The Bat Algorithm, Variants and Some Practical Engineering Applications: A Review

  • T. Jayabarathi
  • T. RaghunathanEmail author
  • A. H. Gandomi
Part of the Studies in Computational Intelligence book series (SCI, volume 744)


The bat algorithm (BA), a metaheuristic algorithm developed by Xin-She Yang in 2010, has since been modified, and applied to numerous practical optimization problems in engineering. This chapter is a survey of the BA, its variants, some sample real-world optimization applications, and directions for future research.


Algorithm Bat algorithm Engineering application Optimization Swarm intelligence Metaheuristics 


  1. 1.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Pearson Education, India (1989)zbMATHGoogle Scholar
  2. 2.
    Goldberg, D.E.: Computer-aided gas pipeline operation using genetic algorithms and rule learning (Doctoral dissertation, University of Michigan). Dissertation Abstracts International, 44(10), 3174B (University Microfilms No. 8402282) (1983)Google Scholar
  3. 3.
    Dorigo, M.: Optimization, Learning and Natural Algorithms, PhD thesis, Politecnico di Milano, Italy (1992)Google Scholar
  4. 4.
    Kennedy, J., Eberhart R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  5. 5.
    Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Yang, X.-S.: A new metaheuristic bat-inspired algorithm. Nature Inspired Cooperative Strategies for Optimization (NICSO) 284, 65–74 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 464–483 (2012)CrossRefGoogle Scholar
  8. 8.
    Gandomi, A.H., Yang, X.S., Alavi, A.H., Talatahari, S.: Bat algorithm for constrained optimization tasks. Neural Comput. Appl. 22(6), 1239–1255 (2013)CrossRefGoogle Scholar
  9. 9.
    Yang, X.S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu, M. (eds.): Swarm Intelligence and Bio-Inspired Computation: Theory and Applications. Elsevier, Waltham, MA (2013)Google Scholar
  10. 10.
    Adarsh, B.R., Raghunathan, T., Jayabarathi, T., Yang, X.-S.: Economic dispatch using chaotic bat algorithm. Energy 96, 666–675 (2016)CrossRefGoogle Scholar
  11. 11.
    Gandomi, A.H., Yang, X.S.: Chaotic bat algorithm. J. Comput. Sci. 5(2), 224–232 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jordehi, A.R.: Chaotic bat swarm optimisation (CBSO). Appl. Soft Comput. 26, 523–530 (2015)CrossRefGoogle Scholar
  13. 13.
    Chakri, A., Kehlif, R., Benouaret, M., Yang, X.-S.: New directional bat algorithm for continuous optimization problems. Expert Syst. Appl. 69, 159–175 (2017)CrossRefGoogle Scholar
  14. 14.
    Kavousi-Fard, A., Niknam, T., Fotuhi-Firuzabad, M.: A novel stochastic framework based on cloud theory and θ-modified bat algorithm to solve the distribution feeder reconfiguration. IEEE Trans. Smart Grid 7(2), 740–750 (2016)Google Scholar
  15. 15.
    Haupt, R.L., Haupt, S.E.: Practical genetic algorithms. Wiley, (2004)zbMATHGoogle Scholar
  16. 16.
    Niknam, T., Azizipanah-Abarghooee, R., Zare, M., Bahmani-Firouzi, B.: Reserve constrained dynamic environmental/economic dispatch: a new multiobjective self-adaptive learning bat algorithm. IEEE Syst. J. 7(4), 763–776 (2013)CrossRefGoogle Scholar
  17. 17.
    Wang, G., Guo, L,. Duan, H., Liu, L., Wang, H.: A bat algorithm with mutation for UCAV path planning. Sci. World J. (2012)Google Scholar
  18. 18.
    Niknam, T., Sharifinia, S., Azizipanah-Abarghooee, R.: A new enhanced bat-inspired algorithm for finding linear supply function equilibrium of GENCOs in the competitive electricity market. Energy Convers. Manag. 76, 1015–1028 (2013)CrossRefGoogle Scholar
  19. 19.
    Khooban, M.H., Niknam, T.: A new intelligent online fuzzy tuning approach for multi-area load frequency control: self adaptive modified bat algorithm. Int. J. Electr. Power Energy Syst. 71, 254–261 (2015)CrossRefGoogle Scholar
  20. 20.
    Raghunathan, T., Ghose, D.: An online-implementable differential evolution tuned all-aspect guidance law. Control Eng. Prac. 18(10), 1197–1210 (2010)CrossRefGoogle Scholar
  21. 21.
    Raghunathan, T., Ghose, D.: Differential evolution based 3-D guidance law for a realistic interceptor model. Appl. Soft Comput. 16, 20–33 (2014)CrossRefGoogle Scholar
  22. 22.
    Fister Jr., I., D. Fister, and X.-S. Yang. A hybrid bat algorithm. arXiv:1303.6310 (2013)
  23. 23.
    Xie, J., Zhou Y., Chen, H.: A novel bat algorithm based on differential operator and Lévy flights trajectory. Computat. Intell. Neurosci. (2013)Google Scholar
  24. 24.
    Jun, L., Liheng, L., Xianyi, W.: A double-subpopulation variant of the bat algorithm. Appl. Math. Comput. 263, 361–377 (2015)MathSciNetGoogle Scholar
  25. 25.
    Meng, X.B., Gao, X.Z., Liu, Y., Zhang, H.: A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization. Expert Syst. Appl. 42(17), 6350–6364 (2015)CrossRefGoogle Scholar
  26. 26.
    Yang, X.S.: Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Comput. 3(5), 267–274 (2012)CrossRefGoogle Scholar
  27. 27.
    Bora, T.C., Coelho, L.D.S., Lebensztajn, L.: Bat-inspired optimization approach for the brushless DC wheel motor problem. IEEE Trans. Magn. 48(2), 947–950 (2012)CrossRefGoogle Scholar
  28. 28.
    Hasançebi, O., Teke, T., Pekcan, O.: A bat-inspired algorithm for structural optimization. Comput. Struct. 128, 77–90 (2013)CrossRefGoogle Scholar
  29. 29.
    Hasançebi, O., Carbas, S.: Bat inspired algorithm for discrete size optimization of steel frames. Adv. Eng. Softw. 67, 173–185 (2014)CrossRefGoogle Scholar
  30. 30.
    Tharakeshwar, T.K., Seetharamu, K.N., Prasad, B.D.: Multi-objective optimization using bat algorithm for shell and tube heat exchangers. Appl. Therm. Eng. 110, 1029–1038 (2017)CrossRefGoogle Scholar
  31. 31.
    Mishra, S., Shaw, K., Mishra, D.: A new meta-heuristic bat inspired classification approach for microarray data. Procedia Technol. 4, 802–806 (2012)CrossRefGoogle Scholar
  32. 32.
    Jaddi, N.S., Abdullah, S., Hamdan, A.R.: Optimization of neural network model using modified bat-inspired algorithm. Appl. Soft Comput. 37, 71–86 (2015)CrossRefGoogle Scholar
  33. 33.
    Jaddi, N.S., Abdullah, S.S., Hamdan, A.R.: Multi-population cooperative bat algorithm-based optimization of artificial neural network model. Inf. Sci. 294, 628–644 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Senthilnath, J., Kulkarni, S., Benediktsson, J.A., Yang, X.S.: A novel approach for multispectral satellite image classification based on the bat algorithm. IEEE Geosci. Remote Sens. Lett. 13(4), 599–603 (2016)CrossRefGoogle Scholar
  35. 35.
    Rodrigues, D., Pereira, L.A., Nakamura, R.Y., Costa, K.A., Yang, X.S., Souza, A.N., Papa, J.P.: A wrapper approach for feature selection based on bat algorithm and optimum-path forest. Expert Syst. Appl. 41(5), 2250–2258 (2014)CrossRefGoogle Scholar
  36. 36.
    Nakamura, R.Y., Pereira, L.A., Costa, K.A., Rodrigues, D., Papa, J.P., Yang X.-S.: BBA: a binary bat algorithm for feature selection. In: 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 291–297. IEEE (2012, August)Google Scholar
  37. 37.
    Ye, Z.W., Wang, M.W., Liu, W., Chen, S.B.: Fuzzy entropy based optimal thresholding using bat algorithm. Appl. Soft Comput. 31, 381–395 (2015)CrossRefGoogle Scholar
  38. 38.
    Tharwat, A., Hassanien, A.E., Elnaghi, B.E.: A BA-based algorithm for parameter optimization of support vector machine. Pattern Recogn. Lett. 93, 13–22 (2017)CrossRefGoogle Scholar
  39. 39.
    Shukla, A., Singh S.N.: Pseudo-inspired CBA for ED of units with valve-point loading effects and multi-fuel options. IET Gener. Transm. Distrib. 11(4), 1039–1045 (2017)Google Scholar
  40. 40.
    Hosseini, S.S.S., Yang, X.S., Gandomi, A.H., Nemati, A.: Solutions of non-smooth economic dispatch problems by swarm intelligence. In: Fister, I., Fister Jr., I. (eds.) Adaptation and hybridization in computational intelligence, pp. 129–146. Springer International Publishing, Switzerland (2015)Google Scholar
  41. 41.
    Rao, B.V., Kumar, G.N.: Optimal power flow by BAT search algorithm for generation reallocation with unified power flow controller. Int. J. Electr. Power Energy Syst. 68, 81–88 (2015)CrossRefGoogle Scholar
  42. 42.
    Dash, P., Saikia, L.C., Sinha, N.: Automatic generation control of multi area thermal system using Bat algorithm optimized PD–PID cascade controller. Int. J. Electr. Power Energy Syst. 68, 364–372 (2015)CrossRefGoogle Scholar
  43. 43.
    Sathya, M.R., Ansari, M.M.T.: Load frequency control using Bat inspired algorithm based dual mode gain scheduling of PI controllers for interconnected power system. Int. J. Electr. Power Energy Syst. 64, 365–374 (2015)CrossRefGoogle Scholar
  44. 44.
    Elsisi, M., Soliman, M., Aboelela, M.A.S., Mansour, W.: Optimal design of model predictive control with superconducting magnetic energy storage for load frequency control of nonlinear hydrothermal power system using bat inspired algorithm. J. Energy Storage 12, 311–318 (2017)CrossRefGoogle Scholar
  45. 45.
    Ali, E.S.: Optimization of power system stabilizers using BAT search algorithm. Int. J. Electr. Power Energy Syst. 61, 683–690 (2014)CrossRefGoogle Scholar
  46. 46.
    Sambariya, D.K., Prasad, R.: Robust tuning of power system stabilizer for small signal stability enhancement using metaheuristic bat algorithm. Int. J. Electr. Power Energy Syst. 61, 229–238 (2014)CrossRefGoogle Scholar
  47. 47.
    Basetti, V., Chandel, A.K.: Optimal PMU placement for power system observability using Taguchi binary bat algorithm. Measur. 95, 8–20 (2017)Google Scholar
  48. 48.
    Rashidi, F., Abiri, E., Niknam, T., Salehi, M.R.: On-line parameter identification of power plant characteristics based on phasor measurement unit recorded data using differential evolution and bat inspired algorithm. IET Sci. Meas. Technol. 9(3), 376–392 (2015)CrossRefGoogle Scholar
  49. 49.
    Kang, M., Kim, J., Kim, J.M.: Reliable fault diagnosis for incipient low-speed bearings using fault feature analysis based on a binary bat algorithm. Inf. Sci. 294, 423–438 (2015)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Oshaba, A.S., Ali, E.S., Elazim, S.A.: MPPT control design of PV system supplied SRM using BAT search algorithm. Sustain. Energy, Grids and Netw. 2, 51–60 (2015)CrossRefGoogle Scholar
  51. 51.
    Yang, N.C., Le, M.D.: Optimal design of passive power filters based on multi-objective bat algorithm and pareto front. Appl. Soft Comput. 35, 257–266 (2015)CrossRefGoogle Scholar
  52. 52.
    Premkumar, K., Manikandan, B.V.: Speed control of Brushless DC motor using bat algorithm optimized adaptive neuro-fuzzy inference system. Appl. Soft Comput. 32, 403–419 (2015)CrossRefGoogle Scholar
  53. 53.
    Svečko, R., Kusić, D.: Feedforward neural network position control of a piezoelectric actuator based on a BAT search algorithm. Expert Syst. Appl. 42(13), 5416–5423 (2015)CrossRefGoogle Scholar
  54. 54.
    Bahmani-Firouzi, B., Azizipanah-Abarghooee, R.: Optimal sizing of battery energy storage for micro-grid operation management using a new improved bat algorithm. Int. J. Electr. Power Energy Syst. 56, 42–54 (2014)CrossRefGoogle Scholar
  55. 55.
    Murali, M., Kumari, M.S., Sydulu, M.: Optimal spot pricing in electricity market with inelastic load using constrained bat algorithm. Int. J. Electr. Power Energy Syst. 62, 897–911 (2014)CrossRefGoogle Scholar
  56. 56.
    Das, A., Mandal, D., Ghoshal, S.P., Kar, R.: An efficient side lobe reduction technique considering mutual coupling effect in linear array antenna using BAT algorithm. Swarm Evol. Comput. (2017)Google Scholar
  57. 57.
    Wang, J., Fan, X., Zhao, A., Yang, M.: A hybrid bat algorithm for process planning problem. IFAC-PapersOnLine 48(3), 1708–1713 (2015)CrossRefGoogle Scholar
  58. 58.
    Wang, G.G., Chu, H.E., Mirjalili, S.: Three-dimensional path planning for UCAV using an improved bat algorithm. Aerosp. Sci. Technol. 49, 231–238 (2016)Google Scholar
  59. 59.
    Moraveji, M.K., Naderi, M.: Drilling rate of penetration prediction and optimization using response surface methodology and bat algorithm. J. Nat. Gas Sci. Eng. 31, 829–841 (2016)CrossRefGoogle Scholar
  60. 60.
    Naderi, M., Khamehchi, E.: Well placement optimization using metaheuristic bat algorithm. J. Petrol. Sci. Eng. 150, 348–354 (2017)CrossRefGoogle Scholar
  61. 61.
    Kashi, S., Minuchehr, A., Poursalehi, N., Zolfaghari, A.: Bat algorithm for the fuel arrangement optimization of reactor core. Ann. Nuc. Energy 64, 144–151 (2014)CrossRefGoogle Scholar
  62. 62.
    dos Santos Coelho, L., Askarzadeh, A.: An enhanced bat algorithm approach for reducing electrical power consumption of air conditioning systems based on differential operator. Appl. Therm. Eng. 99, 834–840 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • T. Jayabarathi
    • 1
  • T. Raghunathan
    • 1
    Email author
  • A. H. Gandomi
    • 2
  1. 1.School of Electrical EngineeringVIT UniversityVelloreIndia
  2. 2.School of BusinessStevens Institute of TechnologyHobokenUSA

Personalised recommendations