Advertisement

On the Hypercomplex-Based Search Spaces for Optimization Purposes

  • João Paulo PapaEmail author
  • Gustavo Henrique de Rosa
  • Xin-She Yang
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 744)

Abstract

Most applications can be modeled using real-valued algebra. Nevertheless, certain problems may be better addressed using different mathematical tools. In this context, complex numbers can be viewed as an alternative to standard algebra, where imaginary numbers allow a broader collection of tools to deal with different types of problems. In addition, hypercomplex numbers extend naïve complex algebra by means of additional imaginary numbers, such as quaternions and octonions. In this work, we will review the literature concerning hypercomplex spaces with an emphasis on the main concepts and fundamentals that build the quaternion and octonion algebra, and why they are interesting approaches that can overcome some potential drawbacks of certain optimization techniques. We show that quaternion- and octonion-based algebra can be used to different optimization problems, allowing smoother fitness landscapes and providing better results than those represented in standard search spaces.

Keywords

Meta-heuristic Hypercomplex numbers Optimization Quaternions Octonions 

Notes

Acknowledgements

The authors are grateful to FAPESP grants #2014/16250-1, #2014/12236-1 and #2015/25739-4, as well as CNPq grant #306166/2014-3.

References

  1. 1.
    Chen, W.N., Zhang, J., Lin, Y., Chen, N., Zhan, Z.H., Chung, H.S.H., Li, Y., Shi, Y.H.: Particle swarm optimization with an aging leader and challengers. IEEE Trans. Evol. Comput. 17(2), 241–258 (2013)CrossRefGoogle Scholar
  2. 2.
    Eberly, D.: Quaternion Algebra and Calculus. Tech. rep, Magic Software (2002)zbMATHGoogle Scholar
  3. 3.
    Fister, I., Brest Jr., J., Yang, X.S.: I.F.: Modified bat algorithm with quaternion representation. In: IEEE Congress on Evolutionary Computation, pp. 491–498 (2015)Google Scholar
  4. 4.
    Fister, I., Yang, X.S., Brest Jr., J.: I.F.: Modified firefly algorithm using quaternion representation. Expert Syst. Appl. 40(18), 7220–7230 (2013)CrossRefGoogle Scholar
  5. 5.
    Geem, Z.W., Sim, K.B.: Parameter-setting-free harmony search algorithm. Appl. Math. Comput. 217(8), 3881–3889 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Graves, J.T.: On a connection between the general theory of normal couples and the theory of complete quadratic functions of two variables. Philos. Mag. 26(173), 315–320 (1845)Google Scholar
  7. 7.
    Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inform. Sci. 222, 175–184 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hu, X.M., Zhang, J., Yu, Y., Chung, H.S.H., Li, Y.L., Shi, Y.H., Luo, X.N.: Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks. IEEE Trans. Evol. Comput. 14(5), 766–781 (2010)CrossRefGoogle Scholar
  9. 9.
    Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global optimization problems. Int. J. Math. Modell. Numer. Optim. 4(2), 150–194 (2013)zbMATHGoogle Scholar
  10. 10.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kennedy, J., Eberhart, R.C.: Swarm Intell. Morgan Kaufmann Publishers Inc., San Francisco, USA (2001)Google Scholar
  12. 12.
    Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Appl. Soft Comput. 11, 3658–3670 (2011)CrossRefGoogle Scholar
  13. 13.
    Oh, B.K., Kim, K.J., Park, Y.K.H.S., Adeli, H.: Evolutionary learning based sustainable strain sensing model for structural health monitoring of high-rise buildings. Appl. Soft Comput. 58, 576–585 (2017)CrossRefGoogle Scholar
  14. 14.
    Papa, J.P., Pereira, D.R., Baldassin, A., Yang, X.S.: On the harmony search using quaternions. In: Schwenker, F., Abbas, H.M., El-Gayar, N., Trentin, E. (eds.) Artificial Neural Networks in Pattern Recognition: 7th IAPR TC3 Workshop, ANNPR, pp. 126–137. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  15. 15.
    Papa, J.P., Rosa, G.H., Costa, K.A.P., Marana, A.N., Scheirer, W., Cox, D.D.: On the model selection of bernoulli restricted Boltzmann machines through harmony search. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’15, pp. 1449–1450. ACM, New York, USA (2015)Google Scholar
  16. 16.
    Papa, J.P., Rosa, G.H., Marana, A.N., Scheirer, W., Cox, D.D.: Model selection for discriminative restricted boltzmann machines through meta-heuristic techniques. J. Comput. Sci. 9, 14–18 (2015)CrossRefGoogle Scholar
  17. 17.
    Papa, J.P., Rosa, G.H., Rodrigues, D., Yang, X.S.: LibOPT: an open-source platform for fast prototyping soft optimization techniques. ArXiv e-prints (2017). http://adsabs.harvard.edu/abs/2017arXiv170405174P
  18. 18.
    Papa, J.P., Scheirer, W., Cox, D.D.: Fine-tuning deep belief networks using harmony search. Appl. Soft Comput. 46, 875–885 (2016)CrossRefGoogle Scholar
  19. 19.
    Pitzer, E., Affenzeller, M.: A Comprehensive Survey on Fitness Landscape Analysis. Springer, Berlin, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Rodrigues, D., Silva, G.F.A., Papa, J.P., Marana, A.N., Yang, X.S.: EEG-based person identification through binary flower pollination algorithm. Expert Syst. Appl. 62, 81–90 (2016)CrossRefGoogle Scholar
  21. 21.
    Rosa, G.H., Papa, J.P., Marana, A.N., Scheirer, W., Cox, D.D.: Fine-tuning convolutional neural networks using harmony search. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Springer International Publishing (2015)Google Scholar
  22. 22.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)CrossRefGoogle Scholar
  23. 23.
    Yang, S.S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications, 1st edn. Wiley Publishing (2010)Google Scholar
  25. 25.
    Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspir. Comput. 2(2), 78–84 (2010)CrossRefGoogle Scholar
  26. 26.
    Yang, X.S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Modell. Numer. Optim. 1, 330–343 (2010)zbMATHGoogle Scholar
  27. 27.
    Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 464–483 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • João Paulo Papa
    • 1
    Email author
  • Gustavo Henrique de Rosa
    • 2
  • Xin-She Yang
    • 3
  1. 1.School of SciencesSão Paulo State UniversityBauruBrazil
  2. 2.Department of ComputingSão Paulo State UniversityBauruBrazil
  3. 3.School of Science and TechnologyMiddlesex University LondonLondonUK

Personalised recommendations