Skip to main content

Potential Role of Halophile in Crude Glycerol Based Biorefinery

  • Chapter
  • First Online:
Biorefining of Biomass to Biofuels

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 4))

Abstract

Biorefinery includes microbial fermentation processes which could utilize glycerol as raw material for the production of bio-derived building block compounds and polymers. The recent expansion in biodiesel market has resulted in a remarkable transformation in availability and subsequent cost of glycerol, which is generated at 10% of total biodiesel produced. Being produced in excess, crude glycerol price has suffered a major decline, thereby affecting the economics of biodiesel industry. Purification of crude glycerol for use in cosmetics and pharmaceutical industry increases the production cost and hence not considered as a viable option for disposal of such huge amount of glycerol, which also poses an environmental concern. Thus the crude glycerol based refinery concept is being explored whose objective should be to actualize technologies for valorization of waste glycerol. The major challenge thwarting the development of such biorefinery is obtaining microbial strains tolerant of crude glycerol along with its impurities. However, concentrated crude glycerol has rarely been used for microbial conversion to value-added products. High usage of portable water is required to dilute concentrated crude glycerol for crude glycerol based biorefinery. In this chapter, the recent attempts to explore microbial assimilation of glycerol has been summarized. Besides how halophiles can be considered as a viable alternative for valorization of crude glycerol is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andre A, Diamantopoulou P, Philippoussis A, Sarris D, Komaitis M, Papanikolaou S (2010) Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crops Prod 31(2):407–416

    Article  Google Scholar 

  • Anupama S, Sanjiv KM, Bhumi S, Imran P, Deepti J, Sandhya M (2010) Isolation of promising bacterial strains from soil and marine environment for polyhydroxyalkanoates production utilizing Jatropha biodiesel byproduct. Int J Biol Macromol 47(2):283–287

    Article  Google Scholar 

  • Ayoub M, Abdullah AZ (2012) Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew Sustain Energy Rev 16:2671–2686

    Article  Google Scholar 

  • Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2007) Improved utilization of renewable resources: new important derivatives of Glycerol. Green Chem 10(1):1463–9262

    Google Scholar 

  • Burns DG, Janssen PH, Itoh T (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Micr 57(2):387–392

    Google Scholar 

  • Campos MI, Tamiris VBF, Luciane SS, Janice Izabel D (2014) The influence of crude glycerin and nitrogen concentrations on the production of PHA by Cupriavidus necator using a response surface methodology and its characterization. Ind Crops Prod 52:338–346

    Article  Google Scholar 

  • Carvalho M, Matos M, Roca C, Reis MA (2014) Succinic acid production from succinogenes using dimethyl sulfoxide as electron acceptor. N. Biotechnol 31(1):133–139

    Article  Google Scholar 

  • Cavalheiro JMBT, De Almeida M, Grandfils C, Da Fonseca M (2009) Poly (3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44(5):509–515

    Article  Google Scholar 

  • Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36(2):1097–1108

    Article  Google Scholar 

  • Choi WJ, Hartono MR, Chan WH, Yeo SS (2011) Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescen. Appl Microbiol Biotechnol 89(4):1255–1264

    Article  Google Scholar 

  • Cui Y, Blackburn JW, Liang Y (2012) Fermentation optimization for the production of lipid by Cryptococcus curvatus: use of response surface methodology. Biomass Bioenerg 47:410–417

    Article  Google Scholar 

  • DasSarma S, DasSarma P (2012) Halophiles. Wiley, Chichester. doi:10.1002/9780470015902.a0000394

  • Dobroth ZT, Hu S, Coats ER, Mc Donald AG (2011) Polyhydroxybutyrate synthesis in biodiesel wastewater using mixed microbial consortia. Biores Technol 102(3):3352–3359

    Article  Google Scholar 

  • Don TM, Chen CW, Chan TH (2006) Preparation and characterization of poly-(hydroxyalkanoate) from the fermentation of Haloferax mediterranei. J Biomat Sci Polym E 17(12):1425–1438

    Article  Google Scholar 

  • Donkin SS (2008) Glycerol from biodiesel production: the new corn for dairy cattle. Rev Bras Zootec 37:280–286

    Article  Google Scholar 

  • Dorman DC, Nassise MP, Ekuta J, Bolon B, Medinsky MA (1993) Acute methanol toxicity in minipigs. Fundam Appl Toxicol 20(3):341–347

    Article  Google Scholar 

  • Duarte SH, Ghiselli S, Maugeri F (2013) Influence of culture conditions on lipid production by Candida sp. LEB-M3 using glycerol from biodiesel synthesis. Biocatal Agric. Biotechnol 2(4):339–343

    Google Scholar 

  • Fakas S, Papanikolaou S, Batsos A, Galiotou Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenerg 33(4):573–580

    Article  Google Scholar 

  • Garlapati VK, Shankar U, Budhiraja A (2016) Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol Rep 9:9–14

    Article  Google Scholar 

  • Guillaume SP, Patrick CH (2009) High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Biores Technol 100(14):3513–3517

    Article  Google Scholar 

  • Habe H, Shimada Y, Yakushi T, Hattori H, Ano Y, Fukuoka T, Kitamoto D, Itagaki M, Yanagishita H (2009) Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol. Appl. Environ. Microb. 75(24):7760–7766

    Article  Google Scholar 

  • Han J, Hou J, Liu H (2010) Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl Environ Microb 76(23):7811–7819

    Article  Google Scholar 

  • Hezayen FF, Tindall BJ, Steinbuchel A (2002) Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Micr 52(6):2271–2280

    Google Scholar 

  • Hezayen FF, Gutierrez MC, Steinbuchel A (2010) Halopiger aswanensis sp. nov., a polymer-producing and extremely halophilic archaeon isolated from hypersaline soil. Int J Syst Evol Micr 60(3):633–637

    Google Scholar 

  • Hong AA, Cheng KK, Peng F, Zhou S, Sun Y, Liu CM, Liu DH (2009) Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid. J Chem Technol Biotechnol 84(10):1576–1581

    Article  Google Scholar 

  • Ibrahim MHA, Steinbuchel A (2009) Poly (3-Hydroxybutyrate) production from glycerol by Zobellella denitrifican MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Appl Environ Microbiol 75(19):6222–6231

    Article  Google Scholar 

  • Jitrwung R, Yargeau V (2011) Optimization of media composition for the production of biohydrogen from waste glycerol. Int J Hydrogen Energy 36(16):9602–9611

    Article  Google Scholar 

  • Kaeata Y, Aiba S (2010) Poly (3-hydroxybutyrate) production by isolated Halomonas sp. KM-1 using waste glycerol. Biosci Biotechnol Biochem 74(1):175–177

    Article  Google Scholar 

  • KenJer W, Yeuh Hui L, Yung Chung L, Chun Yen C, Wen Ming C, Jo Shu C (2011) Converting glycerol into hydrogen, ethanol, and diols with a Klebsiella sp. HE1 strain via anaerobic fermentation. J Taiwan Inst Chem Eng 42(1):20–25

    Google Scholar 

  • Kerr BJ, Dozier WA, Bregendahl K (2007) Nutritional value of crude glycerin for nonruminants. In: Proceedings of the 23rd Annual Carolina Swine Nutrition Conference, Raleigh NC, pp. 6–18

    Google Scholar 

  • Khan A, Bhide A, Gadre R (2009) Mannitol production from glycerol by resting cells of Candida magnoliae. Biores Technol 100(20):4911–4913

    Article  Google Scholar 

  • Kitcha S, Cheirslip B (2013) Enhancing lipid production from crude glycerol by newly isolated oleaginous yeasts: strain selection, process optimization, and fed-batch strategy. Bioenergy Res 6(1):300–310

    Article  Google Scholar 

  • Anniina K, Ville S, Matti K (2010) Hydrogen production from glycerol using halophilic fermentative bacteria. Biores Technol 101(22):8671–8677

    Article  Google Scholar 

  • Kivisito A, Santala V, Karp M (2012) 1,3-propanediol production and tolerance of a halophilic fermentative bacterium, Halanaerobium saccharolyticum subsp. saccharolyticum. J Biotechnology 158(4):242–247

    Article  Google Scholar 

  • Koganti S, Kuo TM, Kurtzman CP, Smith N, Ju LK (2011) Production of arabitol from glycerol: and study of factors affecting production yield. Appl Microbiol Biotechnol 90(1):257–267

    Article  Google Scholar 

  • kovcas A (2011) Aspects of refining biodiesel byproduct glycerin. Pet Coal 53(1):91–97

    Google Scholar 

  • Legat A, Gruber C, Zangger K (2010) Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl Microbiol Biot 87(3):1119–1127

    Article  Google Scholar 

  • Lemoigne M (1926) Produits de dehydration et de polymerisation de l’Acide ß-oxobutyrique. Bull. Soc. Chim. Biol. 8:770–782

    Google Scholar 

  • Leoneti AB, Aragao Leoneti V, de Oliveira SVWB (2012) Glycerol as a by-product of biodiesel production in Brazil: alternatives for the use of unrefined glycerol. Renew Energy 45:138–145

    Google Scholar 

  • Liang YN, Sarkany N, Cui Y, Blackburn JW (2010) Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation. Biores Technol 101(7):6745–6750

    Article  Google Scholar 

  • Lillo JG, Rodriguez V (1990) Effects of culture conditions on poly(β- hydroxybutyric) acid production by Haloferax mediterranei. Appl Environ Microb 56(8):2517–2521

    Google Scholar 

  • Malaviya A, Jang YS, Lee SY (2012) Continuous butanol production with reduced byproducts glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl Microbiol Biotechnol 93(4):1485–1494

    Article  Google Scholar 

  • Marques PASS, Bartolomeu ML, Thomas MM, Neves LM (2009) Biohydrogen production from glycerol by a strain of Enterobacter aerogenes. In: Proceeding of Hypothesis VIII 2009 1–3 April Lisbon, Portugal

    Google Scholar 

  • McLea L, Ball MEE, Kilpatrick D, Elliott C (2011) The effect of glycerol inclusion on broiler performance and nutrient digestibility. Br Poult Sci 52(3):368–375

    Article  Google Scholar 

  • Mezghani M, Alazard D, Karray F, Cayol JL, Joseph M, Postec A, Fardeau ML, Tholozan JL, Sayadi S (2012) Halanerobacter jeridensis sp. nov., isolated from a hypersaline lake. IJSEM 62(Pt 8):1970–1973

    Google Scholar 

  • Mormile MR, Roush DW, Elias DA, Sitton OC (2015) Conversion of glycerol to 1,3 propanediol under haloalkaline conditions. WO2015035266A1

    Google Scholar 

  • Mothes G, Schnorpfeil C, Ackermann JU (2007) Production of PHB from crude glycerol. Eng Life Sci 7(5):475–479

    Article  Google Scholar 

  • Nicolaus B, Lama L, Esposito E (1999) Haloarcula spp. able to biosynthesize exo and endopolymers. J Ind Microbiol Biot 23(6):489–496

    Google Scholar 

  • Nieto JJ, Fernandez Castillo R, Marquez MC, Ventosa A, Quesada E, Ruiz Berraquero F (1989) Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55(9):2385–2390

    Google Scholar 

  • Nuppatol T, Jian Y (2012) Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenensis, molecular weight and material properties of biopolyesters. Biotechnol Bioeng 109(11):2808–2818

    Article  Google Scholar 

  • Oh BR, Seo JW, Choi MH, Kim CH (2008) Optimization of culture conditions for 1,3-propanediol production from crude glycerol by Klebsiella pneumonia using response surface methodology. Biotechnol Bioprocess Eng 13:666–670

    Article  Google Scholar 

  • Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Systems 1(2):1–14

    Google Scholar 

  • Oren A, Gurevich P (1994) Distribution of glycerol dehydrogenase and glycerol kinase activity in halophilic archaea. FEMS Microb Lett 118(3):311–315

    Article  Google Scholar 

  • Pagliaro M, Rossi M (2008) The future of glycerol: new usages for a versatile raw material. RSC Green Chemistry Series. ISBN:978-0-85404-124-4: 1-127

    Google Scholar 

  • Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C (2007) From glycerol to value-added products. Wiley Chem. Int. Ed. 46(24):4434–4440

    Article  Google Scholar 

  • Papanikolaou S, Aggelis G (2009) Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol 21(4):83–87

    Article  Google Scholar 

  • Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl-esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenerg 32(1):60–71

    Article  Google Scholar 

  • Petrov K, Petrova P (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumonia G31 Microbiol. Biotechnol 84(4):659–665

    Google Scholar 

  • Poli JS, Da Silva MAN, Siqueira EP, Pasa VMD, Rosa CA, Valente P (2014) Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: a potential feedstock for biodiesel production. Biores Technol 161:320–326

    Article  Google Scholar 

  • Quillaguaman J, Guzman H, Van Thuoc D (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biot 85(6):1687–1696

    Article  Google Scholar 

  • Rehman AU, Matsumura M, Nomura N, Sato S (2008) Growth production on pre-treated sunflower oil biodiesel raw glycerol using a strict anaerobe Clostridium butyricum. Curr. Res. Bacteriol 1(1):7–16

    Article  Google Scholar 

  • Rivaldi JD, Sarrouh BF, da Silva SS (2009) Development of biotechnological processes using glycerol from biodiesel production. Curr Res Top Appl Microbiol Microb Biotechnol. doi:10.1142/97898128375540089

    Google Scholar 

  • Romano I, Poli A, Finore I (2007) Haloterrigena hispanica sp. nov., an extremely halophilic archaeon from Fuente de Piedra, southern Spain. Int J Syst Evol Micr 57(7):1499–1503

    Google Scholar 

  • Roush DW, Mormile MR, Elias DA, Sitton OC (2013) Production of 1,3 propanediol from glycerol under haloalkaline conditions. Masters Theses, Paper, p 5441

    Google Scholar 

  • Rymowicz W, Rywinska A, Marcinkiewicz M (2009) High-yield production of erythritol from raw glycerol cultures of Yarrowia lipolytica. Biotechnol Lett 31(3):377–380

    Article  Google Scholar 

  • Rymowicz W, Fatykhova AR, Kamzolova SV, Rywinska A, Morgunov IG (2010) Citric Acid production from glycerol containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes. Appl. Microbiol. Biotechnol 87(3):971–979

    Google Scholar 

  • Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 46(1):210–218

    Article  Google Scholar 

  • Santamauro F, Whiffin FM, Scott RJ, Chuck CJ (2014) Low cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnology Biofuels 7(1):34–40

    Article  Google Scholar 

  • Sattayasamitsathita S, Prasertsana P, Methacanon P (2011) Statistical optimization for simultaneous propanediol and 2,3-butanediol using crude glycerol by newly bacterial isolate. Proc. Biochem 46(2):608–614

    Article  Google Scholar 

  • Saurabh JS, Satinder KB, Eduardo BS, Yann LB, Gerardo B, Carlos RS (2012) Microbial hydrogen production by bioconversion of crude glycerol: A review international journal of hydrogen energy 37(8): 6473–6490

    Google Scholar 

  • Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27(6):895–913

    Article  Google Scholar 

  • Sereshki BR, Balan SJ, Patience GS, Dubois JL (2010) Reactive vaporization of crude glycerol in a fluidized bed reactor. Ind Eng Chem Res 49:1050–1056

    Article  Google Scholar 

  • Singhabhandhu A, Tezuka T (2010) A perspective on incorporation of glycerin purification process in biodiesel plants using waste cooking oil as feedstock. Energy 35(6):2493–2504

    Article  Google Scholar 

  • Szymanowska PowaÅ‚owska D, Leja K (2014) An increasing of the efficiency of microbiological propanediol from crude glycerol by the concentration of biomass. Electron J Biotechnol 17(2):72–78

    Article  Google Scholar 

  • Tchakouteu SS, Kalantzi O, Chr Gardeli AA, Koutinas G, Aggelis and Papanikolaou S (2015) Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. J Appl Microbiol 118(4): 911–927

    Google Scholar 

  • VanThuoc D, HuuPhong T, MinhKhuong D, HattiKaul R (2015) Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) production by a moderate halophile Yangia sp. ND199 using glycerol as a carbon source. Appl Biochem Biotechnol 175(6):3120–32

    Google Scholar 

  • Waino M, Tindall BJ, Ingvorsen K (2000) Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the archaea from Great Salt Lake, Utah. Int J Syst Evol Micr 50(1):183–190

    Google Scholar 

  • Wen Z, Pyle DJ Athalye SK (2009a) Microbial conversions of raw glycerol. Nova Science Publishers Inc, New York. ISBN: 9781617280153: 1-7

    Google Scholar 

  • Yang X, Guomin X, Arvind V (2013) A universal procedure for crude glycerol purification from different feedstocks in biodiesel production: experimental and simulation study. Ind Eng Chem Res 52(39):14291–14296

    Article  Google Scholar 

  • Xu XW, Ren PG, Liu SJ (2005) Natrinema altunense sp. nov., an extremely halophilic archaeon isolated from a salt lake in Altun Mountain in Xinjiang, China. Int J Syst Evol Micr 55(3):1311–1314

    Google Scholar 

  • Xu J, Zhao X, Wang W, Du W, Liu D (2012) Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochem Eng J 65:30–36

    Article  Google Scholar 

  • Yang F, Hanna MA, Sun R (2012) Value added uses for crude glycerol a byproduct of biodiesel production. Biotechnol Biofuels 5(13):13–23

    Article  Google Scholar 

  • Yang X, Jin G, Gong Z, Shen H, Bai F, Zhao ZK (2014) Recycling biodiesel-derived glycerol by the oleaginous yeast Rhodosporidium toruloides Y4 through the two-stage lipid production process. Biochem Eng J 91:86–91

    Article  Google Scholar 

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18(3):213–219

    Article  Google Scholar 

  • Zhang YHP (2007) What is vital (and not vital) to advance economically competitive biofuels production. Process Biochem 46(11):2091–2110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Choudhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N., Roy, R., Srivastava, S.K., Choudhury, B. (2018). Potential Role of Halophile in Crude Glycerol Based Biorefinery. In: Kumar, S., Sani, R. (eds) Biorefining of Biomass to Biofuels. Biofuel and Biorefinery Technologies, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-67678-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67678-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67677-7

  • Online ISBN: 978-3-319-67678-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics