Advertisement

A Technology for Prediction and Prevention of Freezing of Gait (FOG) in Individuals with Parkinson Disease

  • Megh PatelEmail author
  • Gottumukala Sai Rama Krishna
  • Abhijit Das
  • Uttama Lahiri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10515)

Abstract

External cueing in the form of visual, auditory or vibratory cue is useful to avoid freezing of gait (FOG) problem commonly experienced by individuals with Parkinson Disease (PD). The currently available technology-assisted solutions are of limited help because of two main issues: (i) the use of accelerometer or gyro-based wearable sensors for prediction of FOG are noise prone and (ii) deliver external cues without any individualization. In our present research, we have designed a low-cost system that can be attached as an add-on module on ordinary walking stick that can (i) predict freezing of gait (ii) deliver visual, auditory and/or vibratory cues in an individualized manner. We conducted a preliminary study with one PD participant. The preliminary results show potential of our system to reduce freezing counts, increase average step length and walk speed of the participant.

Keywords

Parkinson’s Disease (PD) Cues Freezing of gait(FOG) Gait analysis 

References

  1. 1.
    Hauser, R.A., et al.: Parkinson disease: practice essentials, background, anatomy (2016). http://emedicine.medscape.com/article/1831191-overview. Accessed 28 June 2016
  2. 2.
    Parkinson’s Disease Foundation 2016. Statistics on Parkinson’s - Parkinson’s disease foundation (2016). http://www.pdf.org/en/parkinson_statistics. Accessed 28 June 2016
  3. 3.
    Okuma, Y.: Freezing of gait in Parkinson’s disease. J. Neurol. 253(7), vii27–vii32 (2006)Google Scholar
  4. 4.
    Rubinstein, T.C., Giladi, N., Hausdorff, J.M.: The power of cueing to circumvent dopamine deficits: a review of physical therapy treatment of gait disturbances in Parkinson’s disease. Mov. Disord. 17(6), 1148–1160 (2002)CrossRefGoogle Scholar
  5. 5.
    Lim, I., van Wegen, E., de Goede, C., Deutekom, M., Nieuwboer, A., Willems, A., Jones, D., Rochester, L., Kwakkel, G.: Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clin. Rehabil. 19(7), 695–713 (2005)CrossRefGoogle Scholar
  6. 6.
    Lewis, G.N., Byblow, W.D., Walt, S.E.: Stride length regulation in Parkinson’s disease: the use of extrinsic, visual cues. Brain J. Neurol. 123(10), 2077–2090 (2000)CrossRefGoogle Scholar
  7. 7.
    Soneji, M.: Empathy is the key to great innovation. Video, February 2015. https://www.ted.com/speakers/mileha_soneji. Accessed 12 Sept 2016
  8. 8.
    Dietz, M.A., Goetz, C.G., Stebbins, G.T.: Evaluation of a modified inverted walking stick as a treatment for parkinsonian freezing episodes. Mov. Disord. 5(3), 243–247 (1990)CrossRefGoogle Scholar
  9. 9.
    Zhao, Y., Ramesberger, S., Fietzek, U.M., D’Angelo, L.T., Lüth, T.C.: A novel wearable laser device to regulate stride length in Parkinson’s disease. In: 35th Annual IEEE Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 5895–5898. IEEE (2013)Google Scholar
  10. 10.
    McNaney, R., Vines, J., Roggen, D., Balaam, M., Zhang, P., Poliakov, I., Olivier, P.: Exploring the acceptability of Google glass as an everyday assistive device for people with parkinson’s. In: 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 2551–2554. ACM (2014)Google Scholar
  11. 11.
    Lopez, W.O.C., Higuera, C.A.E., Fonoff, E.T., de Oliveira, C., Souza, U.A., Martinez, J.A.E.: Listenmee® and Listenmee® smartphone application: synchronizing walking to rhythmic auditory cues to improve gait in Parkinson’s disease. Hum. Mov. Sci. 37(2014), 147–156 (2014)CrossRefGoogle Scholar
  12. 12.
    Winfree, K.N., Pretzer-Aboff, I., Hilgart, D., Aggarwal, R., Behari, M., Agrawal, S.K.: The effect of step-synchronized vibration on patients with Parkinson’s disease: case studies on subjects with freezing of gait or an implanted deep brain stimulator. IEEE Trans. Neural Syst. Rehabil. Eng. 21(5), 806–811 (2013)CrossRefGoogle Scholar
  13. 13.
    Parkinson’s Disease Foundation. http://www.pdf.org/en/symptoms
  14. 14.
    Mazilu, S., Blanke, U., Tröster, G.: Gait, wrist, and sensors: detecting freezing of gait in Parkinson’s disease from wrist movement. In: IEEE International Conference on Pervasive Computing and Communication Workshops, pp. 579–584. IEEE (2015)Google Scholar
  15. 15.
    Jovanov, E., Wang, E., Verhagen, L., Fredrickson, M., Fratangelo, R.: deFOG—A real time system for detection and unfreezing of gait of Parkinson’s patients. In: IEEE Annual International Conference of the Engineering in Medicine and Biology Society, pp. 5151–5154 (2009)Google Scholar
  16. 16.
    Bhidayasiri, R., Tarsy, D.: Parkinson’s disease: Hoehn and Yahr scale. In: Movement Disorders: A Video Atlas, pp. 4–5. Humana Press (2012)Google Scholar
  17. 17.
    Lamberti, P., Armenise, S., Castaldo, V., de Mari, M., Iliceto, G., Tronci, P., Serlenga, L.: Freezing gait in Parkinson’s disease. Eur. Neurol. 38(4), 297–301 (1997)CrossRefGoogle Scholar
  18. 18.
    Williams, A.J., Peterson, D.S., Earhart, G.M.: Gait coordination in Parkinson disease: effects of step length and cadence manipulations. Gait Posture 38(2), 340–344 (2013)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Megh Patel
    • 1
    Email author
  • Gottumukala Sai Rama Krishna
    • 1
  • Abhijit Das
    • 2
  • Uttama Lahiri
    • 1
  1. 1.Department of Electrical EngineeringIndian Institute of Technology GandhinagarGandhinagarIndia
  2. 2.AMRI Institute of NeurosciencesKolkataIndia

Personalised recommendations