Skip to main content

Radiolabeling Method: Core/Surface Labeling, Chemical and Physical Labeling

  • Chapter
  • First Online:
Radionanomedicine

Abstract

Radiolabeled nanomaterials can be used for diagnosis, therapy and theranostics of certain diseases. The core concept of radionanomedicine relies on efficient and reliable radiolabeling methods, to bind appropriate isotope with well-functionalized nanoparticles (NPs), and the use of tracer amounts of radiolabeled NPs. In this chapter, we focused on the three issues of producing radiolabeled NPs: choosing appropriate radionuclides for labeling, construction of well-functionalized NPs with surface modification and different labeling methods of NPs with radionuclides. Firstly, choosing ideal isotope starts from understanding the characteristics of each isotopes, such as half-life, decay energy and availability, and understanding of purpose of the study. Secondly, to increase the specific delivery of NPs to the target tissues while decreasing the nonspecific binding to normal tissues well functionalized NPs are necessary, which can be achieved by surface modification. Especially, micelle encapsulation method is an efficient method for producing multifunctional NPs. Finally, ideal labeling method should be adopted, which should not only be quick, easy, and highly efficient but also should not change the biological properties of target molecules. Both intrinsic and extrinsic radiolabeling methods should be chosen in the base of thorough understanding of pros and cons of each labeling methods. In conclusion, the development of the methods to enable surface labeling with ligands and chelators should be solved first. The development of the imaging methods to track the in vivo administered radiolabeled NPs is the next issue to be addressed. With the improvement of above-mentioned issues, radiolabeled NPs can be successfully translated to clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Sun, W. Cai, X. Chen, Positron emission tomography imaging using radiolabeled inorganic nanomaterials. Acc. Chem. Res. 48(2), 286–294 (2015)

    Article  Google Scholar 

  2. D.S. Lee, H.J. Im, Y.S. Lee, Radionanomedicine: widened perspectives of molecular theragnosis. Nanomedicine 11(4), 795–810 (2015)

    Article  Google Scholar 

  3. Y.-S. Lee, Y. Kim, D.S. Lee, Future perspectives of radionanomedicine using the novel micelle-encapsulation method for surface modification. Nucl. Med. Mol. Imaging 49(3), 170–173 (2015)

    Article  Google Scholar 

  4. M. Sun, D. Hoffman, G. Sundaresan, L. Yang, N. Lamichhane, J. Zweit, Synthesis and characterization of intrinsically radiolabeled quantum dots for bimodal detection. Am. J. Nucl. Med. Mol. Imaging 2(2), 122–135 (2012)

    Google Scholar 

  5. G. Sun, J. Xu, A. Hagooly, R. Rossin, Z. Li, D.A. Moore et al., Strategies for optimized radiolabeling of nanoparticles for in vivo pet imaging. Adv. Mater. 19(20), 3157–3162 (2007)

    Article  Google Scholar 

  6. L. Yang, G. Sundaresan, M. Sun, P. Jose, D. Hoffman, P.R. McDonagh et al., Intrinsically radiolabeled multifunctional cerium oxide nanoparticles for in vivo studies. J. Mater. Chem. B Mater. Biol. Med. 1(10), 1421–1431 (2013)

    Article  Google Scholar 

  7. M. Zhou, R. Zhang, M. Huang, W. Lu, S. Song, M.P. Melancon et al., A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J. Am. Chem. Soc. 132(43), 15351–15358 (2010)

    Article  Google Scholar 

  8. R.M. Wong, D.A. Gilbert, K. Liu, A.Y. Louie, Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. ACS Nano 6(4), 3461–3467 (2012)

    Article  Google Scholar 

  9. Y. Zhao, D. Sultan, L. Detering, S. Cho, G. Sun, R. Pierce et al., Copper-64-alloyed gold nanoparticles for cancer imaging: improved radiolabel stability and diagnostic accuracy. Angew. Chem. Int. Ed. Engl. 53(1), 156–159 (2014)

    Article  Google Scholar 

  10. X. Lin, J. Xie, G. Niu, F. Zhang, H. Gao, M. Yang et al., Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett. 11(2), 814–819 (2011)

    Article  ADS  Google Scholar 

  11. T.W. Liu, T.D. MacDonald, J. Shi, B.C. Wilson, G. Zheng, Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew. Chem. Int. Ed. Engl. 51(52), 13128–13131 (2012)

    Article  Google Scholar 

  12. N. Chanda, P. Kan, L.D. Watkinson, R. Shukla, A. Zambre, T.L. Carmack et al., Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomed. (Lond.) 6(2), 201–209 (2010)

    Article  Google Scholar 

  13. K.V. Katti, R. Kannan, K. Katti, V. Kattumori, R. Pandrapraganda, V. Rahing et al., Hybrid gold nanoparticles in molecular imaging and radiotherapy. Czech J. Phys. 56(1), D23–D34 (2006)

    Article  Google Scholar 

  14. M.K. Khan, L.D. Minc, S.S. Nigavekar, M.S. Kariapper, B.M. Nair, M. Schipper et al., Fabrication of 198Au radioactive composite nanodevices and their use for nanobrachytherapy. Nanomed. (Lond.) 4(1), 57–69 (2008)

    Article  Google Scholar 

  15. R. Shukla, N. Chanda, A. Zambre, A. Upendran, K. Katti, R.R. Kulkarni et al., Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc. Natl. Acad. Sci. U S A 109(31), 12426–12431 (2012)

    Article  ADS  Google Scholar 

  16. C. Zhou, G. Hao, P. Thomas, J. Liu, M. Yu, S. Sun et al., Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew. Chem. Int. Ed. Engl. 51(40), 10118–10122 (2012)

    Article  Google Scholar 

  17. Y. Wang, Y. Liu, H. Luehmann, X. Xia, D. Wan, C. Cutler et al., Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging. Nano Lett. 13(2), 581–585 (2013)

    Article  ADS  Google Scholar 

  18. Y. Sun, X. Zhu, J. Peng, F. Li, Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging. ACS Nano 7(12), 11290–11300 (2013)

    Article  Google Scholar 

  19. Y. Yang, Y. Sun, T. Cao, J. Peng, Y. Liu, Y. Wu et al., Hydrothermal synthesis of NaLuF4:153Sm, Yb, Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials 34(3), 774–783 (2013)

    Article  Google Scholar 

  20. J. Zeng, B. Jia, R. Qiao, C. Wang, L. Jing, F. Wang et al., In situ 111In-doping for achieving biocompatible and non-leachable 111In-labeled Fe3O4 nanoparticles. Chem. Commun. (Camb.) 50(17), 2170–2172 (2014)

    Article  Google Scholar 

  21. Q. Liu, Y. Sun, C. Li, J. Zhou, T. Yang, X. Zhang et al., 18F-Labeled magnetic-upconversion nanophosphors via rare-Earth cation-assisted ligand assembly. ACS Nano 5(4), 3146–3157 (2011)

    Article  Google Scholar 

  22. Y. Sun, M. Yu, S. Liang, Y. Zhang, C. Li, T. Mou et al., Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials 32(11), 2999–3007 (2011)

    Article  Google Scholar 

  23. F. Chen, P.A. Ellison, C.M. Lewis, H. Hong, Y. Zhang, S. Shi et al., Chelator-free synthesis of a dual-modality PET/MRI agent. Angew. Chem. Int. Ed. Engl. 52(50), 13319–13323 (2013)

    Article  Google Scholar 

  24. R. Chakravarty, H.F. Valdovinos, F. Chen, C.M. Lewis, P.A. Ellison, H. Luo et al., Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in-vivo dual-modality PET/MR imaging. Adv. Mater. 26(30), 5119–5123 (2014)

    Article  Google Scholar 

  25. A.N. Mendoza-Sanchez, G. Ferro-Flores, B.E. Ocampo-Garcia, E. Morales-Avila, F. de M Ramírez, L.M. De Leon-Rodriguez et al., Lys3-bombesin conjugated to 99mTc-labeled gold nanoparticles for in vivo gastrin releasing peptide-receptor imaging. J. Biomed. Nanotechnol. 6(4), 375–384 (2010)

    Google Scholar 

  26. E. Morales-Avila, G. Ferro-Flores, B.E. Ocampo-Garcia, L.M. De Leon-Rodriguez, C.L. Santos-Cuevas, R. Garcia-Becerra et al., Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor alpha(v)beta(3) expression. Bioconjug. Chem. 22(5), 913–922 (2011)

    Article  Google Scholar 

  27. B.E. Ocampo-Garcia, M. Ramirez Fde, G. Ferro-Flores, L.M. De Leon-Rodriguez, C.L. Santos-Cuevas, E. Morales-Avila et al., 99mTc-labeled gold nanoparticles capped with HYNIC-peptide/mannose for sentinel lymph node detection. Nucl. Med. Biol. 38(1), 1–11 (2011)

    Article  Google Scholar 

  28. G. Zhang, Z. Yang, W. Lu, R. Zhang, Q. Huang, M. Tian et al., Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30(10), 1928–1936 (2009)

    Article  Google Scholar 

  29. R. Torres Martin de Rosales R, R. Tavare, A. Glaria, G. Varma, A. Protti, P.J. Blower, 99mTc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug. Chem. 22(3), 455–465 (2011)

    Article  Google Scholar 

  30. W. Cai, K. Chen, Z.B. Li, S.S. Gambhir, X. Chen, Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J. Nucl. Med. 48(11), 1862–1870 (2007)

    Article  Google Scholar 

  31. K. Chen, P.S. Conti, Target-specific delivery of peptide-based probes for PET imaging. Adv. Drug Deliv. Rev. 62(11), 1005–1022 (2010)

    Article  Google Scholar 

  32. H. Xie, P. Diagaradjane, A.A. Deorukhkar, B. Goins, A. Bao, W.T. Phillips et al., Integrin alphavbeta3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy. Int. J. Nanomed. 6, 259–269 (2011)

    Article  Google Scholar 

  33. C. Glaus, R. Rossin, M.J. Welch, G. Bao, In vivo evaluation of 64Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug. Chem. 21(4), 715–722 (2010)

    Article  Google Scholar 

  34. B.R. Jarrett, B. Gustafsson, D.L. Kukis, A.Y. Louie, Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug. Chem. 19(7), 1496–1504 (2008)

    Article  Google Scholar 

  35. H.Y. Lee, Z. Li, K. Chen, A.R. Hsu, C. Xu, J. Xie et al., PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J. Nucl. Med. 49(8), 1371–1379 (2008)

    Article  Google Scholar 

  36. Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun et al., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2(1), 47–52 (2007)

    Article  ADS  Google Scholar 

  37. A.L. Petersen, T. Binderup, P. Rasmussen, J.R. Henriksen, D.R. Elema, A. Kjaer et al., 64Cu loaded liposomes as positron emission tomography imaging agents. Biomaterials 32(9), 2334–2341 (2011)

    Article  Google Scholar 

  38. J. Guo, X. Zhang, Q. Li, W. Li, Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl. Med. Biol. 34(5), 579–583 (2007)

    Article  MathSciNet  Google Scholar 

  39. R. Singh, D. Pantarotto, L. Lacerda, G. Pastorin, C. Klumpp, M. Prato et al., Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. U S A 103(9), 3357–3362 (2006)

    Article  ADS  Google Scholar 

  40. M.R. McDevitt, D. Chattopadhyay, B.J. Kappel, J.S. Jaggi, S.R. Schiffman, C. Antczak et al., Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J. Nucl. Med. 48(7), 1180–1189 (2007)

    Article  Google Scholar 

  41. R. Zhang, W. Lu, X. Wen, M. Huang, M. Zhou, D. Liang et al., Annexin A5-conjugated polymeric micelles for dual SPECT and optical detection of apoptosis. J. Nucl. Med. 52(6), 958–964 (2011)

    Article  Google Scholar 

  42. J.C. Park, M.K. Yu, G.I. An, S.I. Park, J. Oh, H.J. Kim et al., Facile preparation of a hybrid nanoprobe for triple-modality optical/PET/MR imaging. Small 6(24), 2863–2868 (2010)

    Article  Google Scholar 

  43. J. Lee, T.S. Lee, J. Ryu, S. Hong, M. Kang, K. Im et al., RGD peptide-conjugated multimodal NaGdF4:Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. J. Nucl. Med. 54(1), 96–103 (2013)

    Article  Google Scholar 

  44. J. Cao, Y. Wang, J. Yu, J. Xia, C. Zhang, D. Yin et al., Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy. J. Magn. Magn. Mater. 277(1–2), 165–174 (2004)

    Article  ADS  Google Scholar 

  45. S. Liang, Y. Wang, J. Yu, C. Zhang, J. Xia, D. Yin, Surface modified superparamagnetic iron oxide nanoparticles: as a new carrier for bio-magnetically targeted therapy. J. Mater. Sci. Mater. Med. 18(12), 2297–2302 (2007)

    Article  Google Scholar 

  46. Y.J. Chang, C.H. Chang, T.J. Chang, C.Y. Yu, L.C. Chen, M.L. Jan et al., Biodistribution, pharmacokinetics and microSPECT/CT imaging of 188Re-bMEDA-liposome in a C26 murine colon carcinoma solid tumor animal model. Anticancer Res. 27(4B), 2217–2225 (2007)

    Google Scholar 

  47. M. Luna-Gutiérrez, G. Ferro-Flores, B.E. Ocampo-García, C.L. Santos-Cuevas, N. Jiménez-Mancilla, L.M. De León-Rodríguez et al., A therapeutic system of 177Lu-labeled gold nanoparticles-RGD internalized in breast cancer cells. J. Mex. Chem. Soc. 57, 212–219 (2013)

    Google Scholar 

  48. Y.K. Lee, J.M. Jeong, L. Hoigebazar, B.Y. Yang, Y.-S. Lee, B.C. Lee et al., Nanoparticles modified by encapsulation of ligands with a long alkyl chain to affect multispecific and multimodal imaging. J. Nucl. Med. 53(9), 1462–1470 (2012)

    Article  Google Scholar 

  49. W. do Hwang, H.Y. Ko, J.H. Lee, H. Kang, S.H. Ryu, I.C. Song et al., A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J. Nucl. Med. 51(1), 98–105 (2010)

    Article  Google Scholar 

  50. I. Velikyan, Prospective of 68Ga-radiopharmaceutical development. Theranostics 4(1), 47–80 (2013)

    Article  Google Scholar 

  51. C.J. Anderson, R. Ferdani, Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother. Radiopharm. 24(4), 379–393 (2009)

    Article  Google Scholar 

  52. A. Niccoli Asabella, G.L. Cascini, C. Altini, D. Paparella, A. Notaristefano, G. Rubini, The copper radioisotopes: a systematic review with special interest to 64Cu. Biomed. Res. Int. 786463 (2014)

    Google Scholar 

  53. G. Fischer, U. Seibold, R. Schirrmacher, B. Wangler, C. Wangler, 89Zr, a radiometal nuclide with high potential for molecular imaging with PET: chemistry, applications and remaining challenges. Molecules 18(6), 6469–6490 (2013)

    Article  Google Scholar 

  54. B.L.R. Kam, J.J.M. Teunissen, E.P. Krenning, W.W. de Herder, S. Khan, E.I. van Vliet et al., Lutetium-labeled peptides for therapy of neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 39(1), 103–112 (2012)

    Article  Google Scholar 

  55. A. Sainz-Esteban, V. Prasad, C. Schuchardt, C. Zachert, J.M. Carril, R.P. Baum, Comparison of sequential planar 177Lu-DOTA-TATE dosimetry scans with 68Ga-DOTA-TATE PET/CT images in patients with metastasized neuroendocrine tumours undergoing peptide receptor radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 39(3), 501–511 (2012)

    Article  Google Scholar 

  56. V. Goffredo, A. Paradiso, G. Ranieri, C.D. Gadaleta, Yttrium-90 (90Y) in the principal radionuclide therapies: an efficacy correlation between peptide receptor radionuclide therapy, radioimmunotherapy and transarterial radioembolization therapy. Ten years of experience (1999–2009). Crit. Rev. Oncol. Hematol. 80(3), 393–410 (2011)

    Article  Google Scholar 

  57. H. Hong, Y. Zhang, J. Sun, W. Cai, Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today. 4(5), 399–413 (2009)

    Article  Google Scholar 

  58. J.M. Jeong, J.K. Chung, Therapy with 188Re-labeled radiopharmaceuticals: an overview of promising results from initial clinical trials. Cancer Biother. Radiopharm. 18(5), 707–717 (2003)

    Article  Google Scholar 

  59. L. Tian, Q. Chen, X. Yi, G. Wang, J. Chen, P. Ning et al., Radionuclide I-131 labeled albumin-paclitaxel nanoparticles for synergistic combined chemo-radioisotope therapy of cancer. Theranostics 7(3), 614–623 (2017)

    Article  Google Scholar 

  60. M.E. Akerman, W.C. Chan, P. Laakkonen, S.N. Bhatia, E. Ruoslahti, Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. U S A 99(20), 12617–12621 (2002)

    Article  ADS  Google Scholar 

  61. J.V. Jokerst, T. Lobovkina, R.N. Zare, S.S. Gambhir, Nanoparticle PEGylation for imaging and therapy. Nanomed. (Lond.) 6(4), 715–728 (2011)

    Article  Google Scholar 

  62. L.E. van Vlerken, T.K. Vyas, M.M. Amiji, Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm. Res. 24(8), 1405–1414 (2007)

    Article  Google Scholar 

  63. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control Release 65(1–2), 271–284 (2000)

    Article  Google Scholar 

  64. G.S. Kwon, Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carr. Syst. 20(5), 357–403 (2003)

    Article  Google Scholar 

  65. Y. Barenholz, Doxil(R)–the first FDA-approved nano-drug: lessons learned. J. Control Release 160(2), 117–134 (2012)

    Article  Google Scholar 

  66. J. Nam, N. Won, J. Bang, H. Jin, J. Park, S. Jung et al., Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliv. Rev. 65(5), 622–648 (2013)

    Article  Google Scholar 

  67. R.P. Baum, V. Prasad, D. Müller, C. Schuchardt, A. Orlova, A. Wennborg et al., Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J. Nucl. Med. 51(6), 892–897 (2010)

    Article  Google Scholar 

  68. O.C. Farokhzad, S. Jon, A. Khademhosseini, TNT Tran, DA LaVan, R. Langer, Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 64(21), 7668–7672 (2004)

    Article  Google Scholar 

  69. P.E. Saw, S. Kim, Lee I-h, J. Park, M. Yu, J. Lee et al., Aptide-conjugated liposome targeting tumor-associated fibronectin for glioma therapy. J. Mater. Chem. B Mater. Biol. Med. 1(37), 4723–4726 (2013)

    Article  Google Scholar 

  70. V.J. Ruigrok, M. Levisson, M.H. Eppink, H. Smidt, J. van der Oost, Alternative affinity tools: more attractive than antibodies? Biochem. J. 436(1), 1–13 (2011)

    Article  Google Scholar 

  71. A.M. Scott, J.D. Wolchok, L.J. Old, Antibody therapy of cancer. Nat. Rev. Cancer 12(4), 278–287 (2012)

    Article  Google Scholar 

  72. T.E. Witzig, L.I. Gordon, F. Cabanillas, M.S. Czuczman, C. Emmanouilides, R. Joyce et al., Randomized controlled trial of yttrium-90–labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed b-cell non-hodgkin’s lymphoma. J. Clin. Oncol. 20(10), 2453–2463 (2002)

    Article  Google Scholar 

  73. R.L. Wahl, Tositumomab and (131)I therapy in non-Hodgkin’s lymphoma. J. Nucl. Med. 46(Suppl 1), 128S–140S (2005)

    Google Scholar 

  74. H. Hong, Y. Zhang, G.W. Severin, Y. Yang, J.W. Engle, G. Niu et al., Multimodality imaging of breast cancer experimental lung metastasis with bioluminescence and a monoclonal antibody dual-labeled with 89Zr and IRdye 800cw. Mol. Pharm. 9(8), 2339–2349 (2012)

    Article  Google Scholar 

  75. R. Rezaeipoor, R. John, S.G. Adie, E.J. Chaney, M. Marjanovic, A.L. Oldenburg et al., Fc-directed antibody conjugation of magnetic nanoparticles for enhanced molecular targeting. J. Innov. Opt. Health Sci. 2(4), 387–396 (2009)

    Article  Google Scholar 

  76. S. Kumar, J. Aaron, K. Sokolov, Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protoc. 3(2), 314–320 (2008)

    Article  Google Scholar 

  77. M.M. Cardoso, I.N. Peca, A.C. Roque, Antibody-conjugated nanoparticles for therapeutic applications. Curr. Med. Chem. 19(19), 3103–3127 (2012)

    Article  Google Scholar 

  78. S. Jeong, J.Y. Park, M.G. Cha, H. Chang, Y.I. Kim, H.M. Kim et al., Highly robust and optimized conjugation of antibodies to nanoparticles using quantitatively validated protocols. Nanoscale 9(7), 2548–2555 (2017)

    Article  Google Scholar 

  79. H. Wang, Y.L. Liu, Y.H. Yang, T. Deng, G.L. Shen, R.Q. Yu, A protein A-based orientation-controlled immobilization strategy for antibodies using nanometer-sized gold particles and plasma-polymerized film. Anal. Biochem. 324(2), 219–226 (2004)

    Article  Google Scholar 

  80. S. Mazzucchelli, M. Colombo, C. De Palma, A. Salvade, P. Verderio, M.D. Coghi et al., Single-domain protein a-engineered magnetic nanoparticles: toward a universal strategy to site-specific labeling of antibodies for targeted detection of tumor cells. ACS Nano 4(10), 5693–5702 (2010)

    Article  Google Scholar 

  81. A. Makaraviciute, A. Ramanaviciene, Site-directed antibody immobilization techniques for immunosensors. Biosens. Bioelectron. 50, 460–471 (2013)

    Article  Google Scholar 

  82. M. Salehi, L. Schneider, P. Strobel, A. Marx, J. Packeisen, S. Schlucker, Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody-protein A/G-gold nanocluster conjugates. Nanoscale 6(4), 2361–2367 (2014)

    Article  ADS  Google Scholar 

  83. B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599), 1759–1762 (2002)

    Article  ADS  Google Scholar 

  84. H. Fan, K. Yang, D.M. Boye, T. Sigmon, K.J. Malloy, H. Xu et al., Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays. Science 304(5670), 567–571 (2004)

    Article  ADS  Google Scholar 

  85. H. Fan, E.W. Leve, C. Scullin, J. Gabaldon, D. Tallant, S. Bunge et al., Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Lett. 5(4), 645–648 (2005)

    Article  ADS  Google Scholar 

  86. O. Carion, B. Mahler, T. Pons, B. Dubertret, Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging. Nat. Protoc. 2(10), 2383–2390 (2007)

    Article  Google Scholar 

  87. H. Wu, H. Zhu, J. Zhuang, S. Yang, C. Liu, Y.C. Cao, Water-soluble nanocrystals through dual-interaction ligands. Angew. Chem. Int. Ed. Engl. 47(20), 3730–3734 (2008)

    Article  Google Scholar 

  88. A. Samanta, K.K. Maiti, K.S. Soh, X. Liao, M. Vendrell, U.S. Dinish et al., Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew. Chem. Int. Ed. Engl. 50(27), 6089–6092 (2011)

    Article  Google Scholar 

  89. B.-H. Jun, D.W. Hwang, H.S. Jung, J. Jang, H. Kim, H. Kang et al., Ultrasensitive, biocompatible, quantum-dot-embedded silica nanoparticles for bioimaging. Adv. Funct. Mater. 22(9), 1843–1849 (2012)

    Article  Google Scholar 

  90. B.Y. Yang, S.H. Moon, S.R. Seelam, M.J. Jeon, Y.S. Lee, D.S. Lee et al., Development of a multimodal imaging probe by encapsulating iron oxide nanoparticles with functionalized amphiphiles for lymph node imaging. Nanomed. (Lond.) 10(12), 1899–1910 (2015)

    Article  Google Scholar 

  91. D.S. Lee, Preparation of multifunctional multimodal nanoparticles using specific amphiphiles: click chemistry for nanoparticles. Annu. Congress Clinam (Abstr.) (2013)

    Google Scholar 

  92. D.S. Lee, In vivo application of Cu-64 labeled upconversion nanoparticles. Annu. Congress Clinam (Abstr.) (2014)

    Google Scholar 

  93. H. Kang, S. Jeong, Y. Park, J. Yim, B.-H. Jun, S. Kyeong et al., Near-infrared SERS nanoprobes with plasmonic Au/Ag hollow-shell assemblies for in vivo multiplex detection. Adv. Funct. Mater. 23(30), 3719–3727 (2013)

    Article  Google Scholar 

  94. K. Susumu, H.T. Uyeda, I.L. Medintz, T. Pons, J.B. Delehanty, H. Mattoussi, Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J. Am. Chem. Soc. 129(45), 13987–13996 (2007)

    Article  Google Scholar 

  95. J. Hrkach, D. Von Hoff, M. Mukkaram Ali, E. Andrianova, J. Auer, T. Campbell et al., Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4(128), 128ra39 (2012)

    Article  Google Scholar 

  96. F. Danhier, B. Vroman, N. Lecouturier, N. Crokart, V. Pourcelle, H. Freichels et al., Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J. Control Release 140(2), 166–173 (2009)

    Article  Google Scholar 

  97. D. Sarko, M. Eisenhut, U. Haberkorn, W. Mier, Bifunctional chelators in the design and application of radiopharmaceuticals for oncological diseases. Curr. Med. Chem. 19(17), 2667–2688 (2012)

    Article  Google Scholar 

  98. Y. Xing, J. Zhao, P.S. Conti, K. Chen, Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 4(3), 290–306 (2014)

    Article  Google Scholar 

  99. G.F.F. Enrique Morales-Avila, B.E. Ocampo-García, F. de María Ramírez, Radiolabeled Nanoparticles for Molecular Imaging, ed. by B. Schaller. (InTech) (2012)

    Google Scholar 

  100. T.J. Wadas, E.H. Wong, G.R. Weisman, C.J. Anderson, Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem. Rev. 110(5), 2858–2902 (2010)

    Article  Google Scholar 

  101. Y.-S. Lee, in Radiopharmaceutical Chemistry, ed. by E.E. Kim, U. Tateishi, R. Baum. Handbook of Nuclear Medicine and Molecular Imaging (World Scientific Publishing Co. Pte. Ltd, NJ, 2012) pp. 21–51

    Chapter  Google Scholar 

  102. W.T. Phillips, B.A. Goins, A. Bao, Radioactive liposomes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(1), 69–83 (2009)

    Article  Google Scholar 

  103. S. Jeger, K. Zimmermann, A. Blanc, J. Grunberg, M. Honer, P. Hunziker et al., Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew. Chem. Int. Ed. Engl. 49(51), 9995–9997 (2010)

    Article  Google Scholar 

  104. S. Goel, F. Chen, E.B. Ehlerding, W. Cai, Intrinsically radiolabeled nanoparticles: an emerging paradigm. Small 10(19), 3825–3830 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Soo Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, D.S., Suh, M., Lee, YS. (2018). Radiolabeling Method: Core/Surface Labeling, Chemical and Physical Labeling. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_11

Download citation

Publish with us

Policies and ethics