Your Data, Your Vis: Personalizing Personal Data Visualizations

  • Hanna SchneiderEmail author
  • Katrin Schauer
  • Clemens Stachl
  • Andreas Butz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10515)


Personal Visualizations (PV) provide visual feedback on personal data, e.g., regarding physical activity or energy consumption. They are a vital part of many behavior change technologies (BCT) and Personal Informatics tools. Feedback can be presented in various ways, for example using counts and graphs, stylized displays, metaphoric displays, narrative information, data physicalisations, or even living plants. The properties of a PV are likely to influence its effectiveness towards reaching a goal. However, users’ perceptions and preferences regarding different PVs seem to vary strongly, rendering a one-size-fits-all approach unsuitable. To investigate whether preferences for certain PVs coincide with personality or gender, we conducted a lab study with three example PVs: Donut, Glass, and Creature. Indeed, the results of our lab study are a first indicator that there is a relationship between personality traits and preferences for different PVs. High scores on extraversion and openness, for example, positively correlated with a preference for Creature. In contrast, high scores in conscientiousness negatively correlated with a preference for Creature. Further research is necessary to better understand how truly personalized PVs can be realized, which, in turn, might fit better into people’s lives and thereby be more effective.


Personal informatics Visualization Personality Behavior change 


  1. 1.
    Arendasy, M.: BFSI: Big-Five Struktur-Inventar (Test & Manual). SCHUHFRIED GmbH, Mödling (2009)Google Scholar
  2. 2.
    Asendorpf, J.B., Neyer, F.J.: Psychologie der Persönlichkeit. Springer, Berlin (2012)Google Scholar
  3. 3.
    Ashton, M.C., Lee, K., Paunonen, S.V.: What is the central feature of extraversion? Social attention versus reward sensitivity. J. Pers. Soc. Psychol. 83(1), 245–252 (2002)CrossRefGoogle Scholar
  4. 4.
    Bateman, S., Mandryk, R.L., Gutwin, C., Genest, A., McDine, D., Brooks, C.: Useful junk? The effects of visual embellishment on comprehension and memorability of charts. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2010, pp. 2573–2582. ACM, New York (2010).
  5. 5.
    Botros, F., Perin, C., Aseniero, B.A., Carpendale, S.: Go and grow: mapping personal data to a living plant. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, AVI 2016, pp. 112–119. ACM, New York (2016).
  6. 6.
    Brynjarsdottir, H., Håkansson, M., Pierce, J., Baumer, E., DiSalvo, C., Sengers, P.: Sustainably unpersuaded: how persuasion narrows our vision of sustainability. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2012, pp. 947–956. ACM, New York (2012).
  7. 7.
    Choe, E.K., Lee, B., Munson, S., Pratt, W., Kientz, J.A.: Persuasive performance feedback: the effect of framing on self-efficacy. In: AMIA Annual Symposium Proceedings, vol. 2013, p. 825. American Medical Informatics Association (2013)Google Scholar
  8. 8.
    Choe, E.K., Lee, N.B., Lee, B., Pratt, W., Kientz, J.A.: Understanding quantified-selfers’ practices in collecting and exploring personal data. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2014, pp. 1143–1152. ACM, New York (2014).
  9. 9.
    Conati, C., Carenini, G., Toker, D., Lalle, S.: Towards user-adaptive information visualization (2015).
  10. 10.
    Conati, C., Maclaren, H.: Exploring the role of individual differences in information visualization. In: Proceedings of the Working Conference on Advanced Visual Interfaces, AVI 2008, pp. 199–206. ACM, New York (2008).
  11. 11.
    Consolvo, S., Klasnja, P., McDonald, D.W., Landay, J.A.: Designing for healthy lifestyles: design considerations for mobile technologies to encourage consumer health and wellness. Found. Trends Hum.-Comput. Interact. 6(3–4), 167–315 (2014). Google Scholar
  12. 12.
    Consolvo, S., McDonald, D.W., Toscos, T., Chen, M.Y., Froehlich, J., Harrison, B., Klasnja, P., LaMarca, A., LeGrand, L., Libby, R., Smith, I., Landay, J.A.: Activity sensing in the wild: a field trial of ubifit garden. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2008, pp. 1797–1806. ACM, New York (2008).
  13. 13.
    Costa, P.T., McCrae, R.R.: Four ways five factors are basic. Pers. Individ. Differ. 13(6), 653–665 (1992). CrossRefGoogle Scholar
  14. 14.
    Deci, E.L.: The relation of interest to the motivation of behavior: a self-determination theory perspective (1992)Google Scholar
  15. 15.
    DeYoung, C.G.: Openness/intellect: a dimension of personality reflecting cognitive exploration. In: Mikulincer, M., Shaver, P.R., Cooper, M.L., Larsen, R.J. (eds.) APA handbook of personality and social psychology, Volume 4: Personality processes and individual differences, pp. 369–399. APA handbooks in psychology, American Psychological Association, Washington (2015)Google Scholar
  16. 16.
    Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D., Lautenbach, S.: Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1), 27–46 (2013).
  17. 17.
    Eikey, E., Poole, E., Reddy, M.: Information presentation in health apps and devices: the effect of color, distance to goal, weight perception, and interest on users’ self-efficacy for accomplishing goals. In: iConference 2015 Proceedings (2015)Google Scholar
  18. 18.
    Epstein, D., Cordeiro, F., Bales, E., Fogarty, J., Munson, S.: Taming data complexity in lifelogs: exploring visual cuts of personal informatics data. In: Proceedings of the 2014 Conference on Designing Interactive Systems, DIS 2014, pp. 667–676. ACM, New York (2014).
  19. 19.
    Goetz, J.L., Keltner, D., Simon-Thomas, E.: Compassion: an evolutionary analysis and empirical review. Psychol. Bull. 136(3), 351 (2010)CrossRefGoogle Scholar
  20. 20.
    Goldberg, L.: Language and individual differences: the search for universals in personality lexicons. Rev. Pers. Soc. Psychol. 2, 141–165 (1981). Beverly Hills, CAGoogle Scholar
  21. 21.
    Gouveia, R., Pereira, F., Karapanos, E., Munson, S.A., Hassenzahl, M.: Exploring the design space of glanceable feedback for physical activity trackers. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2016, pp. 144–155. ACM, New York (2016)
  22. 22.
    Green, T.M., Fisher, B.: Towards the personal equation of interaction: the impact of personality factors on visual analytics interface interaction. In: 2010 IEEE Symposium on Visual Analytics Science and Technology (VAST), pp. 203–210. IEEE (2010)Google Scholar
  23. 23.
    Green, T.M., Fisher, B.: Impact of personality factors on interface interaction and the development of user profiles: next steps in the personal equation of interaction. Inf. Vis. 11(3), 205–221 (2012). CrossRefGoogle Scholar
  24. 24.
    Haroz, S., Kosara, R., Franconeri, S.L.: Isotype visualization: working memory, performance, and engagement with pictographs. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 1191–1200. ACM (2015)Google Scholar
  25. 25.
    Hekler, E.B., Klasnja, P., Froehlich, J.E., Buman, M.P.: Mind the theoretical gap: interpreting, using, and developing behavioral theory in hci research. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 3307–3316. ACM, New York (2013)Google Scholar
  26. 26.
    Huang, D., Tory, M., Aseniero, B.A., Bartram, L., Bateman, S., Carpendale, S., Tang, A., Woodbury, R.: Personal visualization and personal visual analytics. IEEE Trans. Vis. Comput. Graph. 21(3), 420–433 (2015)CrossRefGoogle Scholar
  27. 27.
    Jensen-Campbell, L., Graziano, W.G.: Agreeableness as a moderator of interpersonal conflict. J. Pers. 69(2), 323–361 (2001)CrossRefGoogle Scholar
  28. 28.
    Kuznetsov, S., Paulos, E.: Upstream: motivating water conservation with low-cost water flow sensing and persuasive displays. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2010, pp. 1851–1860. ACM, New York (2010).
  29. 29.
    Landers, R.N., Lounsbury, J.W.: An investigation of big five and narrow personality traits in relation to internet usage. Comput. Hum. Behav. 22(2), 283–293 (2006). CrossRefGoogle Scholar
  30. 30.
    Lane, N.D., Lin, M., Mohammod, M., Yang, X., Lu, H., Cardone, G., Ali, S., Doryab, A., Berke, E., Campbell, A.T., Choudhury, T.: Bewell: sensing sleep, physical activities and social interactions to promote wellbeing. Mob. Netw. Appl. 19(3), 345–359 (2014). CrossRefGoogle Scholar
  31. 31.
    Li, H., Moacdieh, N.: Is “chart junk” useful? An extended examination of visual embellishment. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 58, no. 1, pp. 1516–1520 (2014).
  32. 32.
    MacCann, C., Duckworth, A.L., Roberts, R.D.: Empirical identification of the major facets of conscientiousness. Learn. Individ. Differ. 19(4), 451–458 (2009)CrossRefGoogle Scholar
  33. 33.
    Maio, G.R., Esses, V.M.: The need for affect: individual differences in the motivation to approach or avoid emotions. J. Pers. 69(4), 583–614 (2001). CrossRefGoogle Scholar
  34. 34.
    Marti, P., Pollini, A., Rullo, A., Shibata, T.: Engaging with artificial pets. In: Proceedings of the 2005 Annual Conference on European Association of Cognitive Ergonomics, EACE 2005, pp. 99–106, University of Athens (2005).
  35. 35.
    Norman, D.: Emotion & design: attractive things work better. Interactions 9(4), 36–42 (2002)CrossRefGoogle Scholar
  36. 36.
    Jaeger, R.G., Halliday, T.R.: On confirmatory versus exploratory research. Herpetologica 54, S64–S66 (1998). Google Scholar
  37. 37.
    Singh, V.K., Agarwal, R.R.: Cooperative phoneotypes: exploring phone-based behavioral markers of cooperation. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2016, pp. 646–657. ACM, New York (2016)
  38. 38.
    Stusak, S., Tabard, A., Sauka, F., Khot, R.A., Butz, A.: Activity sculptures: exploring the impact of physical visualizations on running activity. IEEE Trans. Vis. Comput. Graph. 20(12), 2201–2210 (2014)CrossRefGoogle Scholar
  39. 39.
    Thieme, A., Comber, R., Miebach, J., Weeden, J., Kraemer, N., Lawson, S., Olivier, P.: “we’ve bin watching you": designing for reflection and social persuasion to promote sustainable lifestyles. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2012, pp. 2337–2346. ACM, New York (2012).
  40. 40.
    Tollmar, K., Bentley, F., Viedma, C.: Mobile health mashups: making sense of multiple streams of wellbeing and contextual data for presentation on a mobile device. In: 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, pp. 65–72, May 2012Google Scholar
  41. 41.
    Velez, M.C., Silver, D., Tremaine, M.: Understanding visualization through spatial ability differences. In: IEEE Visualization, VIS 2005, pp. 511–518. IEEE (2005)Google Scholar
  42. 42.
    Welke, P., Andone, I., Blaszkiewicz, K., Markowetz, A.: Differentiating smartphone users by app. usage. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 519–523. UbiComp 2016. ACM, New York (2016).
  43. 43.
    Witt, E.A., Massman, A.J., Jackson, L.A.: Trends in youth’s videogame playing, overall computer use, and communication technology use: the impact of self-esteem and the big five personality factors. Comput. Hum. Behav. 27(2), 763–769 (2011). web 2.0 in Travel and Tourism: Empowering and Changing the Role of Travelers
  44. 44.
    Yarkoni, T.: Personality in 100,000 words: a large-scale analysis of personality and word use among bloggers. J. Res. Pers. 44(3), 363–373 (2010). CrossRefGoogle Scholar
  45. 45.
    Ziegler, M., Bensch, D., Maaß, U., Schult, V., Vogel, M., Bühner, M.: Big Five facets as predictor of job training performance: the role of specific job demands. Learn. Individ. Differ. 29, 1–7 (2014)CrossRefGoogle Scholar
  46. 46.
    Ziemkiewicz, C., Kosara, R.: Preconceptions and individual differences in understanding visual metaphors. In: Proceedings of the 11th Eurographics/IEEE - VGTC Conference on Visualization, EuroVis 2009, pp. 911–918. The Eurographs Association, John Wiley and Sons Ltd., Chichester (2009).

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Hanna Schneider
    • 1
    Email author
  • Katrin Schauer
    • 1
  • Clemens Stachl
    • 1
  • Andreas Butz
    • 1
  1. 1.LMU MunichMunichGermany

Personalised recommendations