Skip to main content

A Method for Solving the Time Fractional Heat Conduction Inverse Problem Based on Ant Colony Optimization and Artificial Bee Colony Algorithms

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 756))

Included in the following conference series:

Abstract

The paper presents an application of ant colony optimization and artificial bee colony algorithms to solve the inverse heat conduction problem of fractional order. In a given fractional heat conduction model, one of the parameters – thermal conductivity coefficient is missing. With output of the model - temperature measurements, functional defining error of approximate solution is created. In order to reconstruct thermal conductivity coefficient we apply swarm intelligence algorithms to minimize created functional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birvinskas, D., Jusas, V., Martisius, I., Damasevicius, R.: Data compression of EEG signals for artificial neural network classification. Inf. Technol. Control 42, 238–241 (2013)

    Google Scholar 

  2. Brociek, R., Słota, D.: Reconstruction of the boundary condition for the heat conduction equation of fractional order. Therm. Sci. 19, 35–42 (2015)

    Article  Google Scholar 

  3. Das, R., Akay, B., Singla, R.K., Singh, K.: Application of artificial bee colony algorithm for inverse modelling of a solar collector. Inverse Probl. Sci. Eng. 25, 887–908 (2017)

    Article  MathSciNet  Google Scholar 

  4. Hetmaniok, E., Słota, D., Zielonka, A.: Parallel procedure based on the swarm intelligence for solving the two-dimensional inverse problem of binary alloy solidification. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 287–297. Springer, Cham (2016). doi:10.1007/978-3-319-32152-3_27

    Chapter  Google Scholar 

  5. Hetmaniok, E.: Inverse problem for the solidification of binary alloy in the casting mould solved by using the bee optimization algorithm. Heat Mass Transf. 52, 1369–1379 (2016)

    Article  Google Scholar 

  6. Jafrasteh, B., Fathianpour, N.: A hybrid simultaneous perturbation artificial bee colony and back-propagation algorithm for training a local linear radial basis neural network on ore grade estimation. Neurocomputing 235, 217–227 (2017)

    Article  Google Scholar 

  7. Woźniak, M., Połap, D., Napoli, C., Tramontana, E.: Graphic object feature extraction system based on cuckoo search algorithm. Expert Syst. Appl. 66, 20–31 (2016). doi:10.1016/j.eswa.2016.08.068. Elsevier

    Article  Google Scholar 

  8. Obrączka A., Kowalski J.: Modeling the distribution of heat in the ceramic materials using fractional differential equations. In: Szczygieł, M. (eds.) Materiały XV Jubileuszowego Sympozjum “Podstawowe Problemy Energoelektroniki, Elektromechaniki i Mechatroniki”, PPEEm 2012. Archiwum Konferencji PTETiS, Komitet Organizacyjny Sympozjum PPEE i Seminarium BSE, vol. 32, pp. 133–132 (2012). (in polish)

    Google Scholar 

  9. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2008)

    MATH  Google Scholar 

  10. Klafter, J., Lim, S., Metzler, R.: Fractional Dynamics: Resent Advances. World Scientific, New Jersey (2012)

    MATH  Google Scholar 

  11. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  12. Ismailov, M.I., Cicek, M.: Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl. Math. Model. 40, 4891–4899 (2016)

    Article  MathSciNet  Google Scholar 

  13. Dou, F.F., Hon, Y.C.: Fundamental kernel-based method for backward space-time fractional diffusion problem. Comput. Math. Appl. 71, 356–367 (2016)

    Article  MathSciNet  Google Scholar 

  14. Chen, S., Liu, F., Jiang, X., Turner, I., Burrage, K.: Fast finite difference approximation for identifying parameters in a two-dimensional space-fractional nonlocal model with variable diffusivity coefficients. SIAM J. Numer. Anal. 56, 606–624 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brociek, R., Słota, D.: Application and comparison of intelligent algorithms to solve the fractional heat conduction inverse problem. Inf. Technol. Control 45, 184–194 (2016)

    Google Scholar 

  16. Brociek, R.: Implicit finite difference method for time fractional diffusion equations with mixed boundary conditions. Zesz. Nauk. Politech. Śląskiej Matemat. Stosow. 4, 73–87 (2014)

    Google Scholar 

  17. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Socha, K., Dorigo, M.: Ant Colony Optimization in continuous domains. Eur. J. Oper. Res. 185, 1155–1173 (2008)

    Article  MATH  Google Scholar 

  19. Karaboga, D.: Basturk B,: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Woźniak, M., Połap, D.: Hybrid neuro-heuristic methodology for simulation and control of dynamic systems over time interval. Neural Netw. (2017). doi:10.1016/j.neunet.2017.04.013. Elsevier

  21. Damaševičius, R., Napoli, C., Sidekerskiene, T., Woźniak, M.: IMF mode demixing in EMD for jitter analysis. J. Comput. Sci. (2017). doi:10.1016/j.jocs.2017.04.008. Elsevier

  22. Połap, D., Woźniak, M.: Voice recognition through the use of Gabor transform and heuristic algorithm. Int. J. Electron. Telecommun. 63(2), 159–164 (2017). doi:10.1515/eletel-2017-0021. De Gruyter Open Ltd

    Google Scholar 

  23. Woźniak, M., Połap, D.: On the manipulation of the initial population search space in heuristic algorithms through the use of parallel processing approach. In: Proceedings of the IEEE Symposium Series on Computational Intelligence – SSCI 2016, December 6–9 Athens, Greece (2016). doi:10.1109/SSCI.2016.7850033

Download references

Acknowledgement

Publication supported within the framework of grants in the area of scientific research and developmental works founded by Rector of the Silesian University of Technology, 09/010/RGJ17/0020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Słota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Brociek, R., Słota, D. (2017). A Method for Solving the Time Fractional Heat Conduction Inverse Problem Based on Ant Colony Optimization and Artificial Bee Colony Algorithms. In: Damaševičius, R., Mikašytė, V. (eds) Information and Software Technologies. ICIST 2017. Communications in Computer and Information Science, vol 756. Springer, Cham. https://doi.org/10.1007/978-3-319-67642-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67642-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67641-8

  • Online ISBN: 978-3-319-67642-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics