Skip to main content

Bridge Simulation and Metric Estimation on Landmark Manifolds

  • Conference paper
  • First Online:
Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics (GRAIL 2017, MICGen 2017, MFCA 2017)

Abstract

We present an inference algorithm and connected Monte Carlo based estimation procedures for metric estimation from landmark configurations distributed according to the transition distribution of a Riemannian Brownian motion arising from the Large Deformation Diffeomorphic Metric Mapping (LDDMM) metric. The distribution possesses properties similar to the regular Euclidean normal distribution but its transition density is governed by a high-dimensional PDE with no closed-form solution in the nonlinear case. We show how the density can be numerically approximated by Monte Carlo sampling of conditioned Brownian bridges, and we use this to estimate parameters of the LDDMM kernel and thus the metric structure by maximum likelihood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allassonnire, S., Amit, Y., Trouve, A.: Towards a coherent statistical framework for dense deformable template estimation. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 69(1), 3–29 (2007)

    MathSciNet  Google Scholar 

  2. Arnaudon, A., Castro, A.L., Holm, D.D.: Noise and dissipation on coadjoint orbits. JNLS, arXiv:1601.02249 [math-ph, physics: nlin], January 2016

  3. Arnaudon, A., Holm, D.D., Pai, A., Sommer, S.: A stochastic large deformation model for computational anatomy. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 571–582. Springer, Cham (2017). doi:10.1007/978-3-319-59050-9_45

    Chapter  Google Scholar 

  4. Arnaudon, A., Holm, D.D., Sommer, S.: A geometric framework for stochastic shape analysis. Submitted, arXiv:1703.09971 [cs, math], March 2017

  5. Beg, M.F., Miller, M.I., Trouv, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. IJCV 61(2), 139–157 (2005)

    Article  Google Scholar 

  6. Delyon, B., Hu, Y.: Simulation of conditioned diffusion and application to parameter estimation. Stoch. Process. Appl. 116(11), 1660–1675 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56(3), 587–600 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fujita, T., Kotani, S.: The Onsager-Machlup function for diffusion processes. J. Math. Kyoto Univ. 22(1), 115–130 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Holm, D.D.: Variational principles for stochastic fluid dynamics. Proc. Math. Phys. Eng. Sci. 471(2176), 20140963 (2015). The Royal Society

    Article  MathSciNet  Google Scholar 

  10. Hsu, E.P.: Stochastic Analysis on Manifolds. American Mathematical Society, Providence (2002)

    Book  MATH  Google Scholar 

  11. Joshi, S., Miller, M.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–1370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuhnel, L., Sommer, S.: Computational anatomy in Theano. In: Mathematical Foundations of Computational Anatomy (MFCA) (2017)

    Google Scholar 

  13. Markussen, B.: Large deformation diffeomorphisms with application to optic flow. Comput. Vis. Image Underst. 106(1), 97–105 (2007)

    Article  MathSciNet  Google Scholar 

  14. Marsland, S., Shardlow, T.: Langevin equations for landmark image registration with uncertainty. SIAM J. Imaging Sci. 10(2), 782–807 (2017)

    Article  MathSciNet  Google Scholar 

  15. Micheli, M.: The differential geometry of landmark shape manifolds: metrics, geodesics, and curvature. Ph.D. thesis, Brown University, Providence, USA (2008)

    Google Scholar 

  16. Papaspiliopoulos, O., Roberts, G.O.: Importance sampling techniques for estimation of diffusion models. In: Statistical Methods for Stochastic Differential Equations. Chapman & Hall/CRC Press (2012)

    Google Scholar 

  17. Sommer, S.: Anisotropic distributions on manifolds: template estimation and most probable paths. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 193–204. Springer, Cham (2015). doi:10.1007/978-3-319-19992-4_15

    Chapter  Google Scholar 

  18. Sommer, S.: Anisotropically weighted and nonholonomically constrained evolutions on manifolds. Entropy 18(12), 425 (2016)

    Article  MathSciNet  Google Scholar 

  19. Sommer, S., Jacobs, H.O.: Reduction by lie group symmetries in diffeomorphic image registration and deformation modelling. Symmetry 7(2), 599–624 (2015)

    Article  MathSciNet  Google Scholar 

  20. Sommer, S., Joshi, S.: Brownian bridge simulation and metric estimation on lie groups and homogeneous spaces (2017, in preparation)

    Google Scholar 

  21. Sommer, S., Svane, A.M.: Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry. J. Geom. Mech. 9(3), 391–410 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stegmann, M.B., Fisker, R., Ersbll, B.K.: Extending and applying active appearance models for automated, high precision segmentation in different image modalities. In: Scandinavian Conference on Image Analysis, pp. 90–97 (2001)

    Google Scholar 

  23. Team, T.T.D.: Theano: a Python framework for fast computation of mathematical expressions. arXiv:1605.02688 [cs], May 2016

  24. Trouve, A.: An infinite dimensional group approach for physics based models in patterns recognition (1995)

    Google Scholar 

  25. Trouve, A., Vialard, F.X.: Shape splines and stochastic shape evolutions: a second order point of view. Q. Appl. Math. 70(2), 219–251 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vialard, F.X.: Extension to infinite dimensions of a stochastic second-order model associated with shape splines. Stoch. Process. Appl. 123(6), 2110–2157 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful for the use of the cardiac ventricle dataset provided by Jens Chr. Nilsson and Bjørn A. Grønning, Danish Research Centre for Magnetic Resonance (DRCMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Sommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sommer, S., Arnaudon, A., Kuhnel, L., Joshi, S. (2017). Bridge Simulation and Metric Estimation on Landmark Manifolds. In: Cardoso, M., et al. Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics. GRAIL MICGen MFCA 2017 2017 2017. Lecture Notes in Computer Science(), vol 10551. Springer, Cham. https://doi.org/10.1007/978-3-319-67675-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67675-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67674-6

  • Online ISBN: 978-3-319-67675-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics