. Mattoussi, J.M. Mauro, S.M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51 (2003)

    Google Scholar 

  90. I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005)

    ADS  Google Scholar 

  91. X. Peng, J. Wickham, A.P. Alivisatos, Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 120, 5343–5344 (1998)

    Google Scholar 

  92. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich et al., Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000)

    ADS  Google Scholar 

  93. H.-C. Huang, S. Barua, G. Sharma, S.K. Dey, K. Rege, Inorganic nanoparticles for cancer imaging and therapy. J. Control Release 155, 344–357 (2011)

    Google Scholar 

  94. S. Jin, Y. Hu, Z. Gu, L. Liu, H.-C. Wu, Application of quantum dots in biological imaging. J. Nanomater. 2011, 1–13 (2011)

    Google Scholar 

  95. P. Pericleous, M. Gazouli, A. Lyberopoulou, S. Rizos, N. Nikiteas, E.P. Efstathopoulos, Quantum dots hold promise for early cancer imaging and detection. Int. J. Cancer 131, 519–528 (2012)

    Google Scholar 

  96. M. Fang, C.-W. Peng, D.-W. Pang, Y. Li, Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol. Med. 9, 151–163 (2012)

    Google Scholar 

  97. H. Zhang, D. Yee, C. Wang, Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine (London) 3, 83–91 (2008)

    Google Scholar 

  98. Y. Zhu, H. Hong, Z.P. Xu, Z. Li, W. Cai, Quantum dot-based nanoprobes for in vivo targeted imaging. Curr. Mol. Med. 13, 1549–1567 (2013)

    Google Scholar 

  99. R. Dey, S. Mazumder, M.K. Mitra, S. Mukherjee, G.C. Das, Review: Biofunctionalized quantum dots in biology and medicine. J. Nanomater. 2009, 1–17 (2009)

    Google Scholar 

  100. M. Felber, M. Bauwens, J.M. Mateos, S. Imstepf, F.M. Mottaghy, R. Alberto, 99mTc radiolabeling and biological evaluation of nanoparticles functionalized with a versatile coating ligand. Chemistry 21, 6090–6099 (2015)

    Google Scholar 

  101. J.J. Park, T.S. Lee, J.H. Kang, E.J. Kim, R.J. Yoo, G.S. Woo et al., SPECT/CT imaging of radiolabeled quantum dots, in Proceedings of KNS Autumn Meet (2010), pp. 793–794

    Google Scholar 

  102. S. Yang, S. Goel, W. Cai, In vivo molecular imaging with quantum dots: toward multimodality and theranostics, in Biological and Pharmaceutical Applications of Nanomaterials, ed. by P. Prokopovich (CRC Press, New York, 2015), pp. 319–346

    Google Scholar 

  103. W. Cai, K. Chen, Z.-B. Li, S.S. Gambhir, X. Chen, Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J. Nucl. Med. 48, 1862–1870 (2007)

    Google Scholar 

  104. F. Ducongé, T. Pons, C. Pestourie, L. Hérin, B. Thézé, K. Gombert et al., Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales. Bioconjug. Chem. 19, 1921–1926 (2008)

    Google Scholar 

  105. K. Chen, Z.-B. Li, H. Wang, W. Cai, X. Chen, Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur. J. Nucl. Med. Mol. Imaging 35, 2235–2244 (2008)

    Google Scholar 

  106. C. Tu, X. Ma, A. House, S.M. Kauzlarich, A.Y. Louie, PET imaging and biodistribution of silicon quantum dots in mice. ACS Med. Chem. Lett. 2, 285–288 (2011)

    Google Scholar 

  107. K. Hu, H. Wang, G. Tang, T. Huang, X. Tang, X. Liang et al., In vivo cancer dual-targeting and dual-modality imaging with functionalized quantum dots. J. Nucl. Med. 56, 1278–1284 (2015)

    Google Scholar 

  108. M.L. Schipper, G. Iyer, A.L. Koh, Z. Cheng, Y. Ebenstein, A. Aharoni et al., Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5, 126–134 (2009)

    Google Scholar 

  109. M.L. Schipper, Z. Cheng, S.-W. Lee, L.A. Bentolila, G. Iyer, J. Rao et al., microPET-based biodistribution of quantum dots in living mice. J. Nucl. Med. 48, 1511–1518 (2007)

    Google Scholar 

  110. X. Sun, X. Huang, J. Guo, W. Zhu, Y. Ding, G. Niu et al., Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging. J. Am. Chem. Soc. 136, 1706–1709 (2014)

    Google Scholar 

  111. S.J. Kennel, J.D. Woodward, A.J. Rondinone, J. Wall, Y. Huang, S. Mirzadeh, The fate of MAb-targeted Cd125mTe/ZnS nanoparticles in vivo. Nucl. Med. Biol. 35, 501–514 (2008)

    Google Scholar 

  112. S.J. Kennel, J.D. Woodward, A.J. Rondinone, J. Wall, Y. Huang, S. Mirzadeh, The fate of MAb-targeted Cd125mTe/ZnS nanoparticles in vivo. Nucl. Med. Biol. 35, 501–514 (2008)

    Google Scholar 

  113. H.S. Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B.I. Ipe et al., Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007)

    Google Scholar 

  114. M. Vallet-Regi, A. Rámila, R.P. del Real, J. Pérez-Pariente, A new property of MCM-41: drug delivery system. Chem. Mater. 13, 308–311 (2001)

    Google Scholar 

  115. D.M. Coldwell, A.S. Kennedy, C.W. Nutting, Use of yttrium-90 microspheres in the treatment of unresectable hepatic metastases from breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 69, 800–804 (2007)

    Google Scholar 

  116. R. Salem, R.J. Lewandowski, B. Atassi, S.C. Gordon, V.L. Gates, O. Barakat et al., Treatment of unresectable hepatocellular carcinoma with use of 90Y microspheres (TheraSphere): safety, tumor response, and survival. J. Vasc. Interv. Radiol. 16, 1627–1639 (2005)

    Google Scholar 

  117. R.J. Lewandowski, K.G. Thurston, J.E. Goin, C.O. Wong, V.L. Gates, Buskirk M. Van et al., 90Y microsphere (TheraSphere) treatment for unresectable colorectal cancer metastases of the liver: Response to treatment at targeted doses of 135–150 Gy as Measured by [18F] Fluorodeoxyglucose positron emission tomography and Computed Tomographic Imaging. J. Vasc. Interv. Radiol. 16, 1641–1651 (2005)

    Google Scholar 

  118. M. Benezra, O. Penate-medina, P.B. Zanzonico, D. Schaer, H. Ow, A. Burns et al., Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest. 121, 2768–2780 (2011)

    Google Scholar 

  119. E. Phillips, O. Penate-Medina, P.B. Zanzonico, R.D. Carvajal, P. Mohan, Y. Ye et al., Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6, 260ra149 (2014)

    Google Scholar 

  120. I.I. Slowing, J.L. Vivero-Escoto, C.-W. Wu, Lin VS-Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60, 1278–1288 (2008)

    Google Scholar 

  121. A. Liberman, N. Mendez, W.C. Trogler, A.C. Kummel, Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf. Sci. Rep. 69, 132–158 (2014)

    ADS  Google Scholar 

  122. K. Zarschler, L. Rocks, N. Licciardello, L. Boselli, E. Polo, K.P. Garcia et al., Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. Nanomedicine 12, 1663–1701 (2016)

    Google Scholar 

  123. E.B. Ehlerding, F. Chen, W. Cai, Biodegradable and renal clearable inorganic nanoparticles. Adv. Sci. (Weinh) 3 (2016)

    Google Scholar 

  124. J.L. Vivero-Escoto, R.C. Huxford-Phillips, W. Lin, Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem. Soc. Rev. 41, 2673–2685 (2012)

    Google Scholar 

  125. B.G. Trewyn, I.I. Slowing, S. Giri, H.-T. Chen, V.S.-Y. Lin, Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc. Chem. Res. 40, 846–853 (2007)

    Google Scholar 

  126. C. Barbé, J. Bartlett, L. Kong, K. Finnie, H.Q. Lin, M. Larkin et al., Silica particles: a novel drug-delivery system. Adv. Mater. 16, 1959–1966 (2004)

    Google Scholar 

  127. R. Kumar, I. Roy, T.Y. Ohulchanskky, L.A. Vathy, E.J. Bergey, M. Sajjad et al., In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 4, 699–708 (2010)

    Google Scholar 

  128. L. Tang, X. Yang, L.W. Dobrucki, I. Chaudhury, Q. Yin, C. Yao et al., Aptamer-functionalized, ultra-small, monodisperse silica nanoconjugates for targeted dual-modal imaging of lymph nodes with metastatictTumors. Angew. Chem. Int. Ed. Engl. 51, 12721–12726 (2012)

    Google Scholar 

  129. F. Chen, H. Hong, S. Shi, S. Goel, H.F. Valdovinos, R. Hernandez et al., Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Sci Rep. 4, 5080 (2014)

    Google Scholar 

  130. T.M. Shaffer, M.A. Wall, S. Harmsen, V.A. Longo, C.M. Drain, M.F. Kircher et al., Silica nanoparticles as substrates for chelator-free labeling of oxophilic radioisotopes. Nano Lett. 15, 864–868 (2015)

    ADS  Google Scholar 

  131. F. Chen, S. Goel, H.F. Valdovinos, H. Luo, R. Hernandez, T.E. Barnhart et al., In vivo integrity and biological fate of chelator-free zirconium-89-labeled mesoporous silica nanoparticles. ACS Nano 9, 7950–7959 (2015)

    Google Scholar 

  132. L. Tang, J. Cheng, Nonporous silica nanoparticles for nanomedicine application. Nano Today 8, 290–312 (2013)

    Google Scholar 

  133. S. Shi, F. Chen, W. Cai, Biomedical applications of functionalized hollow mesoporous silica nanoparticles: focusing on molecular imaging. Nanomedicine (London) 8, 2027–2039 (2013)

    Google Scholar 

  134. R. Alshehri, A.M. Ilyas, A. Hasan, A. Arnaout, F. Ahmed, A. Memic, Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J. Med. Chem. 59, 8149–8167 (2016)

    Google Scholar 

  135. W. Yang, P. Thordarson, J.J. Gooding, S.P. Ringer, F. Braet, Carbon nanotubes for biological and biomedical applications. Nanotechnology 18, 412001 (2007)

    Google Scholar 

  136. H. Gong, R. Peng, Z. Liu, Carbon nanotubes for biomedical imaging: the recent advances. Adv. Drug Deliv. Rev. 65, 1951–1963 (2013)

    Google Scholar 

  137. H. Wang, J. Wang, X. Deng, H. Sun, Z. Shi, Z. Gu et al., Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol. 4, 1019–1024 (2004)

    Google Scholar 

  138. X. Deng, S. Yang, H. Nie, H. Wang, Y. Liu, A generally adoptable radiotracing method for tracking carbon nanotubes in animals. Nanotechnology 19, 75101 (2008)

    Google Scholar 

  139. L. Lacerda, A. Soundararajan, R. Singh, G. Pastorin, K.T. Al-Jamal, J. Turton et al., Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary vxcretion. Adv. Mater. 20, 225–230 (2008)

    Google Scholar 

  140. J. Guo, X. Zhang, Q. Li, W. Li, Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl. Med. Biol. 34, 579–583 (2007)

    Google Scholar 

  141. M.R. McDevitt, D. Chattopadhyay, J.S. Jaggi, R.D. Finn, P.B. Zanzonico, C. Villa et al., PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS ONE 2, e907 (2007)

    ADS  Google Scholar 

  142. Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun et al., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2, 47–52 (2007)

    ADS  Google Scholar 

  143. B. Czarny, D. Georgin, F. Berthon, G. Plastow, M. Pinault, G. Patriarche et al., Carbon nanotube translocation to distant organs after pulmonary exposure: insights from in situ 14C-radiolabeling and tissue radioimaging. ACS Nano 8, 5715–5724 (2014)

    Google Scholar 

  144. M.L. Matson, C.H. Villa, J.S. Ananta, J.J. Law, D.A. Scheinberg, L.J. Wilson, Encapsulation of alpha-particle-emitting 225Ac3 + ions within carbon nanotubes. J. Nucl. Med. 56, 897–900 (2015)

    Google Scholar 

  145. B.T. Cisneros, J.J. Law, M.L. Matson, A. Azhdarinia, E.M. Sevick-Muraca, L.J. Wilson, Stable confinement of positron emission tomography and magnetic resonance agents within carbon nanotubes for bimodal imaging. Nanomedicine (London) 9, 2499–2509 (2014)

    Google Scholar 

  146. G. Chen, H. Qiu, P.N. Prasad, X. Chen, Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014)

    Google Scholar 

  147. F. Auzel, Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004)

    Google Scholar 

  148. J. Shen, L. Zhao, G. Han, Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Adv. Drug Deliv. Rev. 65, 744–755 (2013)

    Google Scholar 

  149. Z. Gu, L. Yan, G. Tian, S. Li, Z. Chai, Y. Zhao, Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater. 25, 3758–3779 (2013)

    Google Scholar 

  150. H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen et al., Multifunctional nanoprobes for upconversion fluorescence. MR and CT trimodal imaging. Biomaterials 33, 1079–1089 (2012)

    Google Scholar 

  151. Y. Yang, Y. Sun, T. Cao, J. Peng, Y. Liu, Y. Wu et al., Hydrothermal synthesis of NaLuF4:153Sm, Yb, Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials 34, 774–783 (2013)

    Google Scholar 

  152. Y. Sun, M. Yu, S. Liang, Y. Zhang, C. Li, T. Mou et al., Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials 32, 2999–3007 (2011)

    Google Scholar 

  153. J. Gallo, I.S. Alam, J. Jin, Y.-J. Gu, E.O. Aboagye, W.-T. Wong et al., PET imaging with multimodal upconversion nanoparticles. Dalton Trans. 43, 5535–5545 (2014)

    Google Scholar 

  154. H.J. Seo, S.H. Nam, H.-J. Im, J.-Y. Park, J.Y. Lee, B. Yoo et al., Rapid hepatobiliary excretion of micelle-encapsulated/radiolabeled upconverting nanoparticles as an integrated form. Sci Rep. 5, 15685 (2015)

    ADS  Google Scholar 

  155. J. Lee, T.S. Lee, J. Ryu, S. Hong, M. Kang, K. Im et al., RGD peptide-conjugated multimodal NaGdF4:Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. J. Nucl. Med. 54, 96–103 (2013)

    Google Scholar 

  156. T. Cao, Y. Yang, Y. Sun, Y. Wu, Y. Gao, W. Feng et al., Biodistribution of sub-10 nm PEG-modified radioactive/upconversion nanoparticles. Biomaterials 34, 7127–7134 (2013)

    Google Scholar 

  157. Q. Liu, M. Chen, Y. Sun, G. Chen, T. Yang, Y. Gao et al., Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence/fluorescence/positron emission tomography imaging. Biomaterials 32, 8243–8253 (2011)

    Google Scholar 

  158. J. Rieffel, F. Chen, J. Kim, G. Chen, W. Shao, S. Shao et al., Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv. Mater. 27, 1785–1790 (2015)

    Google Scholar 

  159. L. Wang, Synthetic methods of CuS nanoparticles and their applications for imaging and cancer therapy. RSC Adv. 6, 82596–82615 (2016)

    Google Scholar 

  160. S. Goel, F. Chen, W. Cai, Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small 10, 631–645 (2014)

    Google Scholar 

  161. R. Chakravarty, S. Chakraborty, R.S. Ningthoujam, K.V. Vimalnath Nair, K.S. Sharma, A. Ballal et al., Industrial-scale synthesis of intrinsically radiolabeled 64CuS nanoparticles for use in positron emission tomography (PET) imaging of cancer. Ind. Eng. Chem. Res. 55, 12407–12419 (2016)

    Google Scholar 

  162. M. Zhou, R. Zhang, M. Huang, W. Lu, S. Song, M.P. Melancon et al., A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J. Am. Chem. Soc. 132, 15351–15358 (2010)

    Google Scholar 

  163. Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Biomedical applications of zinc oxide nanomaterials. Curr. Mol. Med. 13, 1633–1645 (2013)

    Google Scholar 

  164. W.-Q. Zhang, Y. Lu, T.-K. Zhang, W. Xu, M. Zhang, S.-H. Yu, Controlled synthesis and biocompatibility of water-soluble ZnO nanorods/Au nanocomposites with tunable UV and visible emission intensity. J. Phys. Chem. C 112, 19872–19877 (2008)

    Google Scholar 

  165. Y. Liu, K. Ai, Q. Yuan, L. Lu, Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging. Biomaterials 32, 1185–1192 (2011)

    Google Scholar 

  166. H. Hong, F. Wang, Y. Zhang, S.A. Graves, S.B.Z. Eddine, Y. Yang et al., Red fluorescent zinc oxide nanoparticle: A novel platform for cancer targeting. ACS Appl. Mater. 7, 3373–3381 (2015)

    Google Scholar 

  167. S.S. Chou, B. Kaehr, J. Kim, B.M. Foley, M. De, P.E. Hopkins et al., Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem. Int. Ed. Engl. 52, 4160–4164 (2013)

    Google Scholar 

  168. S.S. Chou, M. De, J. Kim, S. Byun, C. Dykstra, J. Yu et al., Ligand conjugation of chemically exfoliated MoS2. J. Am. Chem. Soc. 135, 4584–4587 (2013)

    Google Scholar 

  169. L. Cheng, J. Liu, X. Gu, H. Gong, X. Shi, T. Liu et al., PEGylated WS(2) nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 26, 1886–1893 (2014)

    Google Scholar 

  170. J. Li, F. Jiang, B. Yang, X.-R. Song, Y. Liu, H.-H. Yang et al., Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci. Rep. 3, 1998 (2013)

    Google Scholar 

  171. L. Cheng, S. Shen, S. Shi, Y. Yi, X. Wang, G. Song et al., FeSe2-decorated Bi2Se3 nanosheets fabricated via cation exchange for chelator-free 64Cu-labeling and multimodal image-guided photothermal-radiation therapy. Adv. Funct. Mater. 26, 2185–2197 (2016)

    Google Scholar 

  172. T. Liu, S. Shi, C. Liang, S. Shen, L. Cheng, C. Wang et al., Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 9, 950–960 (2015)

    Google Scholar 

  173. F. Ai, S. Goel, Y. Zhan, H.F. Valdovinos, F. Chen, T.E. Barnhart et al., Intrinsically 89Zr-labeled Gd2O2S: Eu nanophosphors with high in vivo stability for dual-modality imaging. Am. J. Transl. Res. 8, 5591–5600 (2016)

    Google Scholar 

  174. Y. Zhan, F. Ai, F. Chen, H.F. Valdovinos, H. Orbay, H. Sun et al., Intrinsically zirconium-89 labeled Gd2O2S: Eu nanoprobes for in vivo positron emission tomography and gamma-ray-induced radioluminescence imaging. Small 12, 2872–2876 (2016)

    Google Scholar 

  175. C. Sun, G. Pratx, C.M. Carpenter, H. Liu, Z. Cheng, S. Sam Gambhir et al., Synthesis and radioluminescence of PEGylated Eu3+-doped nanophosphors as bioimaging probes. Adv. Mater. 23, H195–H199 (2011)

    Google Scholar 

  176. Y. Song, H. You, Y. Huang, M. Yang, Y. Zheng, L. Zhang et al., Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: Solvothermal synthesis and luminescence properties. Inorg. Chem. 49, 11499–11504 (2010)

    Google Scholar 

  177. S.A. Osseni, S. Lechevallier, M. Verelst, P. Perriat, J. Dexpert-Ghys, D. Neumeyer et al., Gadolinium oxysulfide nanoparticles as multimodal imaging agents for T2-weighted MR{,} X-ray tomography and photoluminescence. Nanoscale 6, 555–564 (2014)

    ADS  Google Scholar 

  178. E. Morales-Avila, G. Ferro-Flores, B.E. Ocampo-García, de María Ramírez, F, Radiolabeled nanoparticles for molecular imaging, in ed. by B. Schaller (Molecular Imaging. Intech. 2012)

    Google Scholar 

  179. I. Ojea-Jimenez, J. Comenge, L. Garcia-Fernandez, Z.A. Megson, E. Casals, V.F. Puntes, Engineered inorganic nanoparticles for drug delivery applications. Curr. Drug Metab. 14, 518–530 (2013)

    Google Scholar 

  180. K. Stockhofe, J.M. Postema, H. Schieferstein, T.L. Ross, Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals (Basel). 7, 392–418 (2014)

    Google Scholar 

  181. G. Ferro-Flores, B.E. Ocampo-García, C.L. Santos-Cuevas, E. Morales-Avila, E. Azorín-Vega, Multifunctional radiolabeled nanoparticles for targeted therapy. Curr. Med. Chem. 21, 124–138 (2014)

    Google Scholar 

  182. J. Xie, S. Lee, X. Chen, Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 62, 1064–1079 (2010)

    Google Scholar 

  183. D. Bargheer, A. Giemsa, B. Freund, M. Heine, C. Waurisch, G.M. Stachowski et al., The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice. Beilstein J. Nanotechnol. 6, 111–123 (2015)

    Google Scholar 

  184. Q.K.T. Ng, C.I. Olariu, M. Yaffee, V.F. Taelman, N. Marincek, T. Krause et al., Indium-111 labeled gold nanoparticles for in-vivo molecular targeting. Biomaterials 35, 7050–7057 (2014)

    Google Scholar 

  185. M. Sun, G. Sundaresan, P. Jose, L. Yang, D. Hoffman, N. Lamichhane et al., Highly stable intrinsically radiolabeled indium-111 quantum dots with multidentate zwitterionic surface coating: dual modality tool for biological imaging. J. Mater Chem. B 2, 4456–4466 (2014)

    Google Scholar 

  186. J.D. Woodward, S.J. Kennel, S. Mirzadeh, S. Dai, J.S. Wall, T. Richey et al., In vivo SPECT/CT imaging and biodistribution using radioactive Cd125mTe/ZnS nanoparticles. Nanotechnology 18, 175103 (2007)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the University of Wisconsin —Madison, the National Institutes of Health (NIBIB/NCI 1R01CA169365, 1R01EB021336, P30CA014520), the American Cancer Society (125246-RSG-13-099-01-CCE) and CNPq (Brazilian National Council for Scientific and Technological Development).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shreya Goel or Weibo Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferreira, C.A., Goel, S., Cai, W. (2018). Exogenous Radionanomedicine: Inorganic Nanomaterials. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_2

Download citation

Publish with us

Policies and ethics