Skip to main content

Prospects of Solvent Tolerance in Butanol Fermenting Bacteria

  • Chapter
  • First Online:
Biorefining of Biomass to Biofuels

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 4))

Abstract

Butanol tolerance is a critical factor affecting the ability of microorganisms to produce economically viable quantities of butanol through acetone-butanol-ethanol (ABE) fermentation using renewable feedstocks. However, ABE process has certain challenges like maintaining strict anaerobic conditions, slow growth rate of microorganisms, the rapid shift of pH, sensitivity to acetic acid, low butanol titer, solvent tolerance, and product inhibition. Separation of fermentation products through distillation, gas stripping, pervaporation, and adsorption also makes the process costly. Despite their importance at a biofuel platform, a limited number of butanol-tolerant bacteria have been identified so far. This problem can be eradicated through the isolation of solvent tolerating bacteria, development of bacteria through evolutionary engineering, mutation, and genetic engineering with promising product recovery techniques. In the present chapter, an overview of the butanol tolerating microbes, their solvent survival strategies, and the techniques to overcome the problem for a high concentration of butanol have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, El-Enany AWE (2012) Production of acetone-butanol-ethanol from spoilage date palm (Phoenix dactylifera L.) fruits by mixed culture of Clostridium acetobutylicum and Bacillus subtilis. Biomass Bioenergy 42:172–178

    Article  Google Scholar 

  • Alsaker KV, Paredes C, Papoutsakis ET (2010) Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng 105:1131–1147

    Google Scholar 

  • Al-Shorgani N, Kalil M, Yusoff W (2012) Fermentation of sago starch to biobutanol in a batch culture using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Ann Microbiol 62(3):1059–1070

    Article  Google Scholar 

  • Atsumi S, Cann AF, Connor MR et al (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311

    Article  Google Scholar 

  • Behera S, Sharma NK, Arora R et al (2016) Effect of evolutionary adaption on xylosidase activity in thermotolerant yeast isolates Kluyveromyces marxianus NIRE-K1 and NIRE-K3. Appl Biochem Biotechnol 179:1143–1154

    Article  Google Scholar 

  • Berezina OV, Brandt A, Yarotsky S et al (2009) Isolation of a new butanol-producing Clostridium strain: High level of hemicellulosic activity and structure of solventogenesis genes of a new Clostridium saccharobutylicum isolate. Syst Appl Microbiol 32:449–459

    Article  Google Scholar 

  • Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microbiol 73(9):3061–3068

    Article  Google Scholar 

  • Brynildsen MP, Liao JC (2009) An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol Syst Biol 5:277

    Article  Google Scholar 

  • Cai D, Chen H, Chen C et al (2016) Gas stripping–pervaporation hybrid process for energy-saving product recovery from acetone-butanol-ethanol (ABE) fermentation broth. Chem Eng J 287:1–10

    Article  Google Scholar 

  • Chen T, Wang J, Yang R et al (2011) Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli. PLoS ONE 6(1):e16228

    Article  Google Scholar 

  • Dong H, Zhang Y, Zhu Y et al (2011) Biofuels and bioenergy: acetone and butanol. In: Murray M-Y (ed) Comprehensive biotechnology, 2nd edn. Academic Press, New York, 71–85

    Google Scholar 

  • Doukyu N, Ishikawa K, Watanabe R et al (2012) Improvement in organic solvent tolerance by double disruptions of proV and marR genes in Escherichia coli. J Appl Microbiol 112:464–474

    Article  Google Scholar 

  • Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32

    Article  Google Scholar 

  • Dunlop MJ, Dossani ZY, Szmidt HL et al (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7:487

    Article  Google Scholar 

  • Durre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534

    Article  Google Scholar 

  • Durre P (2011) Fermentative production of butanol-the academic perspective. Curr Opin Biotechnol 22:331–336

    Article  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227

    Article  Google Scholar 

  • Fatehi P (2013) Recent advancements in various steps of ethanol, butanol, and isobutanol productions from woody materials. Biotechnol Prog 29(2):297–310

    Article  Google Scholar 

  • Fernandes P, Ferreira BS, Cabral JMS (2003) Solvent tolerance in bacteria: role of efflux pumps and cross resistance with antibiotics. Int J Antimicrobial Agents 22:211–216

    Article  Google Scholar 

  • Formanek J, Mackie R, Blaschek HP (1997) Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl Environ Microbiol 63:2306–2310

    Google Scholar 

  • Gao X, Sun T, Wu L et al (2017) Co-overexpression of response regulator genes slr1037 and sll0039 improves tolerance of Synechocystis sp. PCC 6803 to 1-butanol. Bioresour Technol (In Press)

    Google Scholar 

  • Garcia V, Pakkila J, Ojamo H et al (2011) Challenges in biobutanol production: how to improve the efficiency? Renew Sustain Energy Rev 15:964–980

    Article  Google Scholar 

  • George HA, Chen JS (1983) Acidic conditions are not obligatory for onset of butanol formation by Clostridium beijerinckii (synonym, C. butylicum). Appl Environ Microbiol 46:321–327

    Google Scholar 

  • Goodarzi H, Bennett BD, Amini S et al (2010) Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli. Mol Syst Biol 6:378

    Article  Google Scholar 

  • Gottwald M, Hippe H, Gottschalk G (1984) Formation of n-Butanol from D-Glucose by Strains of the” Clostridium tetanomorphum” Group. Appl Environ Microbiol 48:573–576

    Google Scholar 

  • Honig V, Kotek M, Marik J (2014) Use of butanol as a fuel for internal combustion engines. Agron Res 12(2):333–340

    Google Scholar 

  • Horinouchi T, Tamaoka K, Furusawa C et al (2010) Transcriptome analysis of parallel-evolved Escherichia coli strains under ethanol stress. BMC Genom 11:579

    Article  Google Scholar 

  • Hou X, From N, Angelidaki I et al (2017) Butanol fermentation of the brown seaweed Laminaria digitata by Clostridium beijerinckii DSM-6422. Bioresour Technol 238:16–21

    Article  Google Scholar 

  • Huang H, Liu H, Gan YR (2010) Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv 28:651–657

    Article  Google Scholar 

  • Jang YS, Malaviya A, Cho C et al (2012) Butanol production from renewable biomass by clostridia. Bioresour Technol 123:653–663

    Article  Google Scholar 

  • Jeong H, Kim SH, Han SS et al (2012) Changes in membrane fatty acid composition through proton-induced fabF mutation enhancing 1-butanol tolerance in E. coli. J Korean Phys Soc 61:227–233

    Article  Google Scholar 

  • Jiang Y, Xu C, Dong F et al (2009) Disruption of the acetoacetate decarboxylase gene insolvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11:284–291

    Article  Google Scholar 

  • Jiang Y, Liu J, Jiang W et al (2014) Current status and prospects of industrial bio-production of n-butanol in China. Biotechnol Adv 33:1493–1501

    Article  Google Scholar 

  • Jin H1, Chen L, Wang J et al (2014) Engineering biofuel tolerance in non-native producing microorganisms. Biotechnol Adv 32(2):541–548

    Google Scholar 

  • Kang HJ, Heo DH, Choi SW et al (2007) Functional characterization of Hsp33 protein from Bacillus psychrosaccharolyticus; additional function of HSP33 on resistance to solvent stress. Biochem Biophys Res Commun 358(3):743–750

    Article  Google Scholar 

  • Kanno M, Katayama T, Tamaki H et al (2013) Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance. Am Soc Microbiol 79:6998–7005

    Google Scholar 

  • Kataoka N, Tajima T, Kato J et al (2011) Development of butanol-tolerant Bacillus subtilis strain GRSW2-B1 as a potential bioproduction host. AMB Express 1:10

    Article  Google Scholar 

  • Kieboom J, Dennis JJ, de Bont JA et al (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273(1):85–91

    Article  Google Scholar 

  • Kim HJ, Turner TL, Jin YS (2013) Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals. Biotechnol Adv 31:976–985

    Article  Google Scholar 

  • Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153:13–20

    Article  Google Scholar 

  • Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88:1999–2012

    Article  Google Scholar 

  • Lee SY, Park JH, Jang SH et al (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101:209–228

    Article  Google Scholar 

  • Lee SJ, Lee SJ, Lee DW (2013) Design and development of synthetic microbial platform cells for bioenergy. Front Microbiol 4:92

    Google Scholar 

  • Lehmann D, Lutke-Eversloh T (2011) Switching Clostridium acetobutylicum to an ethanol producer by disruption of the butyrate/butanol fermentative pathway. Metabolic Eng 13:464–473

    Article  Google Scholar 

  • Li XZ, Zhang L, Poole K (1998) Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J Bacteriol 180:2987–2991

    Google Scholar 

  • Li J, Zhao JB, Zhao M et al (2010) Screening and characterization of butanol-tolerant micro-organisms. Lett Appl Microbiol 50:373–379

    Article  Google Scholar 

  • Li H, Luo W, Gu Q et al (2013) Acetone, butanol, and ethanol production from cane molasses using Clostridium beijerinckii mutant obtained by combined low-energy ion beam implantation and N-methyl-N-nitro-N-nitrosoguanidine induction. Bioresour Technol 137:254–260

    Article  Google Scholar 

  • Li H, Ofosu FK, Li K et al (2014) Acetone, butanol, and ethanol production from gelatinized cassava flour by a new isolates with high butanol tolerance. Bioresour Technol 172:276–282

    Article  Google Scholar 

  • Liao Z, Zhang Y, Luo S et al (2017) Improving cellular robustness and butanol titers of Clostridium acetobutylicum ATCC824 by introducing heat shock proteins from an extremophilic bacterium. J Biotechnol 252:1–10

    Article  Google Scholar 

  • Lin YL, Blaschek HP (1983) Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl Environ Microbiol 45:966–973

    Google Scholar 

  • Liu S, Qureshi N (2009) How microbes tolerate ethanol and butanol. New Biotechnol 26:117–121

    Article  Google Scholar 

  • Liu S, Bischoff KM, Leathers TD et al (2012) Adaptation of lactic acid bacteria to butanol. Biocatal Agric Biotechnol 1:57–61

    Google Scholar 

  • Liu X, Gu Q, Liao C et al (2014) Enhancing butanol tolerance and preventing degeneration in Clostridium acetobutylicum by 1-butanol–glycerol storage during long-term preservation. Biomass Bioenergy 69:192–197

    Article  Google Scholar 

  • Lo TM, Suong TW, Ling H et al (2013) Microbial engineering strategies to improve cell viability for biochemical production. Biotechnol Adv 31:903–914

    Article  Google Scholar 

  • Lopez-Contreras AM, Kuit W, Siemerink MAJ et al (2010) Production of longer-chain alcohols from lignocellulosic biomass: butanol, isopropanol and 2,3-butanediol. In: Waldron K (ed) Bioalcohol production. Woodhead Publishing, Cambridge (UK), pp 415–460

    Chapter  Google Scholar 

  • Lutke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:1–14

    Article  Google Scholar 

  • Maiti S, Gallastegui G, Jyoti S et al (2016) A re-look at the biochemical strategies to enhance butanol production. Biomass Bioenergy 94:187–200

    Article  Google Scholar 

  • Mann MS, Dragovic Z, Schirrmacher G et al (2012) Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress. Biotechnol Lett 34:1643–1649

    Article  Google Scholar 

  • Mariano AP, Qureshi N, Ezeji TC (2011) Bioproduction of butanol in bioreactors: new insights from simultaneous in situ butanol recovery to eliminate product toxicity. Biotechnol Bioeng 108:1757–1765

    Article  Google Scholar 

  • Merlet G, Uribe F, Aravena C et al (2017) Separation of fermentation products from ABE mixtures by perstraction using hydrophobic ionic liquids as extractants. J Membr Sci 537:337–343

    Article  Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12(4):307–331

    Article  Google Scholar 

  • Okochi M, Kurimoto M, Shimizu K (2007) Increase of organic solvent tolerance by overexpression of man XYZ in Escherichia coli. Appl Microbiol Biotechnol 73:1394–1399

    Article  Google Scholar 

  • Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19:420–429

    Article  Google Scholar 

  • Pinkart HC, Wolfram JW, Rogers R et al (1996) Cell envelope changes in solvent-tolerant and solvent sensitive Pseudomonas putida strains following exposure to o-xylene. Appl Environ Microbiol 62:1129–1132

    Google Scholar 

  • Qureshi N, Blaschek HP (1999) Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation. Biotechnol Prog 15:594–602

    Article  Google Scholar 

  • Qureshi N, Blaschek HP (2005) Butanol production from agricultural biomass. In: Shetty K, Paliyath G, Pometto A, Levin RE (eds) Food biotechnology, 2nd edn. Taylor & Francis, New York, pp 525–549

    Google Scholar 

  • Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30:419–427

    Article  Google Scholar 

  • Qureshi N, Saha BC, Dien B et al (2010a) Production of butanol (a biofuel) from agricultural residues: part I- use of barley straw hydrolysate. Biomass Bioenergy 34:559–565

    Article  Google Scholar 

  • Qureshi N, Saha BC, Hector RE et al (2010b) Production of butanol (a biofuel) from agricultural residues: part II- use of corn stover and switchgrass hydrolysates. Biomass Bioenergy 34:566–571

    Article  Google Scholar 

  • Qureshi N, Saha BC, Cotta MA, Singh V (2013) An economic evaluation of biological conversion of wheat straw to butanol: a biofuel. Energy Convers Manag 65:456–462

    Article  Google Scholar 

  • Rao A, Sathiavelu A, Mythili S (2016) Genetic engineering in biobutanol production and tolerance. Braz Arch Biol Technol 59:e16150612

    Article  Google Scholar 

  • Reyes LH, Almario MP, Kao KC (2011) Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS ONE 6:e17678

    Article  Google Scholar 

  • Rochon E, Ferrari MD, Lareo C (2017) Integrated ABE fermentation-gas stripping process for enhanced butanol production from sugarcane-sweet sorghum juices. Biomass Bioenergy 98:153–160

    Article  Google Scholar 

  • Ruhl J, Schmid A, Blank LM (2009) Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 75:4653–4656

    Article  Google Scholar 

  • Rutherford BJ, Dahl RH, Price RE et al (2010) Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol 76:1935–1945

    Article  Google Scholar 

  • Shah AA, Wang C, Chung YR et al (2013) Enhancement of geraniol resistance of Escherichia coli by MarA overexpression. J Biosci Bioeng 115:253–258

    Article  Google Scholar 

  • Sharma NK, Behera S, Arora R et al (2016) Enhancement in xylose utilization using Kluyveromyces marxianus NIRE-K1 through evolutionary adaptation approach. Bioprocess Biosystems Eng 39:835–843

    Article  Google Scholar 

  • Syed Q, Nadeem M, Nelofer R (2008) Enhanced butanol production by mutant strains of Clostridium acetobutylicum in molasses medium. Turkish J Biochem 33(1):25–30

    Google Scholar 

  • Tanaka Y, Kasahara K, Hirose Y (2017) Enhancement of butanol production by sequential introduction of mutations conferring butanol tolerance and streptomycin resistance. J Biosci Bioeng (In Press)

    Google Scholar 

  • Tian X, Chen L, Wang J et al (2012) Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. J Proteomics 2012:326–345

    Google Scholar 

  • Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69(8):4951–4965

    Article  Google Scholar 

  • Tomas CA, Beamish J, Papoutsakis ET (2004) Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 186(7):2006–2018

    Article  Google Scholar 

  • Vermue M, Sikkema J, Verheul A et al (1993) Toxicity of homologous series of organic solvents for the gram-positive bacteria Arthrobacter and Nocardia sp. and the gram-negative bacteria Acinetobacter and Pseudomonas sp. Biotechnol Bioeng 42:747–758

    Article  Google Scholar 

  • Volkers RJM, de Jong AL, Hulst AG et al (2006) Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12. Environ Microbiol 8(9):1674–1679

    Article  Google Scholar 

  • Vollherbst-Schneck, K, Sands JA, Montenecourt BS (1984) Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 47:193–194

    Google Scholar 

  • Waber FJ, Bont JM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245

    Article  Google Scholar 

  • Wang YF, Tiana J, Ji ZH (2016) Intracellular metabolic changes of Clostridium acetobutylicum and promotion to butanol tolerance during biobutanol fermentation. Int J Biochem Cell Biol 78:297–306

    Article  Google Scholar 

  • Woods DR (1995) The genetic engineering of microbial solvent production. Trends Biotechnol 13:259–264

    Article  Google Scholar 

  • Wu YD, Xue C, Chen LJ et al (2013) Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. J Biotechnol 165:18–21

    Article  Google Scholar 

  • Zhang J, Wang S, Wang Y (2016) Biobutanol production from renewable resources: recent advances. Adv Bioenergy 1:1–68

    Article  Google Scholar 

  • Zheng YN, Li LZ, Xian M et al (2009) Problems with the microbial production of butanol. J Ind Microbiol Biotechnol 36:1127–1138

    Article  Google Scholar 

  • Zheng J, Tashiro Y, Wang Q, Sonomoto K (2015) Recent advances to improve fermentative butanol production: genetic engineering and fermentation technology. J Biosci Bioeng 119:1–9

    Article  Google Scholar 

  • Zhu L, Dong H, Zhang Y, Li Y (2011) Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metab Eng 13:426–434

    Article  Google Scholar 

  • Zhu H, Ren X, Wang J et al (2013) Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803. Biotechnol Biofuels 6:106

    Article  Google Scholar 

  • Zingaro KA, Papoutsakis ET (2012) GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1, 2, 4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng 15:196–205

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the grant support from Science & Engineering Research Board, New Delhi, Govt. of India (File No. YSS/2015/000295). Authors also thank to Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India as the host Institution for providing laboratory space to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuvashish Behera or Sachin Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behera, S., Sharma, N.K., Kumar, S. (2018). Prospects of Solvent Tolerance in Butanol Fermenting Bacteria. In: Kumar, S., Sani, R. (eds) Biorefining of Biomass to Biofuels. Biofuel and Biorefinery Technologies, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-67678-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67678-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67677-7

  • Online ISBN: 978-3-319-67678-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics