Skip to main content

Big Data Analytics for Scheduling and Machining

  • Chapter
  • First Online:
Book cover Cloud-Based Cyber-Physical Systems in Manufacturing
  • 1762 Accesses

Abstract

In modern manufacturing industries, defect prediction and prevention are the key features. In this context, this chapter introduces a big data analytics based approach to scheduling and machining. In order to minimise machining errors in advance, a big data analytics based fault prediction approach is presented first for shop-floor scheduling , where machining tasks, machining resources, and machining processes are represented by data attributes. Based on the available data on the shop floor, the potential fault/error patterns, referring to machining errors, machine faults, maintenance states etc., are mined to discover unsuitable scheduling arrangements before machining as well as upcoming errors during machining. Targeting a global machining optimisation , this chapter then presents a big data analytics based optimisation method for machining process planning. Within the context, the machining factors are represented by data attributes, i.e. workpiece, machining requirement, machine tool, cutting tool, machine condition, machining process, machining result, etc. The problem of machining optimisation is treated as a statistical problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.C. Tryon, Cluster Analysis: Correlation Profile and Orthometric (factor) Analysis for the Isolation of Unities in Mind and Personality (Edwards Brothers, 1939)

    Google Scholar 

  2. D.B. Kenneth, Numerical Taxonomy and Cluster Analysis (SAGE Publications, 1994)

    Google Scholar 

  3. D.J. Bartholomew, F. Steele, J. Galbraith, I. Moustaki, Analysis of Multivariate Social Science Data (Taylor & Francis, 2008)

    Google Scholar 

  4. J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A.H. Byers, Big Data: The Next Frontier for Innovation, Competition, and Productivity (McKinsey Global Institute, 2011)

    Google Scholar 

  5. D. Hand, H. Mannila, P. Smyth, Principles of Data Mining (The MIT Press, Cambridge, Massachusetts, London, England, 2001)

    Google Scholar 

  6. K. Dnuggets, What Analytics, Data Mining, Data Science Software/Tools You Used in the Past 12 Months for a Real Project Poll (2016)

    Google Scholar 

  7. A.S. Manne, On the Job-Shop Scheduling Problem. Oper. Res. 8(2), 219–223 (1960)

    Article  MathSciNet  Google Scholar 

  8. G. Laporte, J.J. Salazar-GonzÁLez, F. Semet, Exact algorithms for the job sequencing and tool switching problem. IIE Trans. 36(1), 37–45 (2004)

    Article  Google Scholar 

  9. P. Asokan, J. Jerald, S. Arunachalam, T. Page, Application of adaptive genetic algorithm and particle swarm optimisation in scheduling of jobs and AS/RS in FMS. Int. J. Manuf. Res. 3(4), 393–405 (2008)

    Article  Google Scholar 

  10. B. Khoshnevis, Q.M. Chen, Integration of process planning and scheduling functions. J. Intell. Manuf. 2(3), 165–175 (1991)

    Article  Google Scholar 

  11. Q. Chen, B. Khoshnevis, Scheduling with flexible process plans. Prod. Plan. Control 4(4), 333–343 (1993)

    Article  Google Scholar 

  12. W. Tan, B. Khoshnevis, Integration of process planning and scheduling—A review. J. Intell. Manuf. 11(1), 51–63 (2000)

    Article  Google Scholar 

  13. P. Mohapatra, A. Nayak, S.K. Kumar, M.K. Tiwari, Multi-objective process planning and scheduling using controlled elitist non-dominated sorting genetic algorithm. Int. J. Prod. Res. 53(6), 1712–1735 (2014)

    Article  Google Scholar 

  14. M. Freitag, T. Hildebrandt, Automatic design of scheduling rules for complex manufacturing systems by multi-objective simulation-based optimization. CIRP Ann.—Manuf. Technol. 65(1), 433–436 (2016)

    Article  Google Scholar 

  15. X. Li, L. Gao, C. Zhang, X. Shao, A review on Integrated Process Planning and Scheduling. Int. J. Manuf. Res. 5(2), 161–180 (2010)

    Article  Google Scholar 

  16. M. Rajkumar, P. Asokan, T. Page, S. Arunachalam, A GRASP algorithm for the integration of process planning and scheduling in a flexible job-shop. Int. J. Manuf. Res. 5(2), 230–251 (2010)

    Article  Google Scholar 

  17. C. Gahm, F. Denz, M. Dirr, A. Tuma, Energy-efficient scheduling in manufacturing companies: a review and research framework. Eur. J. Oper. Res. 248(3), 744–757 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. P.M. Khodke, A.S. Bhongade, Real-time scheduling in manufacturing system with machining and assembly operations: a state of art. Int. J. Prod. Res. 51(16), 4966–4978 (2013)

    Article  Google Scholar 

  19. G.E. Vieira, J.W. Herrmann, E. Lin, Rescheduling manufacturing systems: a framework of strategies, policies, and methods. J. Sched. 6(1), 39–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Ham, Y.H. Lee, S.H. Kim, Real-time scheduling of multi-stage flexible job shop floor. Int. J. Prod. Res. 49(12), 3715–3730 (2011)

    Article  Google Scholar 

  21. K. Iwamura, N. Okubo, Y. Tanimizu, N. Sugimura, Real-time scheduling for holonic manufacturing systems based on estimation of future status. Int. J. Prod. Res. 44(18–19), 3657–3675 (2006)

    Article  MATH  Google Scholar 

  22. C. Wang, H. Ghenniwa, W. Shen, Real time distributed shop floor scheduling using an agent-based service-oriented architecture. Int. J. Prod. Res. 46(9), 2433–2452 (2008)

    Article  MATH  Google Scholar 

  23. Y. Yih, A. Thesen, Semi-Markov decision models for real-time scheduling. Int. J. Prod. Res. 29(11), 2331–2346 (1991)

    Article  MATH  Google Scholar 

  24. R. Zhou, H.P. Lee, A.Y.C. Nee, Applying Ant Colony Optimisation (ACO) algorithm to dynamic job shop scheduling problems. Int. J. Manuf. Res. 3(3), 301–320 (2008)

    Article  Google Scholar 

  25. G. Metan, I. Sabuncuoglu, H. Pierreval, Real time selection of scheduling rules and knowledge extraction via dynamically controlled data mining. Int. J. Prod. Res. 48(23), 6909–6938 (2010)

    Article  Google Scholar 

  26. V.K. Jain, S. Premalatha, N. Baskar, Implementation of supervised statistical data mining algorithm for single machine scheduling. J. Adv. Manag. Res. 9(2), 170–177 (2012)

    Article  Google Scholar 

  27. W. Kohn, V. Brayman, J. Littleton, Repair-control of enterprise systems using RFID sensory data. IIE Trans. 37(4), 281–290 (2005)

    Article  Google Scholar 

  28. C. Wang, P. Jiang, Manifold learning based rescheduling decision mechanism for recessive disturbances in RFID-driven job shops (J. Intell, Manuf, 2016)

    Google Scholar 

  29. T. Qu, H.D. Yang, G.Q. Huang, Y.F. Zhang, H. Luo, W. Qin, A case of implementing RFID-based real-time shop-floor material management for household electrical appliance manufacturers. J. Intell. Manuf. 23(6), 2343–2356 (2012)

    Article  Google Scholar 

  30. X. Xu, L. Wang, S.T. Newman, Computer-aided process planning—A critical review of recent developments and future trends. Int. J. Comput. Integr. Manuf. 24(1), 1–31 (2011)

    Article  Google Scholar 

  31. M.S. Chua, H.T. Loh, Y.S. Wong, Optimization of cutting conditions for multi-pass turning operations using sequential quadratic programming. J. Mater. Process. Technol. 28(1–2), 253–262 (1991)

    Article  Google Scholar 

  32. S.H. Yeo, A multipass optimization strategy for CNC lathe operations. Int. J. Prod. Econ. 40(2–3), 209–218 (1995)

    Article  Google Scholar 

  33. M.S. Akturk, S. Avci, An integrated process planning approach for CNC machine tools. Int. J. Adv. Manuf. Technol. 12(3), 221–229 (1996)

    Article  Google Scholar 

  34. I. Lazoglu, S.Y. Liang, Analytical modeling of force system in ball-end milling. Mach. Sci. Technol. 1(2), 219–234 (1997)

    Article  Google Scholar 

  35. Y.K. Yang, M.T. Chuang, S.S. Lin, Optimization of dry machining parameters for high-purity graphite in end milling process via design of experiments methods. J. Mater. Process. Technol. 209(9), 4395–4400 (2009)

    Article  Google Scholar 

  36. C.C. Chen, K.T. Chiang, C.C. Chou, Y.C. Liao, The use of D-optimal design for modeling and analyzing the vibration and surface roughness in the precision turning with a diamond cutting tool. Int. J. Adv. Manuf. Technol. 54(5–8), 465–478 (2011)

    Article  Google Scholar 

  37. W. Ji, X. Liu, L. Wang, S. Sun, Experimental evaluation of polycrystalline diamond (PCD) tool geometries at high feed rate in milling of titanium alloy TC11. Int. J. Adv. Manuf. Technol. 77(9–12), 1549–1555 (2015)

    Article  Google Scholar 

  38. J. Zhang, S.Y. Liang, D. Yen, Optimisation of the finish hard turning process for hardened 52100 steel with PCBN tools. Int. J. Manuf. Res. 2(4), 428–447 (2007)

    Article  Google Scholar 

  39. W. Li, S.K. Ong, A.Y.C. Nee, Optimization of process plans using a constraint-based tabu search approach. Int. J. Prod. Res. 42(10), 1955–1985 (2004)

    Article  MATH  Google Scholar 

  40. J.G. Taiber, Optimization of process sequences considering prismatic workpieces. Adv. Eng. Softw. 25(1), 41–50 (1996)

    Article  Google Scholar 

  41. S.Y. Wei, C.C. Lo, C.A. Chang, Using throughput profit for selecting manufacturing process plan. Comput. Ind. Eng. 32(4), 939–948 (1997)

    Article  Google Scholar 

  42. G.H. Ma, Y.F. Zhang, A.Y.C. Nee, A simulated annealing-based optimization algorithm for process planning. Int. J. Prod. Res. 38(12), 2671–2687 (2000)

    Article  Google Scholar 

  43. D.H. Lee, D. Kiritsis, P. Xirouchakis, Search heuristics for operation sequencing in process planning. Int. J. Prod. Res. 39(16), 3771–3788 (2001)

    Article  MATH  Google Scholar 

  44. D.H. Lee, D. Kiritsis, P. Xirouchakis, Branch and fathoming algorithms for operation sequencing in process planning. Int. J. Prod. Res. 39(8), 1649–1669 (2001)

    Article  MATH  Google Scholar 

  45. D.H. Lee, D. Kiritsis, P. Xirouchakis, Iterative approach to operation selection and sequencing in process planning. Int. J. Prod. Res. 42(22), 4745–4766 (2004)

    Article  MATH  Google Scholar 

  46. Y.C. Wang, T. Chen, Modelling and optimization of machining conditions for the multi-pass dry turning process. Proc. Inst. Mech. Eng. Part B-Journal Eng. Manuf. 222(11), 1387–1394 (2008)

    Google Scholar 

  47. K. Abhishek, S. Datta, S.S. Mahapatra, Multi-objective optimization in drilling of CFRP (polyester) composites: application of a fuzzy embedded harmony search (HS) algorithm. Measurement 77, 222–239 (2016)

    Article  Google Scholar 

  48. D.P. Gupta, B. Gopalakrishnan, S.A. Chaudhari, S. Jalali, Development of an integrated model for process planning and parameter selection for machining processes. Int. J. Prod. Res. 49(21), 6301–6319 (2011)

    Article  Google Scholar 

  49. A. Sluga, M. Jermol, D. Zupanic, D. Mladenic, Machine learning approach to analysis. Comput. Ind. 37(3), 185–196 (1998)

    Article  Google Scholar 

  50. L. Monostori, Z.J. Viharos, S. Markos, Satisfying various requirements in different levels and stages of machining using one general ANN-based process model. J. Mater. Process. Technol. 107(1–3), 228–235 (2000)

    Article  Google Scholar 

  51. W.D. Li, S.K. Ong, A.Y.C. Nee, Hybrid genetic algorithm and simulated annealing approach for the optimization of process plans for prismatic parts. Int. J. Prod. Res. 40(8), 1899–1922 (2002)

    Article  MATH  Google Scholar 

  52. T.N. Wong, L.C.F. Chan, H.C.W. Lau, Machining process sequencing with fuzzy expert system and genetic algorithms. Eng. Comput. 19(2–3), 191–202 (2003)

    Article  Google Scholar 

  53. M. Salehi, A. Bahreininejad, Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining. J. Intell. Manuf. 22(4), 643–652 (2011)

    Article  Google Scholar 

  54. M. Petrovic, M. Mitic, N. Vukovic, Z. Miljkovic, Chaotic particle swarm optimization algorithm for flexible process planning. Int. J. Adv. Manuf. Technol. 85(9–12), 2535–2555 (2016)

    Article  Google Scholar 

  55. A.K. Choudhary, J.A. Harding, M.K. Tiwari, Data mining in manufacturing: a review based on the kind of knowledge. J. Intell. Manuf. 20(5), 501–521 (2008)

    Article  Google Scholar 

  56. Y. Zhang, S. Ren, Y. Liu, S. Si, A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. J. Clean. Prod (2016)

    Google Scholar 

  57. R.Y. Zhong, G.Q. Huang, S. Lan, Q.Y. Dai, X. Chen, T. Zhang, A big data approach for logistics trajectory discovery from RFID-enabled production data. Int. J. Prod. Econ. 165, 260–272 (2015)

    Article  Google Scholar 

  58. R.F. Babiceanu, R. Seker, Big data and virtualization for manufacturing cyber-physical systems: a survey of the current status and future outlook. Comput. Ind. 81, 128–137 (2016)

    Article  Google Scholar 

  59. J. Woo, S.J. Shin, W. Seo, Developing a big data analytics platform for increasing sustainability performance in machining operations (Flexible Automation and Intelligent Manufacturing, Seoul, Korea, 2016), pp. 1–8

    Google Scholar 

  60. W. Ji, L. Wang, Big data analytics based fault prediction for shop floor scheduling. J. Manuf. Syst. 43, 187–194 (2017)

    Article  Google Scholar 

  61. H. Müller, Problems, methods, and challenges in comprehensive data cleansing (Humboldt-Universität zu Berlin zu Berlin, Berlin, Germany, 2005)

    Google Scholar 

  62. M. Lenzerini, Data integration: a theoretical perspective, in Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium (2002), pp. 233–246

    Google Scholar 

  63. J.R. Quinlan, Simplifying decision trees. Int. J. Man Mach. Stud. 27(3), 221–234 (1987)

    Article  Google Scholar 

  64. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (Prentice Hall, Egnlewood Cliffs, New Jersey, 1995)

    MATH  Google Scholar 

  65. T.D. Nielsen, F.V. Jensen, Bayesian Networks and Decision Graphs (Springer Science & Business Media, 2009)

    Google Scholar 

  66. M.T. Hagan, H.B. Demuth, M.H. Beale, O. De Jesús, Neural Network Design (PWS Publishing Company Boston, Boston, MA, US, 1996)

    Google Scholar 

  67. C. Cortes, V. Vapnik, Support vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  68. R. Agrawal, R. Srikant, Fast algorithms for mining association rules. Proc. 20th Int. Conf. Very Large Data Bases 1215, 487–499 (1994)

    Google Scholar 

  69. D.W. Aha, Lazy learning, in Lazy Learning, ed. by W.A. David (Kluwer Academic Publishers, 1997), pp. 7–10

    Google Scholar 

  70. M. Melanie, An Introduction to Genetic Algorithms (MIT Press, Cambridge, Massachusetts, London, England, 1999)

    MATH  Google Scholar 

  71. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data (Springer, Netherlands, 1991)

    Book  MATH  Google Scholar 

  72. L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  73. J. Han, J. Pei, M. Kamber, Data Mining: Concepts and Techniques (Elsevier, 2011)

    Google Scholar 

  74. W. Ji, L. Wang, Big data analytics based optimisation for enriched process planning: a methodology. Procedia CIRP 63, 161–166 (2017)

    Article  Google Scholar 

  75. L. Wang, W. Shen, DPP: An agent-based approach for distributed process planning. J. Intell. Manuf. 14(5), 429–439 (2003)

    Article  Google Scholar 

  76. L. Wang, H.Y. Feng, N. Cai, Architecture design for distributed process planning. J. Manuf. Syst. 22(2), 99–115 (2003)

    Article  Google Scholar 

  77. L. Wang, Web-based decision making for collaborative manufacturing. Int. J. Comput. Integr. Manuf. 22(4), 334–344 (2009)

    Article  Google Scholar 

  78. L. Wang, Machine availability monitoring and machining process planning towards Cloud manufacturing. CIRP J. Manuf. Sci. Technol. 6(4), 263–273 (2013)

    Article  Google Scholar 

  79. L. Wang, Cyber manufacturing: research and applications, in Proceedings of the TMCE, Budapest (2014), pp. 39–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihui Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., Wang, X.V. (2018). Big Data Analytics for Scheduling and Machining. In: Cloud-Based Cyber-Physical Systems in Manufacturing . Springer, Cham. https://doi.org/10.1007/978-3-319-67693-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67693-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67692-0

  • Online ISBN: 978-3-319-67693-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics