Skip to main content

Random Matrix Theory for Modeling the Eigenvalue Distribution of Images Under Upscaling

  • Conference paper
  • First Online:
Book cover Digital Communication. Towards a Smart and Secure Future Internet (TIWDC 2017)

Abstract

The stochastic representation of digital images through a two-dimensional autoregressive (2D-AR) model offers a proper way to approximate the empirical distribution of the eigenvalues coming from genuine images. By considering this model, we apply random matrix theory to analytically derive the asymptotic eigenvalue distribution of causal 2D-AR random fields that have undergone an upscaling operation with a particular interpolation kernel. This eigenvalue characterization is useful in developing new forensic techniques for image resampling detection since we can use theoretical bounds to drive the decision of detectors based on subspace decomposition. Moreover, experimental results with real images show that the obtained asymptotic limits turn out to be excellent approximations, even when working with images of small size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The value of \(\phi \) is generally taken as \(\phi = \tfrac{1}{2}\left( \tfrac{M}{L}+1\right) \), as in imresize from MATLAB.

  2. 2.

    There is an additional technical condition that applies in the cases considered in this paper, namely, that the set \(\left\{ \omega :d(\omega )=x\right\} \) has measure zero for all \(x \in {\mathbb R}\).

References

  1. Bai, Z., Zhou, W.: Large sample covariance matrices without independence structures in columns. Statistica Sinica 18(2), 425–442 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Gloe, T., Böhme, R.: The Dresden image database for benchmarking digital image forensics. In: ACM SAC, pp. 1584–1590, March 2010

    Google Scholar 

  3. Grenander, U., Szegö, G.: Toeplitz Forms and Their Applications. University of California Press, Berkeley (1958)

    MATH  Google Scholar 

  4. Kirchner, M.: Fast and reliable resampling detection by spectral analysis of fixed linear predictor residue. In: ACM MM&Sec, pp. 11–20, September 2008

    Google Scholar 

  5. Kirchner, M.: Linear row and column predictors for the analysis of resized images. In: ACM MM&Sec, pp. 13–18, September 2010

    Google Scholar 

  6. Li, Y., Ding, Z.: Blind channel identification based on second order cyclostationary statistics. In: IEEE ICASSP. pp. 81–84, April 1993

    Google Scholar 

  7. Mahdian, B., Saic, S.: Blind authentication using periodic properties of interpolation. IEEE Trans. Inf. Forensics Secur. 3(3), 529–538 (2008)

    Article  Google Scholar 

  8. Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues for some sets of random matrices. Math. USSR Sb. 1(4), 457–483 (1967)

    Article  Google Scholar 

  9. Pfaffel, O., Schlemm, E.: Eigenvalue distribution of large sample covariance matrices of linear processes. Prob. Math. Stat. 31(2), 313–329 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Trans. Signal Process. 53(2), 758–767 (2005)

    Article  MathSciNet  Google Scholar 

  11. Tao, T.: Topics in Random Matrix Theory. American Mathematical Society, Providence (2012)

    Book  MATH  Google Scholar 

  12. Tulino, A.M., Verdú, S.: Random matrix theory and wireless communications. Found. Trends Commun. Inf. Theor. 1(1), 1–182 (2004)

    Article  MATH  Google Scholar 

  13. Vázquez-Padín, D., Comesaña, P., Pérez-González, F.: An SVD approach to forensic image resampling detection. In: EUSIPCO, pp. 2067–2071, September 2015

    Google Scholar 

  14. Vázquez-Padín, D., Pérez-González, F., Comesaña Alfaro, P.: Derivation of the asymptotic eigenvalue distribution for causal 2D-AR models under upscaling. arXiv:1704.05773 [cs.CR], April 2017

  15. Vázquez-Padín, D., Pérez-González, F., Comesaña Alfaro, P.: A random matrix approach to the forensic analysis of upscaled images. IEEE Trans. Inf. Forensics Secur. 12(9), 2115–2130 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by the Agencia Estatal de Investigación (Spain) and the European Regional Development Fund (ERDF) under project WINTER (TEC2016-76409-C2-2-R), and by the Xunta de Galicia and the ERDF under projects Agrupación Estratéxica Consolidada de Galicia accreditation 2016–2019 and Red Temática RedTEIC 2017–2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Vázquez-Padín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vázquez-Padín, D., Pérez-González, F., Comesaña-Alfaro, P. (2017). Random Matrix Theory for Modeling the Eigenvalue Distribution of Images Under Upscaling. In: Piva, A., Tinnirello, I., Morosi, S. (eds) Digital Communication. Towards a Smart and Secure Future Internet. TIWDC 2017. Communications in Computer and Information Science, vol 766. Springer, Cham. https://doi.org/10.1007/978-3-319-67639-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67639-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67638-8

  • Online ISBN: 978-3-319-67639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics