Skip to main content

Kinetic Modeling of Ethanol Production for Substrate–Microbe System

  • Chapter
  • First Online:
Book cover Biorefining of Biomass to Biofuels

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 4))

Abstract

Ethanol, as an alternative energy resource, has become a subject of great interest due to the current surge in price of crude oil. Environmental concerns have promoted new applications and markets for ethanol. Kinetic modeling of ethanol production is very important from design and scale-up aspects of fermentors. In the present work, a kinetic model has been developed for the batch fermentation of crude whey for ethanol production by Kluyveromyces marxianus. Parameters of the kinetic model have been determined based on experimental data given by Zafar and Owais (Biochem Eng J 27, 295–298, 2006). Results have been compared by carrying out computer simulation. The kinetic model proposed in this study provides good predictions for growth of biomass, substrate consumption and ethanol production for all types of substrate-microbe systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(K_{\text{ipx}}\) :

Inhibition constant of growth by product (g/l)

\(K_{\text{s}}\) :

Monod growth constant for the substrate (g/l)

\(K_{\text{sI}}\) :

Inhibition coefficient for cell growth on glucose

\(K_{\text{p}}\) :

Saturation coefficient for cell growth on ethanol

\(K_{\text{pI}}\) :

Inhibition coefficient for cell growth on ethanol

\(K{}_{\text{p/s}}\) :

Monod product constant for the substrate (g/l)

\(K_{\text{r}}\) :

Monod growth constant for the specific biotin concentration (g/l)

\(m_{\text{s}}\) :

Maintenance coefficient (g substrate/(g cells h))

\(P\) :

Product (L-glutamic acid) concentration (g/l)

\(q_{{{\text{p}},\hbox{max} }}\) :

Maximal specific production rate (1/h)

\(S\) :

Substrate (glucose) concentration (g/l)

\(t\) :

Time (h)

\(X\) :

Biomass concentration (g/l)

\(X_{\text{m}}\) :

Maximum cell concentration (g/l)

\(Y_{\text{x/s}}\) :

Yield coefficient biomass from substrate (g/g)

\(Y_{\text{p/s}}\) :

Yield coefficient product from substrate (g/g)

\(\mu\) :

Speicific growth rate (1/h)

\(\mu_{\hbox{max} }\) :

Maximal specific growth rate (1/h)

\(\alpha\) :

Growth-associated product formation coefficient (g/g)

\(\beta\) :

Non-growth associated product formation coefficient(g/g h)

References

  • Bajpai RK, Reub M (1981) Evaluation of feeding strategies in carbon regulated secondary metabolite production through mathematical modeling. Biotechnol Bioeng 23:717–738

    Article  Google Scholar 

  • Baltes M, Schneider R, Sturm C, Reuss M (1994) Optimal experimental design for parameter estimation in unstructured growth models. Biotechnol Prog 10:480–488

    Article  Google Scholar 

  • Bona R, Moser A (1997) Modeling of l-glutamic acid production with Corynebacterium glutamicum under biotin limitation. Bioprocess Eng 17:139–142

    Google Scholar 

  • Bonkers HS (2006) About biofuels. Nat Biotechnol 24:755–760

    Article  Google Scholar 

  • Cazzador L, Lubenova V (1995) Non-linear estimation of specific growth rate for aerobic fermentation processes. Biotechnol Bioeng 47:626–632

    Article  Google Scholar 

  • Chouakri N, Fonteix C, Marc I, Corriou JP (1994) Parameter estimation of a Monod-type model. Part-I: theoretical identifiability and sensitivity analysis. Biotechnol Tech 8:683–688

    Article  Google Scholar 

  • Dragone G, Mussatto SI, Almeida e Silva JB, Teixeira JA (2011) Optimal fermentation conditions for maximizing the ethanol production by Kluyveromyces fragilis from cheese whey powder. Biomass Bioenerg 35:1977–1982

    Article  Google Scholar 

  • Dragone G, Mussatto SI, Oliveira JM, Teixeira JA (2009) Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chem 112:35–929

    Article  Google Scholar 

  • Farza M, Hammouri H, Othman S, Busawon K (1997) Nonlinear observers for parameter estimation in bioprocesses. Chem Eng Sci 52:4251–4267

    Article  Google Scholar 

  • Ghaly AE, El-Taweel AA (1997) Kinetic modelling of continuous production of ethanol from cheese whey. Biomass Bioenerg 6:61–72

    Google Scholar 

  • Gong H, Lun S (1996) The kinetics of lysine batch fermentation. Chin J Biotechnol 12:219–225

    Google Scholar 

  • Gonzalez Siso MI (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57:1–11

    Article  Google Scholar 

  • Kuznetsova L, Zabodalova L, Domoroshchenkova M (2015) Lupin whey as a perspective substrate for bioethanol production. Energy Procedia 72:103–110

    Article  Google Scholar 

  • Liu JZ, Weng LP, Zhang Q-L, Xu H, Ji L-N (2003) A mathematical model for gluconic acid fermentation by Aspergillus niger. Biochem Eng J 14:137–141

    Article  Google Scholar 

  • Luedeking R, Piret EL (1959) A kinetic study of the lactic acid fermentation: batch process at controlled pH. J Biochem Microbiol Technol Eng 4:231–241

    Google Scholar 

  • Moser A, Schneider H (1989) Modeling secondary metabolite production—case Pleuromulin. In: Computer applications in fermentation technology: modeling and control of biotechnological processes. Elsevier Science Publishers Ltd., Amsterdam, pp. 93–103

    Google Scholar 

  • Nandasana AD, Kumar S (2008) Kinetic modeling of lactic acid production from molasses using Enterococcus faecalis RKY1. Biochem Eng J 38:277–284

    Article  Google Scholar 

  • Oda Y, Nakamura K, Shinomiya N, Ohba K (2010) Ethanol fermentation of sugar beet thick juice diluted with crude cheese whey by the flex yeast Kluyveromyces marxianus KD-15. Biomass Bioenerg 34:1263–1266

    Article  Google Scholar 

  • Panesar PS, Kennedy JF, Gandhi DN, Bunko K (2007) Bioutilisation of whey for lactic acid production. Food Chem 105:1–14

    Article  Google Scholar 

  • Sansonetti S, Curcio S, Calabro V, Iorio G (2009) Bio-ethanol production by fermentation of ricotta cheese whey as an effective alternative non-vegetable source. Biomass Bioenergy 33:1687–1692

    Google Scholar 

  • Siso MIG (1996) The biotechnological utilization of cheese whey: a review. Biores Technol 57:1–11

    Article  Google Scholar 

  • Starzak M, Krzystek L, Nowicki L, Miehalski H (1994) Macro-approach kinetics of ethanol fermentation by Saccharomyces cerevisiae: experimental studies and mathematical modelling. Chem Eng Journal 54:221–240

    Google Scholar 

  • Suresh S, Chandrasekhar G (2009 )Production of bioethanol from cashew wastes. ACT, sponsored by Petroleum conservation research association. Oct–Dec, pp 16–17 2009

    Google Scholar 

  • Tao F, Miao JY, Shi GY, Zhang KC (2005) Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition. Process Biochem 40:183–187

    Article  Google Scholar 

  • Ministry of Petroleum and Natural Gas Resolution (2002) The gazette of India: extraordinary [part I, sec. I]. Ministry of Petroleum and Natural Gas Resolution. New Delhi, 3 Sept, No. P-45018/28/2000-C. C, (2002)

    Google Scholar 

  • Veeramallu U, Agrawal P (1990) A structured kinetic model for Zymomonas mobilis ATC10988. Biotechnol Bioeng 36:694–704

    Article  Google Scholar 

  • Wang F-S, Sheu J-W (2000) Multiobjective parameter estimation problems of fermentation processes using a high ethanol tolerance yeast. Chem Eng Sci 55:3684–3695

    Google Scholar 

  • Zafar S, Owais M (2006) Ethanol production from crude whey by Kluyveromyces marxianus. Biochem Eng J 27:295–298

    Article  Google Scholar 

  • Znad H, Blazej M, Bales V, Markos J (2004) Kinetic model for gluconic acid production by Aspergillus niger. Chem Pap 58:23–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suresh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suresh, S., Srivastava, V.C., Sakthivel, S., Arisutha, S. (2018). Kinetic Modeling of Ethanol Production for Substrate–Microbe System. In: Kumar, S., Sani, R. (eds) Biorefining of Biomass to Biofuels. Biofuel and Biorefinery Technologies, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-67678-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67678-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67677-7

  • Online ISBN: 978-3-319-67678-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics