Advertisement

Why the Firefly Algorithm Works?

  • Xin-She YangEmail author
  • Xing-Shi He
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 744)

Abstract

Firefly algorithm is a nature-inspired optimization algorithm and there have been significant developments since its appearance about 10 years ago. This chapter summarizes the latest developments about the firefly algorithm and its variants as well as their diverse applications. Future research directions are also highlighted.

Keywords

Algorithm Firefly algorithm Multimodal optimization Nature-inspired computation Optimization Swarm intelligence 

References

  1. 1.
    Alweshah, M., Abdullah, S.: Hybrizing firefly algorithms with a probabilistic neural network for solving classification problems. Appl. Soft Comput. 35, 512–524 (2015)CrossRefGoogle Scholar
  2. 2.
    Akhoondzadeh, M.: Firefly algorithm in detection of TEC seismo-ionospheric anomalies. Adv. Space Res. 56(1), 10–18 (2015)CrossRefGoogle Scholar
  3. 3.
    Avenda\(\tilde{\rm {n}}\)o-Franco, G., Romero, A.H.: Firefly algorithm for structural search. J. Chem. Theory Comput. 12(7), 3416–3428 (2016)Google Scholar
  4. 4.
    Bahadormanesh, N., Rabat, S., Yarali, M.: Constrained multi-objective optimization of radial expanders in organic Rankine cycles by firefly algorithm. Energy Convers. Manage. 148, 1179–1193 (2017)CrossRefGoogle Scholar
  5. 5.
    Baykasoglu, A., Ozsoydan, F.B.: Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl. Soft Comput. 36, 152–164 (2015)CrossRefGoogle Scholar
  6. 6.
    Carbas, S.: Design optimization of steel frames using an enhanced firefly algorithm. Eng. Optim. 48(12), 2007–2025 (2016)CrossRefGoogle Scholar
  7. 7.
    Chaurasia, G.S., Singh, A.K., Agrawal, S., Sharma, N.K.: A meta-heuristic firefly algorithm based smart control strategy and analysis of a grid connected hybrid photovoltaic/wind distributed generation system. Solar Energy 150, 265–274 (2017)CrossRefGoogle Scholar
  8. 8.
    Cheung, N.J., Ding, X.M., Shen, H.B.: A non-homogeneous firefly algorithm and its convergence analysis. J. Optim. Theory Appl. 170(2), 616–628 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chou, J.S., Ngo, N.T.: Modifired firefly algorithm for multidimensional optimization in structural design problems. Struct. Multi. Optim. 55(6), 2013–2028 (2017)CrossRefGoogle Scholar
  10. 10.
    Darwish, S.M.: Combining firefly algorithm and Bayesian classifier: new direction for automatic multilabel image annotation. IET Image Process. 10(10), 763–772 (2016)CrossRefGoogle Scholar
  11. 11.
    Dhal, K.G., Quraishi, M.I., Das, S.: Development of firefly algorithm via chaotic sequence and population diversity to enhance the image contrast. Nat. Comput. 15(2), 307–318 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Erdal, F.: A firefly algorithm for optimum design of new-generation beams. Eng. Optim. 49(6), 915–931 (2017)CrossRefGoogle Scholar
  13. 13.
    Eswari, R., Nickolas, S.: Modified multi-objective firefly algorithm for task scheduling problem on heterogeneous systems. Int. J. Bio-Inspired Comput. 8(6), 379–393 (2016)CrossRefGoogle Scholar
  14. 14.
    Fisher, L.: The Perfect Swarm: The Science of Complexity in Everyday Life. Basic Books (2009)Google Scholar
  15. 15.
    Fister, I., Fister, I., Yang, X.S., Brest, J.: A comprehensive review of firefly algorithms. Swarm Evol. Comput. 13(1), 34–46 (2013)CrossRefGoogle Scholar
  16. 16.
    Fister, I., Yang, X.S., Brest, J., Fister, I.: Modified firefly algorithm using quaternion representation. Expert Syst. Appl. 40(18), 7220–7230 (2013)CrossRefGoogle Scholar
  17. 17.
    Fister, I., Perc, M., Kamal, S.M., Fister, I.: A review of chaos-based firefly algorithms: perspectives and research challenges. Appl. Math. Comput. 252, 155–165 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gálvez, A., Iglesias, A.: New memetic self-adaptive firefly algorithm for continuous optimisation. Int. J. Bio-Inspired Comput. 8(5), 300–317 (2016)CrossRefGoogle Scholar
  20. 20.
    Gao, M.L., Li, L.L., Sun, X.M., Yin, L.J., Li, H.T., Luo, D.S.: Firefly algorithm (FA) based particle fiter method for visual tracking. Optik—Int. J. Light Electron Opt. 126(18), 1705–1711 (2015)CrossRefGoogle Scholar
  21. 21.
    Ghorbani, M.A., Shamshirband, S., Haghi, D.Z., Azani, A., Bonakdari, H., Ebtehaj, I.: Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil Tillage Res. 172, 32–38 (2017)CrossRefGoogle Scholar
  22. 22.
    Ghorbani, H., Moghadasi, J., Wood, D.A.: Prediction of gas flow rates from gas condensate reservoirs through weelhead chokes using a firefly optimization algorithm. J. Nat. Gas Sci. Eng. 45, 256–271 (2017)CrossRefGoogle Scholar
  23. 23.
    Gokhale, S.S., Kale, V.S.: An application of a tent map initiated chaotic firefly algorithm for optimal overcurrent relay coodination. Int. J. Electr. Power Energy Syst. 78, 336–342 (2016)CrossRefGoogle Scholar
  24. 24.
    Gope, S., Goswami, A.K., Tiwari, P.K., Deb, S.: Rescheduling of real power for congestion management with integration of pumped storage hydro unit using firefly algorithm. Int. J. Electr. Power Energy Syst. 83, 434–442 (2016)CrossRefGoogle Scholar
  25. 25.
    Gupta, A., Padhy, P.K.: Modified firefly algorithm based controller design for integrating and unstable delay processed. Eng. Sci. Technol.: Int. J. 19(1), 548–558 (2016)Google Scholar
  26. 26.
    He, X.S., Yang, X.S., Karamanoglu, M., Zhao, Y.X.: Global convergence analysis of the flower pollination algorithm: a discrete-time Markov chain approach. Proc. Comput. Sci. 108(1), 1354–1363 (2017)CrossRefGoogle Scholar
  27. 27.
    He, L.F., Huang, S.W.: Modified firefly algorithm based multilevel thresholding for color image segmenttion. Neurocomputing 240(1), 152–174 (2017)CrossRefGoogle Scholar
  28. 28.
    Holland, J.: Adaptation in Natural and Arficial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  29. 29.
    Hung, H.L.: Application firefly algorithm for peak-to-average power ratio reduction in OFDM systems. Telecommun. Syst. 65(1), 1–8 (2017)CrossRefGoogle Scholar
  30. 30.
    Ibrahim, I.A., Khatib, T.: A novel hybrid model for hourly global solar radiation prediction using random forest technique and firefly algorithm. Energy Convers. Manage. 138, 413–425 (2017)CrossRefGoogle Scholar
  31. 31.
    Jafari, O., Akbari, M.: Optimizaion and simulation of micrometre-scale ring resonator modulators based on p-i-n diodes using firefly algorithm. Optik—Int. J. Light Electron Opt. 128, 101–102 (2017)CrossRefGoogle Scholar
  32. 32.
    Kamarian, S., Shakeri, M., Yas, M.H.: Thermal buckling optimisation of composite plates using firefly algorithm. J. Exp. Theoret. Artif. Intell. 29(4), 787–794 (2017)CrossRefGoogle Scholar
  33. 33.
    Kanimozhi, T., Latha, K.: An integrated approach to region based image retrieval using firefly algorithm and support vector machine. Neurocomputing, 151(Part 3), 1099–1111 (2015)Google Scholar
  34. 34.
    Kaur, M., Ghosh, S.: Network reconfiguration of unbalanced distribution networks using fuzzy-firefly algorithm. Appl. Soft Comput. 49, 868–886 (2016)CrossRefGoogle Scholar
  35. 35.
    Kaushik, A., Tayal, D.K., Yadav, K., Kaur, A.: Integrating firefly algorithm in artificial neural network models for accurate software cost predictions. J. Softw. Evol. Process 28(8), 665–688 (2016)CrossRefGoogle Scholar
  36. 36.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)Google Scholar
  37. 37.
    Kougianos, E., Mohanty, S.P.: A nature-inspired firefly algorithm based approach for nanoscale leakage optimal RTL structure. Integr. VLSI J. 51, 46–60 (2015)CrossRefGoogle Scholar
  38. 38.
    Lei, X.J., Wang, F., Wu, F.X., Zhang, A.D., Pedrycz, W.: Protein complex identification through Markov clustering with firefly algorithm on dynamic protein-protein interaction networks. Inf. Sci. 329, 303–316 (2016)CrossRefGoogle Scholar
  39. 39.
    Lewis, S.M., Cratsley, C.K.: Flash signal evolution, mate choice and predation in fireflies. Ann. Rev. Entomol. 53(2), 293–321 (2008)CrossRefGoogle Scholar
  40. 40.
    Long, N.C., Meesad, P., Unger, H.: A highly accurate firefly based algorithm for heart disease prediction. Expert Syst. Appl. 42(21), 8221–8231 (2015)CrossRefGoogle Scholar
  41. 41.
    Ma, Y., Zhao, Y.X., Wu, L.G., He, Y.X., Yang, X.S.: Navigability analysis of magnetic map with projecting puisuit-based selection method by using firefly algorihtm. Neurocomputing 159, 288–297 (2015)CrossRefGoogle Scholar
  42. 42.
    Maher, B., Albrecht, A.A., Loomes, M., Yang, X.S., Steinhöfel, K.: A firefly-inspired method for protein structure prediction in lattice models. Biomolecules 4(1), 56–75 (2014)CrossRefGoogle Scholar
  43. 43.
    Marichelvam, M.K., Prabaharan, T., Yang, X.S.: A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems. IEEE Trans. Evol. Comput. 18(2), 301–305 (2014)CrossRefGoogle Scholar
  44. 44.
    Marichelvam, M.K., Geetha, M.: A hybrid discrete firefly algoirhtm to solve flow shop sheduling proboems to minimise total flow time. Int. J. Bio-Inspired Comput. 8(5), 318–325 (2016)CrossRefGoogle Scholar
  45. 45.
    Massan, S.R., Wagan, A.I., Shakh, M.M., Abro, R.: Wind turbine micrositing by using the firefly algorithm. Appl. Soft Comput. 27, 450–456 (2015)CrossRefGoogle Scholar
  46. 46.
    Mohanty, D.K.: Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view. Int. J. Therm. Sci. 102, 228–238 (2016)CrossRefGoogle Scholar
  47. 47.
    Nekouie, N., Yaghoobi, M.: A new method in multimodal optimizatoin based on firefly algorithm. Artif. Intell. Rev. 46(2), 267–287 (2016)CrossRefGoogle Scholar
  48. 48.
    Osaba, E., Yang, X.S., Diaz, F., Onieva, E., Masegosa, A.D., Perallos, A.: A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy. Soft Comput. (2016). doi: 10.1007/s00500-016-2114-1
  49. 49.
    Othman, M.M., El-Khattam, W., Hegazy, Y.G., Abdelaziz, A.Y.: Optimal placement and sizing of voltage controlled distributed generators in unbalanced distribution networks using supervised firefly algorithm. Int. J. Electr. Power Energy Syst. 82, 105–113 (2016)CrossRefGoogle Scholar
  50. 50.
    Patle, B.K., Parhi, D.R., Jagadeesh, A., Kashyap, S.K.: On firefly algorithm: optimization and application in mobile robot navigation. World J. Eng. 14(1), 65–76Google Scholar
  51. 51.
    Poursalehi, N., Zolfaghari, A., Minuchehr, A.: A novel optimization method, effective discrete firefly algorithm, for fuel reload design of nuclear reactors. Ann. Nucl. Energy 81, 263–275 (2015)CrossRefGoogle Scholar
  52. 52.
    Rahebi, J., Hardalac, F.: A new approach to optic disc detection in human retinal images using the firefly algorithm. Med. Biol. Eng. Comput. 54(2–3), 453–461 (2016)CrossRefGoogle Scholar
  53. 53.
    Rajinikanth, V., Couceiro, M.S.: RGB histogram based color image segmentation using firefly algorithm. Proc. Comput. Sci. 46, 1449–1457 (2015)CrossRefGoogle Scholar
  54. 54.
    Rastgou, A., Moshtagh, J.: Application of firefly algorithm for multi-stage transmission expansion planning with adequacy-security considerations in deregularated environments. Appl. Soft Comput. 41, 373–389 (2016)CrossRefGoogle Scholar
  55. 55.
    Rodrigues, D., Pereira, L.A.M., Nakamura, R.Y.M., Costa, K.A.P., Yang, X.S., Souza, A.N., Papa, J.P.: A wrapper approach for feature selection based on the bat algorithm and optimum-path forest. Expert Syst. Appl. 41(5), 2250–2258 (2014)CrossRefGoogle Scholar
  56. 56.
    Rosa, G., Papa, J., Costa, K., Pereira, C., Yang, X.S.: Learning parameters in deep belief networks through firefly algorithm. In: ANNPR 2016: Artificial Neural Networks in Pattern Recognition, pp. 138–149. Springer (2016)Google Scholar
  57. 57.
    Satapathy, P., Dhar, S., Dash, P.K.: Stability improvement of PV-BESS diesel generator-based microgrid with a new modified harmony search-based hybrid firefly algorithm. IET Renew. Power Gener. 11(5), 566–577 (2017)CrossRefGoogle Scholar
  58. 58.
    Sánchez, D., Melin, P., Castillo, O.: Optimization of modular granular neural networks using a firefly algorithm for human recognition. Eng. Appl. Artif. Intell. 64(1), 172–186 (2017)CrossRefGoogle Scholar
  59. 59.
    Senthinath, J., Omkar, S.N., Mani, V.: Clustering using firefly algorithm: performance study. Swarm Evol. Comput. 1(3), 164–171 (2011)CrossRefGoogle Scholar
  60. 60.
    Shukla, R., Singh, D.: Selection of parameters for advanaced machining processes using firefly algorithm. Eng. Sci. Technol.: Int. J. 20(1), 212–221 (2017)Google Scholar
  61. 61.
    Singh, S.K., Sinha, N., Goswami, A.K., Sinha, N.: Optimal estimation of power system harmonics using a hybrid firefly algorithm-based least square method. Soft Comput. 21(7), 1721–1734 (2017)CrossRefGoogle Scholar
  62. 62.
    Srivatsava, P.R., Mallikarjun, B., Yang, X.S.: Optimal test sequence generation using firefly algorithm. Swarm Evol. Comput. 8(1), 44–53 (2013)CrossRefGoogle Scholar
  63. 63.
    Storn, R., Price, K.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–59 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Sundari, M.G., Rajaram, M., Balaraman, S.: Application of improved firefly algorithm for programmed PWM in multilevel inverter with adjustable DC sources. Appl. Soft Comput. 41, 169–179 (2016)CrossRefGoogle Scholar
  65. 65.
    Tesch, K., Kaczorowska, K.: Arterial cannula shape optimization by means of the rotational firefly algorithm. Eng. Optim. 48(3), 497–518 (2016)Google Scholar
  66. 66.
    Tilahun, S.L., Ngnotchouye, J.M.T.: Firefly algorithm for discrete optimization problems: A survey. KSCE J. Civ. Eng. 21(2), 535–545 (2017)CrossRefGoogle Scholar
  67. 67.
    Tilahun, S.L., Ngnotchouye, J.M.T., Hamadneh, N.N.: Continuous versions of firefly algorithm: a review. Artif. Intell. Rev. (2017). doi: 10.1007/s10462-017-9568-0
  68. 68.
    Verma, O.P., Aggarwal, D., Patodi, T.: Opposition and dimensional based modified firefly algortihm. Expert Syst. Appl. 44(1), 168–176 (2016)CrossRefGoogle Scholar
  69. 69.
    Wang, D.Y., Luo, H.Y., Grunder, O., Lin, Y.B., Guo, H.X.: Multi-step electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm. Appl. Energy 190, 390–407 (2017)CrossRefGoogle Scholar
  70. 70.
    Wang, B., Li, D.X., Jiang, J.P., Liao, Y.H.: A modified firefly algorithm based on light intensity difference. J. Comb. Optim. 31(3), 1045–1060 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Wang, H., Wang, W.J., Zhou, X.Y., Sun, H., Zhao, J., Yu, X., Cui, Z.H.: Firefly algorithm with neighborhood attraction. Inf. Sci. 382–383(1), 374–387 (2017)CrossRefGoogle Scholar
  72. 72.
    Wang, H., Wang, W.J., Cui, L.Z., Sun, H., Zhao, J., Wang, Y., Xue, Y.: A hybrid multi-objective firefly algorithm for big data optimization. Appl. Soft Comput. (2017). (In press). doi: 10.1016/j.asoc.2017.06.029
  73. 73.
    Xiao, L.Y., Shao, W., Liang, T.L., Wang, C.: A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting. Appl. Energy 167, 135–153 (2016)CrossRefGoogle Scholar
  74. 74.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Frome (2008)Google Scholar
  75. 75.
    Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)CrossRefGoogle Scholar
  76. 76.
    Yang, X.S., He, X.S.: Firefly algorithm: recent advances and applications. Int. J. Swarm Intell. 1(1), 36–50 (2013)CrossRefGoogle Scholar
  77. 77.
    Yang, X.S.: Multiobjective firefly algorithm for continuous optimization. Eng. Comput. 29(2), 175–184 (2013)CrossRefGoogle Scholar
  78. 78.
    Yang, X.S.: Cuckoo Search and Firefly Algorithm: Theory and Applications. Studies in Computational Intelligence, vol. 516. Springer (2014)Google Scholar
  79. 79.
    Yang, X.S.: Nature-Inspired Optimization Algorithms. Elsevier Insight, London (2014)zbMATHGoogle Scholar
  80. 80.
    Yang, X.S., Deb, S., Loomes, M., Karamanoglu, M.: A framework for self-tuning optimization algorithm. Neural Comput. Appl. 23(7–8), 2051–2057 (2013)CrossRefGoogle Scholar
  81. 81.
    Yang, X.S., Deb, S., Fong, S., He, X.S., Zhao, Y.X.: From swarm intelligence to metaheuristics: nature-inspired optimization algorithms. Computer 49(9), 52–59 (2016)CrossRefGoogle Scholar
  82. 82.
    Yu, S.H., Zhu, S.L., Ma, Y., Mao, D.M.: A variable step size firefly algorithm for numerical optimization. Appl. Math. Comput. 263, 214–220 (2015)MathSciNetGoogle Scholar
  83. 83.
    Zainuddin, Z., Ong, P.: Optimization of wavelet neural networks with the firefly algorithm for approximation problems. Neural Comput. Appl. 28(7), 1715–1728 (2017)CrossRefGoogle Scholar
  84. 84.
    Zaman, M.A., Sikder, U.: Bouc-Wen hysteresis model identification using modified firefly algorithm. J. Magn. Magn. Mater. 395, 229–233 (2015)CrossRefGoogle Scholar
  85. 85.
    Zhang, C.Y., Qin, Q.M., Zhang, T.Y., Sun, Y.H., Chen, C.: Endmember extraction from hyperspectral image based on discrete firefly algorithm (EE-DFA). ISPRS J. Photogr. Rem. Sens. 126(1), 108–119 (2017)CrossRefGoogle Scholar
  86. 86.
    Zhang, L.N., Liu, L.Q., Yang, X.S., Dai, Y.T.: A novel hybrid firefly algorithm for global optimization. PloS ONE, 11(9), e0163230 (2016). doi: 10.1371/journal.pone.0163230
  87. 87.
    Zhang, Z.F., Yuan, B.X., Zhang, Z.N.: A new discrete double-population firefly algorithm for assembly sequence planning. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(12), 2229–2238 (2016)CrossRefGoogle Scholar
  88. 88.
    Zhao, C.X., Wu, C.Z., Chai, J., Wang, X.Y., Yang, X.M., Lee, M., Kim, M.J.: Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty. Appl. Soft Comput. 55, 549–564 (2017)CrossRefGoogle Scholar
  89. 89.
    Zhou, G.D., Yi, T.H., Xie, M.X., Li, H.N.: Wireless sensor placement for strutural monitoring using information-fusing firefly algoirthm. Smart Mater. Struct. (2017). (In press). http://iopscience.iop.org/article/10.1088/1361-665X/aa7930/pdf
  90. 90.
    Zhou, H.L., Zhao, X.H., Yu, B., Chen, H.L., Meng, Z.: Firefly algorithm combined with Newton method to identify boundary conditions for transient heat conduction problems. Numer. Heat Transf. Part B: Fundam. Int. J. Comput. Methodol. 71(3), 253–269 (2017)Google Scholar
  91. 91.
    Zouache, D., Nouioua, F., Moussaoui, A.: Quantum-inspired firefly algorithm with particle swarm optimization for discrete optimization problems. Soft Comput. 20(7), 2781–2799 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of Science and TechnologyMiddlesex UniversityLondonUK
  2. 2.College of ScienceXi’an Polytechnic UniversityXi’anChina

Personalised recommendations