Skip to main content

A Network-Assisted Platform for Multipoint Remote Learning

  • Conference paper
  • First Online:
  • 859 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 766))

Abstract

In the last few years, Software Defined Networks (SDN) and Network Functions Virtualization (NFV) have been introduced in the telecommunications world as a new way to design, deploy and manage networking services. Working together, they are able to consolidate and deliver networking components using standard IT virtualization technologies making, in such a way, Telco infrastructures more flexible and adaptive in respect to the needs of both end-users, Telco operators and service providers.

In this context, this paper presents a softwarized architecture for a multipoint remote learning service, allowing network and application functions deployment simplification and management cost reduction. In such a way, the proposed architecture enables even small/medium learning service providers to organize tele-teaching courses without the need of adopting a dedicated and expensive data delivery infrastructure. Unlike an over-the-top approach, in-network platform implementation provides flexibility and allows users, that is, students and teachers, to meet in virtual classrooms wherever they are, automatically arranging and adapting multipoint communications links at run-time according to the time-variant conditions of the underlying network and the overlay user behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. White paper on Software-Defined Networking: The New Norm for Networks. https://www.opennetworking.org/

  2. Kreutz, D., Ramos, F.M.V., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

    Article  Google Scholar 

  3. White paper on Network Functions Virtualisation. http://portal.etsi.org/NFV/NFV_White_Paper.pdf

  4. Network Functions Virtualisation – White Paper #3, Network Operator Perspectives on Industry Progress. https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf

  5. Faraci, G., Schembra, G.: An analytical model to design and manage a green SDN/NFV CPE node. IEEE Trans. Netw. Serv. Manage. 12(3), 435–450 (2015)

    Article  Google Scholar 

  6. Lombardo, A., Manzalini, A., Schembra, G., Faraci, G., Rametta, C., Riccobene, V.: An open framework to enable NetFATE (Network Functions at the edge). In: Proceedings of 1st IEEE Conference on Network Softwarization (NetSoft), 13–17 April 2015 (2015)

    Google Scholar 

  7. H2020 INPUT Project. http://www.input-project.eu/

  8. Huang, X.B., Wei, J.P., Lu, W.Y., Fan, Y.M., Tan, Z.Q.: A peer-to-peer hybrid multicast infrastructure for remote learning. In: 2008 ISECS, Guangzhou, pp. 270–275 (2005)

    Google Scholar 

  9. Wang, K., Agarwal, A.: Multicast traffic merging in DiffServ-supported MPLS networks. In: CCECE 2003, vol. 2, pp. 905–910 ( 2003)

    Google Scholar 

  10. Subekti, L.B., et al.: Design of virtual ClassBox system for supporting distance learning. In: 2012 7th International Conference on Telecommunication Systems, Services, and Applications (TSSA), Bali (2012)

    Google Scholar 

  11. Diot, C., Levine, B.N., Lyles, B., Kassem, H., Balensiefen, D.: Deployment issues for the IP multicast service and architecture. IEEE Netw. 14(1), 78–88 (2000)

    Article  Google Scholar 

  12. Perlman, R., et al.: Simple multicast: a design for simple, low-overhead multicast. IETF draft, draft-perlman-simple-multicast-03.txt, October 1999

    Google Scholar 

  13. Holbrook, H., Cain, B.: Source specific multicast. IETF draft, draftholbrook-ssm-00.txt, March 2000

    Google Scholar 

  14. Maraviglia, G., et al.: Synchronous multipoint e-learning realized on an intelligent software-router platform over unicast networks: design and performance issues. In: Proceedings of ETFA 2007, Patras, Greece, 25–28 September 2007 (2007)

    Google Scholar 

  15. Morris, R., Kohler, E., Jannotti, J., Kaashoek, M.F.: The click modular router. In: Proceedings of the 17th ACM Symposium on Operating Systems Principles (SOSP 1999), pp. 217–231, Kiawah Island, South Carolina, December 1999

    Google Scholar 

  16. Calarco, G., Raffaelli, C., Schembra, G., Tusa, G.: Comparative analysis of SMP click scheduling techniques. In: Proceedings of QoSIP 2005, Catania (Italy), 2–4 February 2005, pp. 379–389 (2005)

    Google Scholar 

  17. Padmanabhan, V.N., Wang, H.J., Chou, P.A.: Resilient peer-to-peer streaming. In: 11th IEEE International Conference on Network Protocols, Proceedings, pp. 16–27 (2003)

    Google Scholar 

  18. Tran, D.A., Hua, K.A., Do, T.T.: A peer-to-peer architecture for media streaming. IEEE J. Sel. Areas Commun. 22(1), 121–133 (2004)

    Article  Google Scholar 

  19. Busà, A.G., Lombardo, A., Barbera, M., Schembra, G.: CLAPS: a cross-layer analysis platform for P2P video streaming. In: Proceedings of IEEE ICC 2007, GLASGOW, Scotland (UK), 24–28 June 2007 (2007)

    Google Scholar 

  20. Almeida, E.C.D., Sunyé, G., Traon, Y.L., Valduriez, P.: A framework for testing peer-to-peer systems. In: 2008 19th International Symposium on Software Reliability Engineering (ISSRE), Seattle, WA (2008)

    Google Scholar 

  21. Barbera, M., Lombardo, A., Schembra, G., Tribastone, M.: A markov model of a freerider in a bittorrent P2P network. In: Proceedings of IEEE Globecom 2005, St. Louis, MO, USA, 28 November – 2 December 2005, pp. 985–989 (2005)

    Google Scholar 

  22. Li, Y., Chen, M.: Software-defined network function virtualization: a survey. IEEE Access 3, 2542–2553 (2015)

    Article  Google Scholar 

  23. Jamieson, P., Luk, W., Wilton, S.J.E., Constantinides, G.A.: An energy and power consumption analysis of FPGA routing architectures. In: 2009 International Conference on Field-Programmable Technology, Sydney, NSW, pp. 324–327 (2009)

    Google Scholar 

  24. Lombardo, A., et al.: Measuring and modeling energy consumption to design a green NetFPGA giga-router. In: Proceedings of IEEE Globecom 2012, Anaheim, California, USA, 3–7 December 2012 (2012)

    Google Scholar 

  25. Bolla, R., Bruschi, R., Ranieri, A.: Performance and power consumption modeling for green COTS software router. In: 2009 First International Communication Systems and Networks and Workshops, Bangalore (2009)

    Google Scholar 

  26. ETSI NFV GS, Network Function Virtualization (NFV) Management and Orchestration, NFV-MAN 001 v0.8.1, November 2014

    Google Scholar 

  27. Faraci, G., et al.: A processor-sharing scheduling strategy for NFV nodes. J. Electr. Comput. Eng. Special Issue Des. High Throughput Cost Efficient Data Center Netw., Article ID 3583962 (2016)

    Google Scholar 

  28. Lombardo, A., Barbera, M., Panarello, C., Schembra, G.: Active window management: an efficient gateway mechanism for TCP traffic control. In: Proceedings of IEEE ICC 2007, GLASGOW, Scotland (UK), 24–28 June 2007 (2007)

    Google Scholar 

  29. Galluccio, L., et al.: An analytical framework for the design of intelligent algorithms for adaptive-rate MPEG video encoding in next generation time-varying wireless networks. IEEE J. Sel. Areas Commun. 23(2), 369–384 (2005)

    Article  Google Scholar 

  30. Lombardo, A., Schembra, G.: Performance evaluation of an adaptive-rate MPEG encoder matching IntServ traffic constraints. IEEE Trans. Netw. 11(1), 47–65 (2003)

    Article  Google Scholar 

  31. Dumbere, D.M., Janwe, N.J.: Video encryption using AES algorithm. In: Second International Conference on Current Trends in Engineering and Technology (ICCTET 2014), Coimbatore (2014)

    Google Scholar 

  32. Li, M., Yang, C., Tian, J.: Video selective encryption based on hadoop platform. In: 2015 IEEE International Conference on Computational Intelligence & Communication Technology, Ghaziabad, pp. 208–212 (2015)

    Google Scholar 

  33. Lombardo, A., et al.: Multipath routing and rate-controlled video encoding in wireless video surveillance networks. Multimed. Syst. 14(3), 155–165 (2008)

    Google Scholar 

  34. Fu, X., Guo, B.I.: Framework for distributed video surveillance in heterogeneous environment. In: 2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Harbin, pp. 826–829 (2008)

    Google Scholar 

  35. Detmold, H., van den Hengel, A., Dick, A., Falkner, K., Munro, D.S., Morrison, R.: Middleware for distributed video surveillance. IEEE Distrib. Syst. Online 9(2), 1 (2008)

    Article  Google Scholar 

  36. Jin, H., Yao, H., Liao, X., Yang, S., Liu, W., Jia, Y.: PKTown: a peer-to-peer middleware to support multiplayer online games. In: MUE 2007, Seoul, pp. 54–59 (2007)

    Google Scholar 

  37. Amiri, M., Al Osman, H., Shirmohammadi, S., Abdallah, M.: SDN-based game-aware network management for cloud gaming. In: 2015 International Workshop on Network and Systems Support for Games (NetGames), Zagreb, pp. 1–6 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the EU INPUT project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Rametta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lombardo, A., Rametta, C., Grasso, C. (2017). A Network-Assisted Platform for Multipoint Remote Learning. In: Piva, A., Tinnirello, I., Morosi, S. (eds) Digital Communication. Towards a Smart and Secure Future Internet. TIWDC 2017. Communications in Computer and Information Science, vol 766. Springer, Cham. https://doi.org/10.1007/978-3-319-67639-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67639-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67638-8

  • Online ISBN: 978-3-319-67639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics