Skip to main content

Preclinical PET and SPECT for Radionanomedicine

  • Chapter
  • First Online:
Radionanomedicine

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 795 Accesses

Abstract

Quantitative evaluation of in vivo biodistribution is a prerequisite for the development of new targeted theranostic probes in nanomedicine. Here in this chapter the principles of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) were explained. These two modalities are now popularly used for small animal studies and yield valuable information of the biodistribution, pharmacokinetics and final fates of radionanomedicines injected systemically. Great penetration depth, no background signal and the high sensitivity of PET and SPECT are the advantages for accurate quantification of in vivo biodistribution. MRI as well as CT was added to these modalities and clarifies the anatomical details. Simultaneous or sequential acquisition of PET/CT or PET/MRI allow the understanding of the accurate anatomical distribution of the administered radiolabeled nanomaterials. In this chapter, basic technical aspects and the application to radionanomedicine of PET and SPECT are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.M. Tichauer, Y. Wang, B.W. Pogue, J.T. Liu, Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging. Phys. Med. Biol. 60(14), R239–R269 (2015)

    Article  ADS  Google Scholar 

  2. H.O. Anger, M.R. Powell, D.C. van Dyke, L.R. Schaer, R. Fawwaz, Y. Yano, Recent applications of the scintillation camera. Strahlentherapie Sonderb. 65, 70–93 (1967)

    Google Scholar 

  3. E. Wolfs, C.M. Verfaillie, K. Van Laere, C.M. Deroose, Radiolabeling strategies for radionuclide imaging of stem cells. Stem Cell Rev. 11(2), 254–274 (2015)

    Article  Google Scholar 

  4. M.T. Madsen, Recent advances in SPECT imaging. J. Nucl. Med. 48(4), 661–673 (2007)

    Article  Google Scholar 

  5. M.K. O’Connor, B.J. Kemp, Single-photon emission computed tomography/computed tomography: basic instrumentation and innovations. Semin. Nucl. Med. 36(4), 258–266 (2006)

    Article  Google Scholar 

  6. M.C. Wu, B.H. Hasegawa, M.W. Dae, Performance evaluation of a pinhole SPECT system for myocardial perfusion imaging of mice. Med. Phys. 29(12), 2830–2839 (2002)

    Article  Google Scholar 

  7. F.J. Beekman, F. van der Have, B. Vastenhouw, A.J. van der Linden, P.P. van Rijk, J.P. Burbach et al., U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J. Nucl. Med. 46(7), 1194–1200 (2005)

    Google Scholar 

  8. A.G. Weisenberger, R. Wojcik, E.L. Bradley, P. Brewer, S. Majewski, J. Qian et al., SPECT-CT system for small animal imaging. IEEE Trans. Nucl. Sci. 50(1), 74–79 (2003)

    Article  ADS  Google Scholar 

  9. E. Lage, J.J. Vaquero, J. Villena, A. Carlos, G. Tapias, A. Sisniega et al. (ed.), Performance evaluation of a new gamma imager for small animal SPECT applications, in 2007 IEEE Nuclear Science Symposium Conference Record (2007)

    Google Scholar 

  10. S. Xishan, W. Shi, M. Tianyu, Z. Rong, L. Xin, Z. Zhang et al. (ed.), A high resolution and high sensitivity small animal SPECT system based on H8500, in 2007 IEEE Nuclear Science Symposium Conference Record (2007)

    Google Scholar 

  11. J.B. Freek, V. Brendan, Design and simulation of a high-resolution stationary SPECT system for small animals. Phys. Med. Biol. 49(19), 4579 (2004)

    Article  Google Scholar 

  12. G.A. Kastis, H.B. Barber, H.H. Barrett, S.J. Balzer, D. Lu, D.G. Marks et al., Gamma-ray imaging using a CdZnTe pixel array and a high-resolution, parallel-hole collimator. IEEE Trans. Nucl. Sci. 47(6), 1923–1927 (2000)

    Article  ADS  Google Scholar 

  13. G.A. Kastis, M.C. Wu, S.J. Balzer, D.W. Wilson, L.R. Furenlid, G. Stevenson et al. (ed.) Tomographic small-animal imaging using a high-resolution semiconductor camera, in 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149) (2000)

    Google Scholar 

  14. B. Mueller, M.K. O’Connor, I. Blevis, D.J. Rhodes, R. Smith, D.A. Collins et al., Evaluation of a small cadmium zinc telluride detector for scintimammography. J. Nucl. Med. 44(4), 602–609 (2003)

    Google Scholar 

  15. H. Kim, L.R. Furenlid, M.J. Crawford, D.W. Wilson, H.B. Barber, T.E. Peterson et al., SemiSPECT: A small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays. Med. Phys. 33(2), 465–474 (2006)

    Article  Google Scholar 

  16. H. Mahani, G. Raisali, A. Kamali-Asl, M.R. Ay, Spinning slithole collimation for high-sensitivity small animal SPECT: Design and assessment using GATE simulation. Phys. Med. 40, 42–50 (2017)

    Article  Google Scholar 

  17. K. Ogawa, N. Ohmura, H. Iida, K. Nakamura, T. Nakahara, A. Kubo, Development of an ultra-high resolution SPECT system with a CdTe semiconductor detector. Ann. Nucl. Med. 23(8), 763–770 (2009)

    Article  Google Scholar 

  18. S. Ben-Haim, K. Kacperski, S. Hain, D. Van Gramberg, B.F. Hutton, W.A. Waddington et al., Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur. J. Nucl. Med. Mol. Med. 37(9), 1710–1721 (2010)

    Article  Google Scholar 

  19. B. Carmen, V. Stefaan, Van H. Roel, Evaluation of a compact, high-resolution SPECT detector based on digital silicon photomultipliers. Phys. Med. Biol. 59(23), 7521 (2014)

    Article  Google Scholar 

  20. P. Busca, M. Occhipinti, P. Trigilio, G. Cozzi, C. Fiorini, C. Piemonte et al., Experimental Evaluation of a SiPM-Based Scintillation Detector for MR-Compatible SPECT Systems. IEEE Trans. Nucl. Sci. 62(5), 2122–2128 (2015)

    Article  ADS  Google Scholar 

  21. H. Hwang, J. Kwon, P.S. Oh, T.K. Lee, K.S. Na, C.M. Lee et al., Peptide-loaded nanoparticles and radionuclide imaging for individualized treatment of myocardial ischemia. Radiology 273(1), 160–167 (2014)

    Article  Google Scholar 

  22. S.H. Cheng, D. Yu, H.M. Tsai, R.A. Morshed, D. Kanojia, L.W. Lo et al., Dynamic in vivo SPECT imaging of neural stem cells functionalized with radiolabeled nanoparticles for tracking of glioblastoma. J. Nucl. Med. 57(2), 279–284 (2016)

    Article  Google Scholar 

  23. M.C. Parrott, S.R. Benhabbour, C. Saab, J.A. Lemon, S. Parker, J.F. Valliant et al., Synthesis, radiolabeling, and bio-imaging of high-generation polyester dendrimers. J. Am. Chem. Soc. 131(8), 2906–2916 (2009)

    Article  Google Scholar 

  24. A. Chrastina, J.E. Schnitzer, Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. Int. J. Nanomed. 5, 653–659 (2010)

    Google Scholar 

  25. R.R. Patil, J. Yu, S.R. Banerjee, Y. Ren, D. Leong, X. Jiang et al., Probing in vivo trafficking of polymer/DNA micellar nanoparticles using SPECT/CT imaging. Mol. Ther. 19(9), 1626–1635 (2011)

    Article  Google Scholar 

  26. D. Jiang, Y. Sun, J. Li, Q. Li, M. Lv, B. Zhu et al., Multiple-armed tetrahedral DNA nanostructures for tumor-targeting, dual-modality in vivo imaging. ACS Appl. Mater. Inter. 8(7), 4378–4384 (2016)

    Article  Google Scholar 

  27. R. Madru, P. Kjellman, F. Olsson, K. Wingardh, C. Ingvar, F. Stahlberg et al., 99mTc-labeled superparamagnetic iron oxide nanoparticles for multimodality SPECT/MRI of sentinel lymph nodes. J. Nucl. Med. 53(3), 459–463 (2012)

    Article  Google Scholar 

  28. J. Wang, H. Zhao, Z. Zhou, P. Zhou, Y. Yan, M. Wang et al., MR/SPECT imaging guided photothermal therapy of tumor-targeting Fe@Fe3O4 nanoparticles in vivo with low mononuclear phagocyte uptake. ACS Appl. Mater. Inter. 8(31), 19872–19882 (2016)

    Article  Google Scholar 

  29. K.C.L. Black, W.J. Akers, G. Sudlow, B. Xu, R. Laforest, S. Achilefu, Dual-radiolabeled nanoparticle SPECT probes for bioimaging. Nanoscale 7(2), 440–444 (2015)

    Article  ADS  Google Scholar 

  30. D. Cheng, Y. Wang, X. Liu, P.H. Pretorius, M. Liang, M. Rusckowski et al., Comparison of 18F PET and 99mTc SPECT imaging in phantoms and in tumored mice. Bioconjug. Chem. 21(8), 1565–1570 (2010)

    Article  Google Scholar 

  31. A.B. Satterlee, H. Yuan, L. Huang, A radio-theranostic nanoparticle with high specific drug loading for cancer therapy and imaging. J. Control Release 217, 170–182 (2015)

    Article  Google Scholar 

  32. S. Yook, Z. Cai, Y. Lu, M.A. Winnik, J.P. Pignol, R.M. Reilly, Intratumorally injected 177Lu-labeled gold nanoparticles: Gold nanoseed brachytherapy with application for neoadjuvant treatment of locally advanced breast cancer. J. Nucl. Med. 57(6), 936–942 (2016)

    Article  Google Scholar 

  33. H. Ming, L. Fang, J. Gao, C. Li, Y. Ji, Y. Shen et al., Antitumor effect of nanoparticle 131I-labeled arginine-glycine-aspartate–bovine serum albumin–polycaprolactone in lung cancer. AJR Am. J. Roentgenol. 208(5), 1116–1126 (2017)

    Article  Google Scholar 

  34. C. Decristoforo, U. Haberkorn, R. Haubner, W. Mier, S.I. Ziegler, PET and SPECT, in Small animal imaging: basics and practical guide, ed. by F. Kiessling, B.J. Pichler, P. Hauff (Springer, Cham, 2017), pp. 361–402

    Chapter  Google Scholar 

  35. S. Kalman, Introduction to PET instrumentation. J. Nucl. Med. Technol. 30(2), 63 (2002)

    Google Scholar 

  36. A. Rahmim, H. Zaidi, PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun. 29, 193–207 (2008)

    Article  Google Scholar 

  37. N. Oku, M. Yamashita, Y. Katayama, T. Urakami, K. Hatanaka, K. Shimizu et al., PET imaging of brain cancer with positron emitter-labeled liposomes. Int. J. Pharm. 403(1–2), 170–177 (2011)

    Article  Google Scholar 

  38. S. Goel, F. Chen, H. Hong, H.F. Valdovinos, R. Hernandez, S. Shi et al., VEGF121-conjugated mesoporous silica nanoparticle: a tumor targeted drug delivery system. ACS Appl. Mater. Inter. 6(23), 21677–21685 (2014)

    Article  Google Scholar 

  39. R. Chakravarty, S. Goel, H. Hong, F. Chen, H.F. Valdovinos, R. Hernandez et al., Hollow mesoporous silica nanoparticles for tumor vasculature targeting and PET image-guided drug delivery. Nanomedicine (London) 10(8), 1233–1246 (2015)

    Article  Google Scholar 

  40. F. Gao, P. Cai, W. Yang, J. Xue, L. Gao, R. Liu et al., Ultrasmall [64Cu]Cu nanoclusters for targeting orthotopic lung tumors using accurate positron emission tomography imaging. ACS Nano 9(5), 4976–4986 (2015)

    Article  Google Scholar 

  41. H. Hong, F. Wang, Y. Zhang, S.A. Graves, S.B. Eddine, Y. Yang et al., Red fluorescent zinc oxide nanoparticle: a novel platform for cancer targeting. ACS Appl. Mater. Inter. 7(5), 3373–3381 (2015)

    Article  Google Scholar 

  42. K. Hu, H. Wang, G. Tang, T. Huang, X. Tang, X. Liang et al., In vivo cancer dual-targeting and dual-modality imaging with functionalized quantum dots. J. Nucl. Med. 56(8), 1278–1284 (2015)

    Article  Google Scholar 

  43. P. Huda, T. Binderup, M.C. Pedersen, S.R. Midtgaard, D.R. Elema, A. Kjaer et al., PET/CT based in vivo evaluation of 64Cu labeled nanodiscs in tumor bearing mice. PLoS ONE 10(7), e0129310 (2015)

    Article  Google Scholar 

  44. J. Key, A.L. Palange, F. Gentile, S. Aryal, C. Stigliano, D. Di Mascolo et al., Soft discoidal polymeric nanoconstructs resist macrophage uptake and enhance vascular targeting in tumors. ACS Nano 9(12), 11628–11641 (2015)

    Article  Google Scholar 

  45. Z. Yang, R. Tian, J. Wu, Q. Fan, B.C. Yung, G. Niu et al., Impact of semiconducting perylene diimide nanoparticle size on lymph node mapping and cancer imaging. ACS Nano 11(4), 4247–4255 (2017)

    Article  Google Scholar 

  46. J. Key, Y.S. Kim, F. Tatulli, A.L. Palange, B. O’Neill, S. Aryal et al., Opportunities for nano theranosis in lung cancer and pulmonary metastasis. Clin. Transl. Imaging 2(5), 427–437 (2014)

    Article  Google Scholar 

  47. D. Chen, C.A. Dougherty, K. Zhu, H. Hong, Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. J. Control Release 210, 230–245 (2015)

    Article  Google Scholar 

  48. F. Chen, H. Hong, S. Goel, S.A. Graves, H. Orbay, E.B. Ehlerding et al., In vivo tumor vasculature targeting of CuS@MSN based theranostic nanomedicine. ACS Nano 9(4), 3926–3934 (2015)

    Article  Google Scholar 

  49. L. Cui, Q. Lin, C.S. Jin, W. Jiang, H. Huang, L. Ding et al., A PEGylation-free biomimetic porphyrin nanoplatform for personalized cancer theranostics. ACS Nano 9(4), 4484–4495 (2015)

    Article  Google Scholar 

  50. Y. Yu, S. Xu, H. You, Y. Zhang, B. Yang, X. Sun et al., In vivo synergistic anti-tumor effect of paclitaxel nanoparticles combined with radiotherapy on human cervical carcinoma. Drug Deliv. 24(1), 75–82 (2017)

    Article  Google Scholar 

  51. K. Pant, O. Sedlacek, R.A. Nadar, M. Hruby, H. Stephan, Radiolabeled polymeric materials for imaging and treatment of cancer: Quo vadis? Adv. Healthcare Mater. 6(6) (2017)

    Google Scholar 

  52. L. Cheng, A. Kamkaew, H. Sun, D. Jiang, H.F. Valdovinos, H. Gong et al., Dual-modality positron emission tomography/optical image-guided photodynamic cancer therapy with chlorin e6-containing nanomicelles. ACS Nano 10(8), 7721–7730 (2016)

    Article  Google Scholar 

  53. M. Zhou, M. Melancon, R.J. Stafford, J. Li, A.M. Nick, M. Tian et al., Precision nanomedicine using dual PET and MR temperature imaging-guided photothermal therapy. J. Nucl. Med. 57(11), 1778–1783 (2016)

    Article  Google Scholar 

  54. H.J. Im, C.G. England, L. Feng, S.A. Graves, R. Hernandez, R.J. Nickles et al., Accelerated blood clearance phenomenon reduces the passive targeting of PEGylated nanoparticles in peripheral arterial disease. ACS Appl. Mater. Inter. 8(28), 17955–17963 (2016)

    Article  Google Scholar 

  55. C.G. England, H.J. Im, L. Feng, F. Chen, S.A. Graves, R. Hernandez et al., Re-assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles. Biomaterials 100, 101–109 (2016)

    Article  Google Scholar 

  56. E.J. Keliher, Y.X. Ye, G.R. Wojtkiewicz, A.D. Aguirre, B. Tricot, M.L. Senders et al., Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat. Commun. 8, 14064 (2017)

    Article  ADS  Google Scholar 

  57. D.B. Cowan, R. Yao, V. Akurathi, E.R. Snay, J.K. Thedsanamoorthy, D. Zurakowski et al., Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PLoS ONE 11(8), e0160889 (2016)

    Article  Google Scholar 

  58. A. Ahmadi, S.L. Thorn, E.I. Alarcon, M. Kordos, D.T. Padavan, T. Hadizad et al., PET imaging of a collagen matrix reveals its effective injection and targeted retention in a mouse model of myocardial infarction. Biomaterials 49, 18–26 (2015)

    Article  Google Scholar 

  59. J. Frigell, I. Garcia, V. Gomez-Vallejo, J. Llop, S. Penades, 68Ga-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. J. Am. Chem. Soc. 136(1), 449–457 (2014)

    Article  Google Scholar 

  60. J.W. Seo, J. Ang, L.M. Mahakian, S. Tam, B. Fite, E.S. Ingham et al., Self-assembled 20-nm 64Cu-micelles enhance accumulation in rat glioblastoma. J. Control Release 220(Pt A), 51–60 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Jun Im .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Im, HJ., Cheon, G.J. (2018). Preclinical PET and SPECT for Radionanomedicine. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_15

Download citation

Publish with us

Policies and ethics