Advertisement

A Network-Assisted Platform for Multipoint Remote Learning

  • Alfio Lombardo
  • Corrado RamettaEmail author
  • Christian Grasso
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 766)

Abstract

In the last few years, Software Defined Networks (SDN) and Network Functions Virtualization (NFV) have been introduced in the telecommunications world as a new way to design, deploy and manage networking services. Working together, they are able to consolidate and deliver networking components using standard IT virtualization technologies making, in such a way, Telco infrastructures more flexible and adaptive in respect to the needs of both end-users, Telco operators and service providers.

In this context, this paper presents a softwarized architecture for a multipoint remote learning service, allowing network and application functions deployment simplification and management cost reduction. In such a way, the proposed architecture enables even small/medium learning service providers to organize tele-teaching courses without the need of adopting a dedicated and expensive data delivery infrastructure. Unlike an over-the-top approach, in-network platform implementation provides flexibility and allows users, that is, students and teachers, to meet in virtual classrooms wherever they are, automatically arranging and adapting multipoint communications links at run-time according to the time-variant conditions of the underlying network and the overlay user behavior.

Keywords

SDN NFV Network orchestration Multipoint communication Remote learning 

Notes

Acknowledgements

This work was partially supported by the EU INPUT project.

References

  1. 1.
    White paper on Software-Defined Networking: The New Norm for Networks. https://www.opennetworking.org/
  2. 2.
    Kreutz, D., Ramos, F.M.V., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)CrossRefGoogle Scholar
  3. 3.
    White paper on Network Functions Virtualisation. http://portal.etsi.org/NFV/NFV_White_Paper.pdf
  4. 4.
    Network Functions Virtualisation – White Paper #3, Network Operator Perspectives on Industry Progress. https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf
  5. 5.
    Faraci, G., Schembra, G.: An analytical model to design and manage a green SDN/NFV CPE node. IEEE Trans. Netw. Serv. Manage. 12(3), 435–450 (2015)CrossRefGoogle Scholar
  6. 6.
    Lombardo, A., Manzalini, A., Schembra, G., Faraci, G., Rametta, C., Riccobene, V.: An open framework to enable NetFATE (Network Functions at the edge). In: Proceedings of 1st IEEE Conference on Network Softwarization (NetSoft), 13–17 April 2015 (2015)Google Scholar
  7. 7.
    H2020 INPUT Project. http://www.input-project.eu/
  8. 8.
    Huang, X.B., Wei, J.P., Lu, W.Y., Fan, Y.M., Tan, Z.Q.: A peer-to-peer hybrid multicast infrastructure for remote learning. In: 2008 ISECS, Guangzhou, pp. 270–275 (2005)Google Scholar
  9. 9.
    Wang, K., Agarwal, A.: Multicast traffic merging in DiffServ-supported MPLS networks. In: CCECE 2003, vol. 2, pp. 905–910 ( 2003)Google Scholar
  10. 10.
    Subekti, L.B., et al.: Design of virtual ClassBox system for supporting distance learning. In: 2012 7th International Conference on Telecommunication Systems, Services, and Applications (TSSA), Bali (2012)Google Scholar
  11. 11.
    Diot, C., Levine, B.N., Lyles, B., Kassem, H., Balensiefen, D.: Deployment issues for the IP multicast service and architecture. IEEE Netw. 14(1), 78–88 (2000)CrossRefGoogle Scholar
  12. 12.
    Perlman, R., et al.: Simple multicast: a design for simple, low-overhead multicast. IETF draft, draft-perlman-simple-multicast-03.txt, October 1999Google Scholar
  13. 13.
    Holbrook, H., Cain, B.: Source specific multicast. IETF draft, draftholbrook-ssm-00.txt, March 2000Google Scholar
  14. 14.
    Maraviglia, G., et al.: Synchronous multipoint e-learning realized on an intelligent software-router platform over unicast networks: design and performance issues. In: Proceedings of ETFA 2007, Patras, Greece, 25–28 September 2007 (2007)Google Scholar
  15. 15.
    Morris, R., Kohler, E., Jannotti, J., Kaashoek, M.F.: The click modular router. In: Proceedings of the 17th ACM Symposium on Operating Systems Principles (SOSP 1999), pp. 217–231, Kiawah Island, South Carolina, December 1999Google Scholar
  16. 16.
    Calarco, G., Raffaelli, C., Schembra, G., Tusa, G.: Comparative analysis of SMP click scheduling techniques. In: Proceedings of QoSIP 2005, Catania (Italy), 2–4 February 2005, pp. 379–389 (2005)Google Scholar
  17. 17.
    Padmanabhan, V.N., Wang, H.J., Chou, P.A.: Resilient peer-to-peer streaming. In: 11th IEEE International Conference on Network Protocols, Proceedings, pp. 16–27 (2003)Google Scholar
  18. 18.
    Tran, D.A., Hua, K.A., Do, T.T.: A peer-to-peer architecture for media streaming. IEEE J. Sel. Areas Commun. 22(1), 121–133 (2004)CrossRefGoogle Scholar
  19. 19.
    Busà, A.G., Lombardo, A., Barbera, M., Schembra, G.: CLAPS: a cross-layer analysis platform for P2P video streaming. In: Proceedings of IEEE ICC 2007, GLASGOW, Scotland (UK), 24–28 June 2007 (2007)Google Scholar
  20. 20.
    Almeida, E.C.D., Sunyé, G., Traon, Y.L., Valduriez, P.: A framework for testing peer-to-peer systems. In: 2008 19th International Symposium on Software Reliability Engineering (ISSRE), Seattle, WA (2008)Google Scholar
  21. 21.
    Barbera, M., Lombardo, A., Schembra, G., Tribastone, M.: A markov model of a freerider in a bittorrent P2P network. In: Proceedings of IEEE Globecom 2005, St. Louis, MO, USA, 28 November – 2 December 2005, pp. 985–989 (2005)Google Scholar
  22. 22.
    Li, Y., Chen, M.: Software-defined network function virtualization: a survey. IEEE Access 3, 2542–2553 (2015)CrossRefGoogle Scholar
  23. 23.
    Jamieson, P., Luk, W., Wilton, S.J.E., Constantinides, G.A.: An energy and power consumption analysis of FPGA routing architectures. In: 2009 International Conference on Field-Programmable Technology, Sydney, NSW, pp. 324–327 (2009)Google Scholar
  24. 24.
    Lombardo, A., et al.: Measuring and modeling energy consumption to design a green NetFPGA giga-router. In: Proceedings of IEEE Globecom 2012, Anaheim, California, USA, 3–7 December 2012 (2012)Google Scholar
  25. 25.
    Bolla, R., Bruschi, R., Ranieri, A.: Performance and power consumption modeling for green COTS software router. In: 2009 First International Communication Systems and Networks and Workshops, Bangalore (2009)Google Scholar
  26. 26.
    ETSI NFV GS, Network Function Virtualization (NFV) Management and Orchestration, NFV-MAN 001 v0.8.1, November 2014Google Scholar
  27. 27.
    Faraci, G., et al.: A processor-sharing scheduling strategy for NFV nodes. J. Electr. Comput. Eng. Special Issue Des. High Throughput Cost Efficient Data Center Netw., Article ID 3583962 (2016)Google Scholar
  28. 28.
    Lombardo, A., Barbera, M., Panarello, C., Schembra, G.: Active window management: an efficient gateway mechanism for TCP traffic control. In: Proceedings of IEEE ICC 2007, GLASGOW, Scotland (UK), 24–28 June 2007 (2007)Google Scholar
  29. 29.
    Galluccio, L., et al.: An analytical framework for the design of intelligent algorithms for adaptive-rate MPEG video encoding in next generation time-varying wireless networks. IEEE J. Sel. Areas Commun. 23(2), 369–384 (2005)CrossRefGoogle Scholar
  30. 30.
    Lombardo, A., Schembra, G.: Performance evaluation of an adaptive-rate MPEG encoder matching IntServ traffic constraints. IEEE Trans. Netw. 11(1), 47–65 (2003)CrossRefGoogle Scholar
  31. 31.
    Dumbere, D.M., Janwe, N.J.: Video encryption using AES algorithm. In: Second International Conference on Current Trends in Engineering and Technology (ICCTET 2014), Coimbatore (2014)Google Scholar
  32. 32.
    Li, M., Yang, C., Tian, J.: Video selective encryption based on hadoop platform. In: 2015 IEEE International Conference on Computational Intelligence & Communication Technology, Ghaziabad, pp. 208–212 (2015)Google Scholar
  33. 33.
    Lombardo, A., et al.: Multipath routing and rate-controlled video encoding in wireless video surveillance networks. Multimed. Syst. 14(3), 155–165 (2008)Google Scholar
  34. 34.
    Fu, X., Guo, B.I.: Framework for distributed video surveillance in heterogeneous environment. In: 2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Harbin, pp. 826–829 (2008)Google Scholar
  35. 35.
    Detmold, H., van den Hengel, A., Dick, A., Falkner, K., Munro, D.S., Morrison, R.: Middleware for distributed video surveillance. IEEE Distrib. Syst. Online 9(2), 1 (2008)CrossRefGoogle Scholar
  36. 36.
    Jin, H., Yao, H., Liao, X., Yang, S., Liu, W., Jia, Y.: PKTown: a peer-to-peer middleware to support multiplayer online games. In: MUE 2007, Seoul, pp. 54–59 (2007)Google Scholar
  37. 37.
    Amiri, M., Al Osman, H., Shirmohammadi, S., Abdallah, M.: SDN-based game-aware network management for cloud gaming. In: 2015 International Workshop on Network and Systems Support for Games (NetGames), Zagreb, pp. 1–6 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alfio Lombardo
    • 1
  • Corrado Rametta
    • 1
    Email author
  • Christian Grasso
    • 1
  1. 1.DIEEIUniversity of CataniaCataniaItaly

Personalised recommendations