A Comprehensive Review of the Flower Pollination Algorithm for Solving Engineering Problems

  • Aylin Ece Kayabekir
  • Gebrail BekdaşEmail author
  • Sinan Melih Nigdeli
  • Xin-She Yang
Part of the Studies in Computational Intelligence book series (SCI, volume 744)


Engineering optimization problems are often solved by using metaheuristic algorithms. Flower pollination algorithm (FPA) is a nature-inspired metaheuristic algorithm and FPA have been used in a variety of engineering problems. In this book chapter, the engineering applications of FPA and its variants are reviewed, and the applications include chemical engineering, civil engineering, energy and power systems, mechanical engineering, electronical and communication engineering, computer science and others. Further research topics are also outlined.


Flower pollination algorithm Optimization Metaheuristic methods Civil engineering Nonlinear optimization 


  1. 1.
    Yang, X.S.: Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing and Natural Computation, pp. 240–249. Springer, Berlin (2012)Google Scholar
  2. 2.
    Yang, X.S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dubey, H.M., Pandit, M., Panigrahi, B.K.: A biologically inspired modified flower pollination algorithm for solving economic dispatch problems in modern power systems. Cogn. Comput. 7(5), 594–608 (2015)CrossRefGoogle Scholar
  4. 4.
    Bibiks, K., Li, J.P., Hu, F.: Discrete flower pollination algorithm for resource constrained project scheduling problem. Int. J. Comput. Sci. Inf. Secur. 13(7), 8 (2015)Google Scholar
  5. 5.
    Namachivayam, G., Sankaralingam, C., Perumal, S.K., Devanathan, S.T.: Reconfiguration and capacitor placement of radial distribution systems by modified flower pollination algorithm. Electric Power Compon. Syst. 44(13), 1492–1502 (2016)CrossRefGoogle Scholar
  6. 6.
    Merzougui, A., Labed, N., Hasseine, A., Bonilla-Petriciolet, A., Laiadi, D., Bacha, O.: Parameter identification in liquid-liquid equilibrium modeling of food-related thermodynamic systems using flower pollination algorithms. Open Chem. Eng. J. 10(1), 59–73 (2016)CrossRefGoogle Scholar
  7. 7.
    Shehata, M.N., Fateen, S.E.K., Bonilla-Petriciolet, A.: Critical point calculations of multi-component reservoir fluids using nature-inspired metaheuristic algorithms. Fluid Phase Equilib. 409, 280–290 (2016)CrossRefGoogle Scholar
  8. 8.
    Zainudin, A., Sia, C.K., Ong, P., Narong, O.L.C., Nor, N.H.M.: Taguchi design and flower pollination algorithm application to optimize the shrinkage of triaxial porcelain containing palm oil fuel ash. In: IOP Conference Series: Materials Science and Engineering, vol. 165, no. 1, p. 012036. IOP Publishing (2017)Google Scholar
  9. 9.
    Narong, L.C., Sia, C.K., Yee, S.K., Ong, P., Zainudin, A., Nor, N.H.M., & Kasim, N.A.: Optimization of the EMI shielding effectiveness of fine and ultrafine POFA powder mix with OPC powder using flower pollination algorithm. In: IOP Conference Series: Materials Science and Engineering, vol. 165, no. 1, p. 012035. IOP Publishing (2017)Google Scholar
  10. 10.
    Nigdeli, S.M., Bekdaş, G., Yang, X.-S.: Application of the flower pollination algorithm in structural engineering. In: Yang X.-S., Bekdaş G., Nigdeli S.M. (eds.) Metaheuristics and Optimization in Civil Engineering, pp. 25–43. Springer (2016)Google Scholar
  11. 11.
    Abdel-Baset, M., Hezam, I.: A hybrid flower pollination algorithm for engineering optimization problems. Int. J. Comput. Appl. 140(12), 10–23 (2016)Google Scholar
  12. 12.
    Meng, O.K., Pauline, O., Kiong, S.C., Wahab, H.A., Jafferi, N.: Application of modified flower pollination algorithm on mechanical engineering design problem. In: IOP Conference Series: Materials Science and Engineering, vol. 165, no. 1, p. 012032. IOP Publishing (2017)Google Scholar
  13. 13.
    Bekdaş, G., Nigdeli, S.M., Yang, X.S.: Sizing optimization of truss structures using flower pollination algorithm. Appl. Soft Comput. 37, 322–331 (2015)CrossRefGoogle Scholar
  14. 14.
    Bekdas, G., Nigdeli, S.M., Yang, X.S.: Size optimization of truss structures employing flower pollination algorithm without grouping structural members. Int. J. Theor. Appl. Mech. 1, 269–273 (2017)Google Scholar
  15. 15.
    Camp, C.V., Bichon, B.J.: Design of space trusses using ant colony optimization. J. Struct. Eng. 130(5), 741–751 (2004)CrossRefGoogle Scholar
  16. 16.
    Kaveh, A., Talatahari, S.: Size optimization of space trusses using Big Bang-Big Crunch algorithm. Comput. Struct. 87(17), 1129–1140 (2009)CrossRefGoogle Scholar
  17. 17.
    Camp, C.V., Farshchin, M.: Design of space trusses using modified teaching–learning based optimization. Eng. Struct. 62, 87–97 (2014)CrossRefGoogle Scholar
  18. 18.
    Kaveh, A., Sheikholeslami, R., Talatahari, S., Keshvari-Ilkhichi, M.: Chaotic swarming of particles: a new method for size optimization of truss structures. Adv. Eng. Softw. 67, 136–147 (2014)CrossRefGoogle Scholar
  19. 19.
    Kaveh, A., Mahdavi, V.R.: Colliding bodies optimization method for optimum design of truss structures with continuous variables. Adv. Eng. Softw. 70, 1–12 (2014)CrossRefGoogle Scholar
  20. 20.
    Kaveh, A., Khayatazad, M.: Ray optimization for size and shape optimization of truss structures. Comput. Struct. 117, 82–94 (2013)CrossRefGoogle Scholar
  21. 21.
    Nigdeli, S.M., Bekdas, G., Yang, X.S.: Optimum tuning of mass dampers for seismic structures using flower pollination algorithm. Int. J. Theor. Appl. Mech. 1, 264–268 (2017)Google Scholar
  22. 22.
    Nigdeli, S.M., Bekdaş, G., Yang, X.-S.: Optimum tuning of mass dampers by using a hybrid method using harmony search and flower pollination algorithm. In: Del Ser J. (ed.) Harmony Search Algorithm. Advances in Intelligent Systems and Computing, vol. 514, pp. 222–231. Springer (2017)Google Scholar
  23. 23.
    Bekdaş, G., Nigdeli, S.M., Yang, X.-S.: Metaheuristic based optimization for tuned mass dampers using frequency domain responses. In: Del Ser J. (ed.) Harmony Search Algorithm. Advances in Intelligent Systems and Computing, vol. 514, pp. 271–279. Springer (2017)Google Scholar
  24. 24.
    Sadek, F., Mohraz, B., Taylor, A.W., Chung, R.M.: A method of estimating the parameters of tuned mass dampers for seismic applications. Earthq. Eng. Struct. Dynam. 26(6), 617–636 (1997)CrossRefGoogle Scholar
  25. 25.
    Hoang, N.D., Bui, D.T., Liao, K.W.: Groutability estimation of grouting processes with cement grouts using differential flower pollination optimized support vector machine. Appl. Soft Comput. 45, 173–186 (2016)CrossRefGoogle Scholar
  26. 26.
    Prathiba, R., Moses, M.B., Sakthivel, S.: Flower pollination algorithm applied for different economic load dispatch problems. Int. J. Eng. Technol. (IJET) 6(2), 1009–1016 (2014)Google Scholar
  27. 27.
    Lenin, K., Ravindhranath, R.B., Surya, K.M.: Shrinkage of active power loss by hybridization of flower pollination algorithm with chaotic harmony search algorithm. Control Theory Inform. 4, 31–38 (2014)Google Scholar
  28. 28.
    Abdelaziz, A.Y., Ali, E.S., Elazim, S.A.: Optimal sizing and locations of capacitors in radial distribution systems via flower pollination optimization algorithm and power loss index. Eng. Sci. Technol. Int. J. 19(1), 610–618 (2016)CrossRefGoogle Scholar
  29. 29.
    Abdelaziz, A.Y., Ali, E.S., Elazim, S.A.: Combined economic and emission dispatch solution using flower pollination algorithm. Int. J. Electr. Power Energy Syst. 80, 264–274 (2016)CrossRefGoogle Scholar
  30. 30.
    Abdelaziz, A.Y., Ali, E.S., Elazim, S.A.: Flower pollination algorithm and loss sensitivity factors for optimal sizing and placement of capacitors in radial distribution systems. Int. J. Electr. Power Energy Syst. 78, 207–214 (2016)CrossRefGoogle Scholar
  31. 31.
    Tahani, M., Babayan, N., Astaraei, F.R., Moghadam, A.: Multi objective optimization of horizontal axis tidal current turbines, using Meta heuristics algorithms. Energy Convers. Manag. 103, 487–498 (2015)CrossRefGoogle Scholar
  32. 32.
    Tahani, M., Babayan, N., Pouyaei, A.: Optimization of PV/wind/battery stand-alone system, using hybrid FPA/SA algorithm and CFD simulation, case study: Tehran. Energy Convers. Manag. 106, 644–659 (2015)CrossRefGoogle Scholar
  33. 33.
    Tahani, M., Babayan, N., Mehrnia, S., Shadmehri, M.: A novel heuristic method for optimization of straight blade vertical axis wind turbine. Energy Convers. Manag. 127, 461–476 (2016)CrossRefGoogle Scholar
  34. 34.
    Mahdad, B., Srairi, K.: Security constrained optimal power flow solution using new adaptive partitioning flower pollination algorithm. Appl. Soft Comput. 46, 501–522 (2016)CrossRefGoogle Scholar
  35. 35.
    Shilaja, C., Ravi, K.: Optimization of emission/economic dispatch using euclidean affine flower pollination algorithm (eFPA) and binary FPA (BFPA) in solar photo voltaic generation. Renew. Energy 107, 550–566 (2017)CrossRefGoogle Scholar
  36. 36.
    Ram, J.P., Babu, T.S., Dragicevic, T., Rajasekar, N.: A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation. Energy Convers. Manag. 135, 463–476 (2017)CrossRefGoogle Scholar
  37. 37.
    Dubey, H.M., Pandit, M., Panigrahi, B.K.: Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch. Renew. Energy 83, 188–202 (2015)CrossRefGoogle Scholar
  38. 38.
    Xu, S., Wang, Y.: Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm. Energy Convers. Manag. 144, 53–68 (2017)CrossRefGoogle Scholar
  39. 39.
    Abdelaziz, A.Y., Ali, E.S.: Static VAR compensator damping controller design based on flower pollination algorithm for a multi-machine power system. Electric Power Compon. Syst. 43(11), 1268–1277 (2015)CrossRefGoogle Scholar
  40. 40.
    Jagatheesan, K., Anand, B., Samanta, S., Dey, N., Santhi, V., Ashour, A.S., Balas, V.E.: Application of flower pollination algorithm in load frequency control of multi-area interconnected power system with nonlinearity. Neural Comput. Appl. 1–14 (2016)Google Scholar
  41. 41.
    Dash, P., Saikia, L.C., Sinha, N.: Flower pollination algorithm optimized PI-PD cascade controller in automatic generation control of a multi-area power system. Int. J. Electr. Power Energy Syst. 82, 19–28 (2016)CrossRefGoogle Scholar
  42. 42.
    Chiroma, H., Abdul-kareem, S., Khan, A., Abubakar, A.I., Muaz, S.A., Gital, A.Y.U., Shuib, L.M.: Bio-inspired algorithm optimization of neural network for the prediction of Dubai crude oil price. In: Second International Conference on Advanced Data and Information Engineering (DaEng-2015), Bali, Indonesi, April 25–26Google Scholar
  43. 43.
    Kavirayani, S., Kumar, G.V.: Flower pollination for rotary inverted pendulum stabilization with delay. Telkomnika 15(1), 245–253 (2017)CrossRefGoogle Scholar
  44. 44.
    Xu, S., Wang, Y., Huang, F.: Optimization of multi-pass turning parameters through an improved flower pollination algorithm. Int. J. Adv. Manuf. Technol. 89(1–4), 503–514 (2017)CrossRefGoogle Scholar
  45. 45.
    Acherjee, B., Maity, D., Kuar, A.S.: Parameters optimisation of transmission laser welding of dissimilar plastics using RSM and flower pollination algorithm integrated approach. Int. J. Math. Model. Numer. Optim. 8(1), 1–22 (2017)Google Scholar
  46. 46.
    Chakravarthy, V., Rao, P.M.: On the convergence characteristics of flower pollination algorithm for circular array synthesis. In: 2015 2nd International Conference on Electronics and Communication Systems (ICECS), pp. 485–489. IEEE (2015)Google Scholar
  47. 47.
    Chakrravarthy, V., Chowdary, P.S., Rao, P.M., Panda, G.: Synthesis of circular array antenna for sidelobe level and aperture size control using flower pollination algorithm. Int. J. Antennas Propag. 2015 (2015). Article ID 819712Google Scholar
  48. 48.
    Singh, U., Salgotra, R.: Pattern synthesis of linear antenna arrays using enhanced flower pollination algorithm. Int. J. Antennas Propag. 2017 (2017). Article ID 7158752Google Scholar
  49. 49.
    Shukla, S., Bhandari, A.S.: Cooperative spectrum sensing in cognitive radio using flower pollination optimization algorithm. Int. J. Eng. Trends Technol. (IJETT) 37(3), 169–174 (2016)CrossRefGoogle Scholar
  50. 50.
    Mahata, S., Saha, S.K., Kar, R., Mandal, D.: Optimal design of wideband digital integrators and differentiators using hybrid flower pollination algorithm. Soft Comput. 1–27 (2017)Google Scholar
  51. 51.
    Abdel-Raouf, O., Abdel-Baset, M.: A new hybrid flower pollination algorithm for solving constrained global optimization problems. Int. J. Appl. Oper. Res. Open Access J. 4(2), 1–13 (2014)Google Scholar
  52. 52.
    Sharawi, M., Emary, E., Saroit, I.A., El-Mahdy, H.: Flower pollination optimization algorithm for wireless sensor network lifetime global optimization. Int. J. Soft Comput. Eng. 4(3), 54–59 (2014)Google Scholar
  53. 53.
    Hajjej, F., Ejbali, R., Zaied, M.: An efficient deployment approach for improved coverage in wireless sensor networks based on flower pollination algorithm. In: Natarajan M., et al. (eds.) NETCOM, NCS, WiMoNe, GRAPH-HOC, SPM, CSEIT, pp. 117–129 (2016)Google Scholar
  54. 54.
    Kaur, G., Singh, D., Kaur, M.: Robust and efficient ‘RGB’ based fractal image compression: flower pollination based optimization. Int. J. Comput. Appl. 78(10), 11–15 (2013)Google Scholar
  55. 55.
    Ouadfel, S., Taleb-Ahmed, A.: Social spiders optimization and flower pollination algorithm for multilevel image thresholding: a performance study. Expert Syst. Appl. 55, 566–584 (2016)CrossRefGoogle Scholar
  56. 56.
    Wang, R., Zhou, Y., Zhou, Y., Bao, Z.: Local greedy flower pollination algorithm for solving planar graph coloring problem. J. Comput. Theor. Nanosci. 12(11), 4087–4096 (2015)Google Scholar
  57. 57.
    Zhou, Y., Zhang, S., Luo, Q., Wen, C.: Using flower pollination algorithm and atomic potential function for shape matching. Neural Comput. Appl. 1–20 doi: 10.1007/s00521-016-2524-0
  58. 58.
    Emary, E., Zawbaa, H. M., Hassanien, A. E., Tolba, M. F., & Snášel, V. (2014). Retinal vessel segmentation based on flower pollination search algorithm. In: Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014, pp. 93–100. Springer International Publishing (2014)Google Scholar
  59. 59.
    Rodrigues, D., Silva, G.F., Papa, J.P., Marana, A.N., Yang, X.S.: EEG-based person identification through binary flower pollination algorithm. Expert Syst. Appl. 62, 81–90 (2016)CrossRefGoogle Scholar
  60. 60.
    Abdel-Raouf, O., El-Henawy, I., Abdel-Baset, M.: A novel hybrid flower pollination algorithm with chaotic harmony search for solving sudoku puzzles. Int. J. Modern Educ. Comput. Sci. 6(3), 38–44 (2014)CrossRefGoogle Scholar
  61. 61.
    Jensi, R., Jiji, G.W.: Hybrid data clustering approach using K-means and flower pollination algorithm. Adv. Comput. Intell.: Int. J. (ACII) 2(2), 15–25 (2015)Google Scholar
  62. 62.
    Wang, R., Zhou, Y., Qiao, S., Huang, K.: Flower pollination algorithm with bee pollinator for cluster analysis. Inf. Process. Lett. 116(1), 1–14 (2016)CrossRefGoogle Scholar
  63. 63.
    Lazim, D., Zain, A.M., Omar, A.H.: Polygon simplification improved with flower pollination algorithm (FPA). Indian J. Sci. Technol. 9(48), 1–5 (2016)CrossRefGoogle Scholar
  64. 64.
    Zhou, Y., Wang, R.: An improved flower pollination algorithm for optimal unmanned undersea vehicle path planning problem. Int. J. Pattern Recogn. Artif. Intell. 30(04), 1659010 (2016)CrossRefGoogle Scholar
  65. 65.
    Zhang, W., Qu, Z., Zhang, K., Mao, W., Ma, Y., Fan, X.: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting. Energy Convers. Manag. 136, 439–451 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Aylin Ece Kayabekir
    • 1
  • Gebrail Bekdaş
    • 1
    Email author
  • Sinan Melih Nigdeli
    • 1
  • Xin-She Yang
    • 2
  1. 1.Department of Civil EngineeringIstanbul UniversityAvcılar, IstanbulTurkey
  2. 2.School of Science and TechnologyMiddlesex UniversityLondonUK

Personalised recommendations