Advertisement

Text Priming - Effects of Text Visualizations on Readers Prior to Reading

  • Tilman DinglerEmail author
  • Dagmar Kern
  • Katrin Angerbauer
  • Albrecht Schmidt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10515)

Abstract

Living in our information society poses the challenge of having to deal with a plethora of information. While most content is represented through text, keyword extraction and visualization techniques allow the processing and adjustment of text presentation to the readers’ individual requirements and preferences. In this paper, we investigate four types of text visualizations and their feasibility to give readers an overview before they actually engage with a text: word clouds, highlighting, mind maps, and image collages. In a user study with 50 participants, we assessed the effects of such visualizations on reading comprehension, reading time, and subjective impressions. Results show that (1) mind maps best support readers in getting the gist of a text, (2) they also give better subjective impressions on text content and structure, and (3) highlighting keywords in a text before reading helps to reduce reading time. We discuss a set of guidelines to inform the design of automated systems for creating text visualizations for reader support.

Keywords

Priming Reading interfaces Comprehension Text visualization 

Notes

Acknowledgments

We thank our study participants and acknowledge the financial support of the Future and Emerging Technologies (FET) programme within the 7th Framework Programme for Research of the European Commission, under FET grant number: 612933 (RECALL).

References

  1. 1.
    Ahmadi, A.: Comprehension of a non-text: the effect of the title and ambiguity tolerance. J. Pan-Pac. Assoc. Appl. Linguist. 15(1), 163–176 (2010)Google Scholar
  2. 2.
    Alencar, A.B., de Oliveira, M.C.F., Paulovich, F.V.: Seeing beyond reading: a survey on visual text analytics. Wiley Int. Rev. Data Min. Knowl. Disc. 2(6), 476–492 (2012). http://dx.doi.org/10.1002/widm.1071
  3. 3.
    Aramini, S.A., Ardizzone, E., Mazzola, G.: Automatic illustration of short texts via web images. In: Proceedings of 6th International Conference on Information Visualization Theory and Applications, IVAPP, (VISIGRAPP 2015), vol. 1, pp. 139–148. INSTICC, ScitePress (2015)Google Scholar
  4. 4.
    Baddeley, A., Eysenck, A., Anderson, M.: Memory. Psychology Press, New York (2009)Google Scholar
  5. 5.
    Banas, J.R., Brown, C.A.: Web 2.0 visualization tools to stimulate generative learning. pp. 77–90. IGI Global (2012)Google Scholar
  6. 6.
    Baralt, M., Pennestri, S., Selvandin, M.: Action research: using wordles to teach foreign language writing. Lang. Learn. Technol. 15(2), 12–22 (2011)Google Scholar
  7. 7.
    Basaraba, D., Yovanoff, P., Alonzo, J., Tindal, G.: Examining the structure of reading comprehension: do literal, inferential, and evaluative comprehension truly exist? Read. Writ. 26(3), 349–379 (2013)CrossRefGoogle Scholar
  8. 8.
    Bransford, J.D., Johnson, M.K.: Contextual prerequisites for understanding: some investigations of comprehension and recall. J. Verbal Learn. Verbal Behav. 11(6), 717–726 (1972)CrossRefGoogle Scholar
  9. 9.
    Buzan, T.: Make the Most of Your Mind. Simon and Schuster, New York (1984)Google Scholar
  10. 10.
    Caillies, S., Denhière, G., Kintsch, W.: The effect of prior knowledge on understanding from text: evidence from primed recognition. Eur. J. Cogn. Psychol. 14(2), 267–286 (2002)CrossRefGoogle Scholar
  11. 11.
    Carney, R., Levin, J.: Pictorial illustrations still improve students’ learning from text. Educ. Psychol. Rev. 14(1), 5–26 (2002)CrossRefGoogle Scholar
  12. 12.
    Carr, N.: The Shallows: What the Internet is Doing to Our Brains. WW Norton & Company, New York (2011)Google Scholar
  13. 13.
    Cashen, V.M., Leicht, K.L.: Role of the isolation effect in a formal educational setting. J. Educ. Psychol. 61(6p1), 484 (1970)CrossRefGoogle Scholar
  14. 14.
    Collins, C., Carpendale, S., Penn, G.: Docuburst: visualizing document content using language structure. In: Proceedings of 11th Eurographics/IEEE - VGTC Conference on Visualization, The Eurographs Association, EuroVis 2009, pp. 1039–1046. Wiley, Chichester (2009). http://dx.doi.org/10.1111/j.1467-8659.2009.01439.x
  15. 15.
    Crouse, J.H., Idstein, P.: Effects of encoding cues on prose learning. J. Educ. Psychol. 63(4), 309 (1972)CrossRefGoogle Scholar
  16. 16.
    Dingler, T., Shirazi, A.S., Kunze, K., Schmidt, A.: Assessment of stimuli for supporting speed reading on electronic devices. In: Proceedings of 6th Augmented Human International Conference, AH 2015, pp. 117–124. ACM, New York (2015). http://doi.acm.org/10.1145/2735711.2735796
  17. 17.
    Federmeier, K.D., Kutas, M.: A rose by any other name: long-term memory structure and sentence processing. J. Mem. Lang. 41(4), 469–495 (1999). http://www.sciencedirect.com/science/article/pii/S0749596X99926608 CrossRefGoogle Scholar
  18. 18.
    Foster, J.J.: The use of visual cues in text. In: Kolers, P.A., Wrolstad, M.E., Bouma, H. (eds.) Processing of Visible Language, vol. 13, pp. 189–203. Springer, Boston (1979). doi: 10.1007/978-1-4684-0994-9_12 CrossRefGoogle Scholar
  19. 19.
    Fowler, R.L., Barker, A.S.: Effectiveness of highlighting for retention of text material. J. Appl. Psychol. 59(3), 358 (1974)CrossRefGoogle Scholar
  20. 20.
    Gier, V.S., Herring, D., Hudnell, J., Montoya, J., Kreiner, D.S.: Active reading procedures for moderating the effects of poor highlighting. Read. Psychol. 31(1), 69–81 (2010). http://dx.doi.org/10.1145/223904.223912 CrossRefGoogle Scholar
  21. 21.
    Hearst, M.A.: Tilebars: Visualization of term distribution information in full text information access. In: Proceedings of SIGCHI Conference on Human Factors in Computing Systems. CHI 1995, pp. 59–66. ACM Press/Addison-Wesley Publishing Co., New York (1995). http://dx.doi.org/10.1145/223904.223912
  22. 22.
    Hotho, A., Nrnberger, A., Paas, G.: A brief survey of text mining. LDV Forum - GLDV J. Comput. Linguist. Lang. Technol. (2005)Google Scholar
  23. 23.
    Kalmane, R.: Improving Reading Comprehension with Online Text Visualization Tools. Lulu Press, MorrisvilleGoogle Scholar
  24. 24.
    Kintsch, W.: Text comprehension, memory, and learning. Am. Psychol. 49(4), 294–303 (1994)CrossRefGoogle Scholar
  25. 25.
    Kucher, K., Kerren, A.: Text visualization techniques: taxonomy, visual survey, and community insights. In: 2015 IEEE Pacific Visualization Symposium (PacificVis), pp. 117–121 (2015)Google Scholar
  26. 26.
    Kudelic, R., Konecki, M., Malekovic, M.: Mind map generator software model with text mining algorithm. In: Proceedings of ITI 2011 33rd International Conference on Information Technology Interfaces (ITI), pp. 487–494, June 2011Google Scholar
  27. 27.
    Kunze, K., Sanchez, S., Dingler, T., Augereau, O., Kise, K., Inami, M., Tsutomu, T.: The augmented narrative: toward estimating reader engagement. In: Proceedings of 6th Augmented Human International Conference, AH 2015, pp. 163–164. ACM, New York (2015). http://doi.acm.org/10.1145/2735711.2735814
  28. 28.
    Li, Z., Shi, S., Zhang, L.: Improving relevance judgment of web search results with image excerpts. In: Proceedings of 17th International Conference on World Wide Web, WWW 2008, pp. 21–30. ACM, New York (2008). http://doi.acm.org/10.1145/1367497.1367501
  29. 29.
    Liu, Z.: Reading behavior in the digital environment: changes in reading behavior over the past ten years. J. doc. 61(6), 700–712 (2005)CrossRefGoogle Scholar
  30. 30.
    McNamara, D.S., Kintsch, W.: Learning from texts. Eff. Prior knowl. Text Coherence 22, 247–288 (1996)Google Scholar
  31. 31.
    Morineau, T., Blanche, C., Tobin, L., Guéguen, N.: The emergence of the contextual role of the e-book in cognitive processes through an ecological and functional analysis. Int. J. Hum.-Comput. Stud. 62(3), 329–348 (2005). http://www.sciencedirect.com/science/article/pii/S1071581904001089 CrossRefGoogle Scholar
  32. 32.
    Paley, W.B.: Textarc: showing word frequency and distribution in text. Poster Presented at IEEE Symposium on Information Visualization, vol. 2002 (2002)Google Scholar
  33. 33.
    Rajaram, S., Roediger, H.L.: Direct comparison of four implicit memory tests. J. Exp. Psychol. Learn. Mem. Cogn. 19(4), 765 (1993)CrossRefGoogle Scholar
  34. 34.
    Ramos, J.: Using tf-idf to determine word relevance in document queries. In: Proceedings of 1st Instructional Conference on Machine Learning (2003)Google Scholar
  35. 35.
    Ratcliff, R., McKoon, G.: A retrieval theory of priming in memory. Psychol. Rev. 95(3), 385 (1988)CrossRefGoogle Scholar
  36. 36.
    Schmid, H.: Treetagger—a language independent part-of-speech tagger. Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart 43, p. 28 (1995)Google Scholar
  37. 37.
    Silvers, V.L., Kreiner, D.S.: The effects of pre-existing inappropriate highlighting on reading comprehension. Lit. Res. Instr. 36(3), 217–223 (1997)Google Scholar
  38. 38.
    Stanovich, K.E., Cunningham, A.E.: What reading does for the mind. J. Direct Instr. 1(2), 137–149 (2001)Google Scholar
  39. 39.
    Strobelt, H., Oelke, D., Kwon, B.C., Schreck, T., Pfister, H.: Guidelines for effective usage of text highlighting techniques. IEEE Trans. Vis. Comput. Graph. 22(1), 489–498 (2016)CrossRefGoogle Scholar
  40. 40.
    Strobelt, H., Oelke, D., Rohrdantz, C., Stoffel, A., Keim, D., Deussen, O., et al.: Document cards: a top trumps visualization for documents. IEEE Trans. Vis. Comput. Graph. 15(6), 1145–1152 (2009)CrossRefGoogle Scholar
  41. 41.
    Viégas, F.B., Wattenberg, M.: Timelines: tag clouds and the case for vernacular visualization. Interactions 15(4), 49–52 (2008). http://doi.acm.org/10.1145/1374489.1374501 CrossRefGoogle Scholar
  42. 42.
    Wise, J.A., Thomas, J.J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., Crow, V.: Visualizing the non-visual: spatial analysis and interaction with information from text documents. In: Proceedings of 1995 IEEE Symposium on Information Visualization, INFOVIS 1995, p. 51–. IEEE Computer Society, Washington, DC (1995). http://dl.acm.org/citation.cfm?id=857186.857579
  43. 43.
    Zhang, F.: The application of visualization technology on knowledge management. In: Proceedings of 2008 International Conference on Intelligent Computation Technology and Automation, ICICTA 2008, vol. 02, pp. 767–771. IEEE Computer Society, Washington, DC (2008). http://dx.doi.org/10.1109/ICICTA.2008.479
  44. 44.
    Zhu, X., Goldberg, A.B., Eldawy, M., Dyer, C.R., Strock, B.: A text-to-picture synthesis system for augmenting communication. In: Proceedings of 22nd National Conference on Artificial Intelligence, AAAI 2007, vol. 2, pp. 1590–1595. AAAI Press (2007). http://dl.acm.org/citation.cfm?id=1619797.1619900

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Tilman Dingler
    • 1
    Email author
  • Dagmar Kern
    • 2
  • Katrin Angerbauer
    • 1
  • Albrecht Schmidt
    • 1
  1. 1.VISUniversity of StuttgartStuttgartGermany
  2. 2.GESIS Leibniz Institute for the Social SciencesCologneGermany

Personalised recommendations