Skip to main content

Pretreatment of Lignocellulosic Biomass Toward Biofuel Production

  • Chapter
  • First Online:
Biorefining of Biomass to Biofuels

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 4))

Abstract

To improve the competence of cellulose hydrolysis, pretreatment is required to efficiently break its recalcitrant structure. Pretreatment has been viewed as one of the most expensive processing steps in cellulosic biomass-to-fermentable sugars conversion, and it has great potential for improvement of efficiency and lowering of cost through research and development. Pretreatment is an important cost-driver of lignocellulose conversion to biofuel and an important step prior to enzyme hydrolysis. It disrupts the plant cell wall network and partially separates the major polymer components (lignin, cellulose, and hemicellulose). However, pretreatment of lignocellulosic materials may also result in the release of inhibitors and deactivators of the enzymatic hydrolysis of cellulose. Development of enzyme processes for hydrolysis of cellulose to glucose must reduce inhibition and deactivation effects in order to enhance hydrolysis and reduce enzyme usage. Therefore, great attentions have paid in designing pretreatment technologies to split recalcitrant characteristics of lignocellulose biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFEX:

Ammonia Fiber Explosion/Expansion

IU:

International Unit

IL:

Ionic Liquid

LCC:

Lignin Carbohydrate Complex

FPU:

Filter Paper Unit

References

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Biores Technol 101:4851–4861

    Article  Google Scholar 

  • Arato C, Pye EK, Gjennestad G (2005) The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol 121–124:871–882

    Article  Google Scholar 

  • Bak JS, Kim MD, Choi IG, Kim KH (2010) Biological pretreatment of rice straw by fermenting with Dichomitus squalens. New Biotechnol 27(4):424–434

    Article  Google Scholar 

  • Cara C, Ruiz E, Oliva JM, Sáe F, Castro E (2008) Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour Technol 99:1869–1876

    Article  Google Scholar 

  • Chang VS, Nagwani M, Holtzapple MT (1998) Lime pretreatment of crop residues bagasse and wheat straw. Appl Biochem Biotechnol 74:135–159

    Article  Google Scholar 

  • Chang VS, Nagwani M, Kim CH, Holtzapple MT (2001) Oxidative lime pretreatment of high-lignin biomass. Appl Biochem Biotechnol 94:1–28

    Article  Google Scholar 

  • Chen Y, Stevens MA, Zhu Y, Holmes J, Moxley G, Xu H (2012a) J Ind Microbiol Biotechnol 39(5):691–700

    Article  Google Scholar 

  • Chen X, Shekiro J, Elander R, Tucker M (2012b) Improved Xylan hydrolysis of corn stover by deacetylation with high solids dilute acid pretreatment. Ind Eng Chem Res 51(1):70–76

    Article  Google Scholar 

  • Cheng YS, Zheng Y, Dooley CW, Jenkins BM, VanderGheynst JS (2010) Evaluation of high solids alkaline pretreatment of rice straw. Appl Biochem Biotechnol 162:1768–1784

    Article  Google Scholar 

  • Cheng G, Varanasi P, Li C, Liu H, Melnichenkos BY, Simmons BA, Kent MS, Sing S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromol 12(4):933–941

    Article  Google Scholar 

  • Craeyveld VV, Delcour JA, Courtin CM (2008) Ball milling improves extractability and affects molecular properties of psyllium (Plantago ovata Forsk) seed husk arabinoxylan. J Agric Food Chem 56:11306–11311

    Article  Google Scholar 

  • Digman MF, Shinners KJ, Casler MD (2010) Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production. Biores Technol 101:5305–5314

    Article  Google Scholar 

  • Du B, Sharma LN, Becker C, Chenn SF, Mowery RA, van Walsum GP, Chambliss CK (2010) Effect of varying feedstock–pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol Bioeng 107(3):430–440

    Google Scholar 

  • Falls M, Ramirez RS, Haltzapple MT (2011) Oxidative lime pretreatment of Dacotah switchgrass. Appl Biochem Biotechnol 165:243–259

    Article  Google Scholar 

  • Faulon J-L, Carlson GA, Patrick Hatcher G (1994) A three-dimensional model for lignocellulose from gymnospermous wood. Org Geochem 21(12):1169–1179

    Google Scholar 

  • Harmsen P, Huijgen W, Bermúdez L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass, 1st edn. ISBN 9789-085-857-570, Netherlands

    Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adeny WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass Recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  Google Scholar 

  • Huang HJ, Lin WL, Ramaswamy S, Tschirner U (2009) Process modeling of comprehensive integrated forest biorefinery: an integrated approach. Appl Biochem Biotechnol 154(1–3):205–216

    Google Scholar 

  • Ince NH, Tezcanli G, Belen RK (2001) Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl Catal 29:167–176

    Article  Google Scholar 

  • Inoue H, Yano S, Endo T, Sakaki T, Sawayama S (2008) Combining hot-compressed water and ball milling retreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus Biotechnol. Biofuels 1:2–4

    Article  Google Scholar 

  • Jin M, Gunawan C, Balan V, Lau MW, Dale BE (2012) Simultaneous saccharification and co-fermentation (SSCF) of AFEX(TM) pretreated corn stover for ethanol production using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresour Technol 110:587–594

    Article  Google Scholar 

  • Jung YH, Kim IJ, Han JI, Choi IG, Kim KH (2011) Aqueous ammonia pretreatment of oil palm empty fruit bunches for ethanol production. Biores Technol 102(20):9806–9809

    Article  Google Scholar 

  • Khan F, Ahmad SR, Kronfli E (2006) Gamma-radiation induced changes in the physical and chemical properties of lignocelluloses. Biomacromol 7:2303–2309

    Article  Google Scholar 

  • Khanal SK, Montalbo M, Leeuwen JHV, Srinivasan G, Grewell D (2007) Ultrasound enhanced glucose release from corn in ethanol plants. Biotechnol Bioeng 98:978–985

    Article  Google Scholar 

  • Kim S, Holtzapple MT (2006) Delignification kinetics of corn stover in lime pretreatment. Biores Technol 97:778–785

    Article  Google Scholar 

  • Kim Y, Kreke T, Hendrickson R, Parenti J, Ladisch MR (2013) Fractionation of cellulase and fermentation inhibitors from steam pretreated mixed hardwood. Bioresour Technol 135:30–38

    Google Scholar 

  • Kirk-Otmer (2001) 4th edn. vol 20

    Google Scholar 

  • Klinke HB, Ahring BK, Schmidt AS, Thomsen AB (2002) Characterization of degradation products form alkaline wet oxidation of wheat straw. Biores Technol 82:15–26

    Article  Google Scholar 

  • Kobayashi T, Kohn B, Holmes L, Faulkner R, Davis M, Maciel GE (2011) Molecular-level consequences of biomass pretreatment by dilute sulfuric acid at various temperatures. Energy Fuels 25:1790–1797

    Article  Google Scholar 

  • Krassig H, Schurz J (2002) Ullmann’s Encyclopedia of Industrial Chemistry, 6th edn. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Krishnan C, Sousa LDC, Jin M, Chang L, Dale BE, Balan V (2010) Alkali‐based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng 107(3): 441–450

    Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  Google Scholar 

  • Liu C-Z, Wang F, Stiles AR, Guo C (2012) Ionic liquids for biofuel production: opportunities and challenges. Appl Energy 92:406–414

    Article  Google Scholar 

  • Margulis MA, Margulis IM (2002) Contemporary review on nature of sonoluminescence and sonochemical reactions. Ultrason Sonochem 9:1–10

    Article  Google Scholar 

  • Mass RH, Bakker RR, Boersma AR, Bisschops I, Pels JR, Jong ED, Weusthuis RA, Reith H (2008) Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams byanaerobic digestion and combustion. Biotechnol Biofuels 1:14

    Article  Google Scholar 

  • Nitayavardhana S, Rakshit SK, Grewell D, Leeuwen JHV, Khanal SK (2008) Ultrasound pretreatment of cassava chip slurry to enhance sugar release for subsequent ethanol production. 101: 487–496

    Google Scholar 

  • Noureddini H, Byun J (2010) Dilute-acid pretreatment of distillersʼ grains and corn fiber. Bioresou Technol 101(3):1060–1067

    Google Scholar 

  • Rabelo SC, Filho RM, Coasta AC (2009) Lime pretreatment of sugarcane bagasse for bioethanol production. Appl Biochem Biotechnol 153:139–150

    Article  Google Scholar 

  • Rabelo SC, Carrere H, Maciel FR, Costa AC (2011) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol 102(17):7887–7895

    Google Scholar 

  • Rocha MV, Rodrigues TH, De Macedo GR, Gonçalves LR (2009) Enzymatic hydrolysis and fermentation of pretreated cashew apple bagasse with alkali and diluted sulfuric acid for bioethanol production. Appl Biochem Biotechnol 155:407–417

    Article  Google Scholar 

  • Roland DP (1976) Cellulose: pores, internal surfaces, and the water interface. textile and paper chemistry and technology. ACS Symp Ser 49:20

    Article  Google Scholar 

  • Shi Y, Tao Y, Wang Y, Zhao J, Zhou S (2012) The study of the dilute acid pretreatment technology of corn stover and rice straw. 550–553

    Google Scholar 

  • Sierra-Ramírez R, Garcia LA, Holtzapple MT (2011) Selectivity and delignification kinetics for oxidative short-term lime pretreatment of poplar wood, part I: Constant-pressure. Biol Prog 27(4):976–985

    Article  Google Scholar 

  • Sindhu R, Kuttiraja M, Binod P, Janu KU, Sukumaran RK, Pandey A (2011) Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresour Technol 102(23):10915–10921

    Article  Google Scholar 

  • Singh D, Chen S (2008) The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol 81(3):399–417

    Article  Google Scholar 

  • Solomon TWG (1988) Organic chemistry, 4th edn. John Wiley & Sons

    Google Scholar 

  • Speers AM, Reguera G (2012) Consolidated bioprocessing of AFEX-pretreated corn stover to ethanol and hydrogen in a microbial electrolysis cell. Environ Sci Technol 46(14):7875–7881

    Article  Google Scholar 

  • Sun R, Tomkinson J (2002) Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason Sonochem 9:85–93

    Article  Google Scholar 

  • Tao L, Aden A, Elander RT, Pallapolu VR, Lee YY, Garlock RJ, Balan V, Dale BE, Kim Y, Mosier NS, Ladisch MR, Falls M, Holtzapple MT, Sierra R, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, Hames B, Thomas S, Warner RE (2011) Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour Technol 102(24):11105–11114

    Article  Google Scholar 

  • Thompson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38:1215–1249

    Article  Google Scholar 

  • Valery BA, Nazim C, Richard S, Alex B, David L (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    Article  Google Scholar 

  • Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537

    Article  Google Scholar 

  • Wyman CE, Dale BE, Elander RT (2009) Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies. Biotechnol Prog 25(2):333–339

    Article  Google Scholar 

  • Xu J, Cheng JJ (2011) Pretreatment of switchgrass for sugar production with the combination of sodium hydroxide and lime. Biores Technol 102(4):3861–3868

    Article  Google Scholar 

  • Xu J, Thomsen MH, Thomsen AB (2009) Pretreatment on corn stover with low oncentration of formic acid. J Microbiol Biotechnol 19(8):845–850

    Google Scholar 

  • Xu J, Cheng JJ, Sharma RR, Burns JC (2010) Lime pretreatment of switchgrass at mild temperatures for ethanol production. Biores Technol 101(8):2900–2903

    Article  Google Scholar 

  • Xuebin Lu, Yimin Z, Irini A (2009) Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: focusing on pretreatment at high solids content. Biores Technol 100(12):3048–3053

    Article  Google Scholar 

  • Yong J, Soo S (2011) Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation Pretreatment. Biomass Bioenergy 35(7):3267–3270

    Google Scholar 

  • Yua J, Zhanga J, Hea J, Liua Z, Yua Z (2009) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Biores Technol 100(2):903–908

    Article  Google Scholar 

  • Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustubha Mohanty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasmal, S., Mohanty, K. (2018). Pretreatment of Lignocellulosic Biomass Toward Biofuel Production. In: Kumar, S., Sani, R. (eds) Biorefining of Biomass to Biofuels. Biofuel and Biorefinery Technologies, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-67678-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67678-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67677-7

  • Online ISBN: 978-3-319-67678-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics