Horizontal vs. Vertical: How the Orientation of a Large Interactive Surface Impacts Collaboration in Multi-surface Environments

  • Lili TongEmail author
  • Aurélien Tabard
  • Sébastien George
  • Audrey Serna
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10515)


Defining the form factor and set-up of surfaces, i.e., their size, position, and orientation, is one of the first decisions made when designing multi-surface environments (MSE). To support these choices, we conducted a study on how the orientation of a large display used alongside tablets impacts collaboration. Previous research involving only one interactive surface shows that display orientation changes how people interact with the display, the way they position themselves, or look at each other. Our study shows that in a MSE setting, the orientation of a large surface has a different impact: (1) it nuances previous results showing that horizontal surfaces are better for collaboration. (2) it impacts the way activities are conducted. The horizontal condition leads to more implicit coordination and balanced interaction with the large display, but to less structured work, while in the vertical condition, group coordination is more explicit and is structured around one main interactor. Compared to previous work, we also propose a more structured, comprehensive and detailed analysis grid for collaboration in MSE. Finally, based on our results, we derive recommendations for MSE design.


Collaboration Coordination Multi-surface environments (MSE) Tabletops Tablets Display orientation 



We thank all our participants. This work was partially funded by the China Scholarship Council Ph.D. program and the ANR project JENlab (ANR-13-APPR-0001).


  1. 1.
    AlTarawneh, R., Jaber, R.N., Humayoun, S.R., Ebert, A.: Collaborative position patterns for pairs working with shared tiled-wall display using mobile devices. In: Proceedings of the 2015 International Conference on Interactive Tabletops & Surfaces (ITS 2015), pp. 259–264. ACM, November (2015)Google Scholar
  2. 2.
    Al-Megren, S., Kharrufa, A., Hook, J., Holden, A., Sutton, S., Olivier, P.: Comparing fatigue when using large horizontal and vertical multi-touch interaction displays. In: Abascal, J., Barbosa, S., Fetter, M., Gross, T., Palanque, P., Winckler, M. (eds.) INTERACT 2015. LNCS, vol. 9299, pp. 156–164. Springer, Cham (2015). doi: 10.1007/978-3-319-22723-8_13 CrossRefGoogle Scholar
  3. 3.
    Bachour, K., Kaplan, F., Dillenbourg, P.: An interactive table for supporting participation balance in face-to-face collaborative learning. IEEE Trans. Learn. Technol. 3(3), 203–213 (2010)CrossRefGoogle Scholar
  4. 4.
    Bell, G., Dourish, P.: Yesterday’s tomorrows: notes on ubiquitous computing’s dominant vision. Pers. Ubiquit. Comput. 11(2), 133–143 (2007)CrossRefGoogle Scholar
  5. 5.
    Campos, P., Ferreira, A., Lucero, A.: Collaboration meets interactive surfaces: walls, tables, tablets, and phones. In: Proceedings of the 2013 ACM International Conference on Interactive Tabletops and Surfaces (ITS 2013), pp. 481–482. ACM, October 2013Google Scholar
  6. 6.
    Chokshi, A., Seyed, T., Marinho Rodrigues, F., Maurer, F.: ePlan multi-surface: a multi-surface environment for emergency response planning exercises. In: Proceedings of the Ninth ACM International Conference on Interactive Tabletops and Surfaces (ITS 2015), pp. 219–228. ACM, November 2014Google Scholar
  7. 7.
    Clark, H.H., Brennan, S.E.: Grounding in communication. Perspect. Soc. Shar. Cognit. 13(1991), 127–149 (1991)CrossRefGoogle Scholar
  8. 8.
    DiMicco, J.M., Pandolfo, A., Bender, W.: Influencing group participation with a shared display. In: Proceedings of the 2004 ACM Conference on Computer Supported Cooperative Work (CSCW 2004), pp. 614–623. ACM, November 2004Google Scholar
  9. 9.
    Döring, T., Shirazi, A.S., Schmidt, A.: Exploring gesture-based interaction techniques in multi-display environments with mobile phones and a multi-touch table. In: AVI, vol. 10, p. 419, May 2010Google Scholar
  10. 10.
    Evans, A.C., Wobbrock, J.O., Davis, K.: Modeling collaboration patterns on an interactive tabletop in a classroom setting. In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, pp. 860–871. ACM, February 2016Google Scholar
  11. 11.
    Fleck, R., Rogers, Y., Yuill, N., Marshall, P., Carr, A., Rick, J., Bonnett, V.: Actions speak loudly with words: unpacking collaboration around the table. In: Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces (ITS 2015), pp. 189–196. ACM, November 2009Google Scholar
  12. 12.
    Gutwin, C., Greenberg, S.: A descriptive framework of workspace awareness for real-time groupware. Comput. Support. Coop. Work (CSCW) 11(3–4), 411–446 (2002)CrossRefGoogle Scholar
  13. 13.
    Hall, E.T.: The hidden dimension. Doubleday, Garden City (1966)Google Scholar
  14. 14.
    Hornecker, E., Marshall, P., Dalton, N.S., Rogers, Y.: Collaboration and interference: awareness with mice or touch input. In: Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work (CSCW 2008), pp. 167–176. ACM, November 2008Google Scholar
  15. 15.
    Inkpen, K., Hawkey, K., Kellar, M., Mandryk, R., Parker, K., Reilly, D., Scott, S., Whalen, T.: Exploring display factors that influence co-located collaboration: angle, size, number, and user arrangement. In: Proceedings of HCI International, vol. 2005 (2005)Google Scholar
  16. 16.
    Luff, P., Heath, C.: Mobility in collaboration. In: Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work (CSCW 1998). ACM, New York, pp. 305–314 (1998)Google Scholar
  17. 17.
    Kendon, A.: Conducting Interaction Patterns of Behavior in Focused Encounters. CUP Archive, Cambridge (1990)Google Scholar
  18. 18.
    Malone, T.W., Crowston, K.: What is coordination theory and how can it help design cooperative work systems? In: Proceedings of the 1990 ACM Conference on Computer-Supported Cooperative Work (CSCW 1990), pp. 357–370. ACM, September 1990Google Scholar
  19. 19.
    Marquardt, N., Hinckley, K., Greenberg, S.: Cross-device interaction via micro-mobility and F-formations. In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, pp. 13–22. ACM, October 2012Google Scholar
  20. 20.
    Marshall, P., Hornecker, E., Morris, R., Dalton, N.S, Rogers, Y.: When the fingers do the talking: a study of group participation with varying constraints to a tabletop interface. In: TABLETOP 2008 3rd IEEE International Workshop on Horizontal Interactive Human Computer Systems, pp. 33–40. IEEE, October 2000Google Scholar
  21. 21.
    Perry, M., O’hara, K., Sellen, A., Brown, B., Harper, R.: Dealing with mobility: understanding access anytime, anywhere. ACM Trans. Comput.-Hum. Interact. (TOCHI) 8, 323–347 (2001)CrossRefGoogle Scholar
  22. 22.
    Potvin, B., Swindells, C., Tory, M., Storey, M.A.: Comparing horizontal and vertical surfaces for a collaborative design task. Adv. Hum.-Comput. Interact. 2012, 6 (2012)CrossRefGoogle Scholar
  23. 23.
    Rogers, Y., Lindley, S.: Collaborating around vertical and horizontal large interactive displays: which way is best? Interact. Comput. 16(6), 1133–1152 (2004)CrossRefGoogle Scholar
  24. 24.
    Schmidt, K.: The problem with ‘awareness’ introductory remarks on ‘awareness in CSCW’. In: Computer Supported Cooperative Work (CSCW 2002), vol. 11, no. 3–4, pp. 285–298 (2002)Google Scholar
  25. 25.
    Seyed, T., Costa Sousa, M., Maurer, F., Tang, A.: SkyHunter: a multi-surface environment for supporting oil and gas exploration. In: Proceedings of the 2013 ACM International Conference on Interactive Tabletops and Surfaces (ITS 2013), pp 15–22. ACM (2013)Google Scholar
  26. 26.
    Scott, S.D., Besacier, G., Tournet, J., Goyal, N., Haller, M.: Surface ghosts: promoting awareness of transferred objects during pick-and-drop transfer in multi-surface environments. In: Proceedings of the Ninth ACM International Conference on Interactive Tabletops and Surfaces (ITS 2014), pp. 99–108. ACM, November 2014Google Scholar
  27. 27.
    Scott, S.D., Grant, K.D., Mandryk, R.L.: System guidelines for co-located, collaborative work on a tabletop display. In: Kuutti, K., Karsten, E.H., Fitzpatrick, G., Dourish, P., Schmidt, K. (eds.) ECSCW 2003. Springer, Dordrecht (2003). doi: 10.1007/978-94-010-0068-0_9 Google Scholar
  28. 28.
    Sugimoto, M., Hosoi, K., Hashizume, H.: Caretta: a system for supporting face-to-face collaboration by integrating personal and shared spaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2004), pp. 41–48. ACM, April 2004Google Scholar
  29. 29.
    Vasiliou, C., Ioannou, A., Zaphiris, P.: An artifact ecology in a nutshell: a distributed cognition perspective for collaboration and coordination. In: Abascal, J., Barbosa, S., Fetter, M., Gross, T., Palanque, P., Winckler, M. (eds.) INTERACT 2015 Part I. LNCS, vol. 9297, pp. 55–72. Springer, Cham (2015). doi: 10.1007/978-3-319-22668-2_5 CrossRefGoogle Scholar
  30. 30.
    Vauras, M., Iiskala, T., Kajamies, A., Kinnunen, R., Lehtinen, E.: Shared-regulation and motivation of collaborating peers: a case analysis. Psychologia 46(1), 19–37 (2003)CrossRefGoogle Scholar
  31. 31.
    Volet, S., Vauras, M., Salonen, P.: Self-and social regulation in learning contexts: an integrative perspective. Educ. Psychol. 44(4), 215–226 (2009)CrossRefGoogle Scholar
  32. 32.
    Wallace, J.R., Scott, S.D., Stutz, T., Enns, T., Inkpen, K.: Investigating teamwork and taskwork in single-and multi-display groupware systems. Pers. Ubiquit. Comput. 13(8), 569–581 (2009)CrossRefGoogle Scholar
  33. 33.
    Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 94–104 (1991)CrossRefGoogle Scholar
  34. 34.
    Yuill, N., Rogers, Y.: Mechanisms for collaboration: a design and evaluation framework for multi-user interfaces. ACM Trans. Comput.-Hum. Interact. (TOCHI) 19(1), 1 (2012). 25 p.CrossRefGoogle Scholar
  35. 35.
    Zagermann, J., Pfeil, U., Rädle, R., Jetter, H.C., Klokmose, C., Reiterer, H.: When tablets meet tabletops: the effect of tabletop size on around-the-table collaboration with personal tablets. In Proceedings of the 34th Annual ACM Conference on Human Factors in Computing Systems (CHI 2016), vol. 13, pp. 53–67. ACM (2015)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Lili Tong
    • 1
    Email author
  • Aurélien Tabard
    • 2
  • Sébastien George
    • 3
  • Audrey Serna
    • 1
  1. 1.Univ Lyon, CNRS, INSA-Lyon, LIRISVilleurbanneFrance
  2. 2.Univ Lyon, CNRS, Université Lyon 1, LIRISVilleurbanneFrance
  3. 3.UBL, Université du MaineLe MansFrance

Personalised recommendations