Advertisement

IoT Data Storage in the Cloud: A Case Study in Human Biometeorology

  • Brunno Vanelli
  • A. R. Pinto
  • Madalena P. da Silva
  • M. A. R. Dantas
  • M. Fazio
  • A. Celesti
  • M. Villari
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 189)

Abstract

The IoT (Internet of Things) has emerged to increase the potentiality of pervasive monitoring devices. However, the implementation and integration of IoT devices, data storage and the development of applications are still considered challenging. This paper presents an infrastructure for aggregating and storing data from different sources from IoT devices to the cloud. In order to evaluate the infrastructure regarding the quality in storage, it has been implemented and verified in an AAL (Ambient Assisted Living) case scenario, the main application being Human Biometeorology. The evaluation of metrics related to sending, receiving and storing data demonstrate that the experimental environment is completely reliable and appropriate for the case study in question.

Keywords

AAL Cloud computing Human biometeorology IoT 

Notes

Acknowledgements

We would like to thanks to Microsoft Research for Azure Award.

References

  1. 1.
    Botta, A., de Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing and internet of things: a survey. Future Gener. Comput. Syst. 56, 684–700 (2016)CrossRefGoogle Scholar
  2. 2.
    Thom, E.C.: The discomfort index. Weatherwise 12, 57–60 (1959)CrossRefGoogle Scholar
  3. 3.
    Quinn, A., Tamerius, J.D., Perzanowski, M., Jacobson, J.S., Goldstein, I., Acosta, L., Shaman, J.: Predicting indoor heat exposure risk during extreme heat events. Sci. Total Environ. 490, 686–693 (2014)CrossRefGoogle Scholar
  4. 4.
    Zhang, K., Li, Y., Schwartz, J.D., O’Neill, M.S.: What weather variables are important in predicting heat-related mortality? A new application of statistical learning methods. Environ. Res. 132, 350–359 (2014)CrossRefGoogle Scholar
  5. 5.
    Ngo, N.S., Horton, R.M.: Climate change and fetal health: the impacts of exposure to extreme temperatures in New York City. Environ. Res. 144(Pt A), 158–164 (2016)CrossRefGoogle Scholar
  6. 6.
    Azevedo, J.V.V., Santos, A.C., Alves, T.L.B., Azevedo, P.V., Olinda, R.A.: Influência do Clima na Incidência de Infecção Respiratória Aguda em Crianças nos Municípios de Campina Grande e Monteiro, Paraíba, Brasil. Revista Brasileira de Meteorologia 30(4), 467–477 (2015)Google Scholar
  7. 7.
    Yang, C.-T., Liao, C.-J., Liu, J.-C., Den, W., Chou, Y.-C., Tsai, J.-J.: Construction and application of an intelligent air quality monitoring system for healthcare environment. J. Med. Syst. 38(2), 15 (2014)CrossRefGoogle Scholar
  8. 8.
    Sun, F.M., Fang, Z., Zhao, Z., Xu, Z.H., Tan, J., Chen, D.L., Du, L.D., Qian, Y.M., Hui, H.Y., Tian, L.L.: A wireless ZigBee router with P-H-T sensing for health monitoring. In: IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, GreenCom-iThings-CPSCom 2013, art. no. 682338, pp. 1773–1778 (2013)Google Scholar
  9. 9.
    Nam, J.-W., Kim, H.-T., Min, B.-B., Kim, K.-H., Kim, G.-S., Kim, J.-C.: Ventilation control of subway station using USN environmental sensor monitoring system. In: International Conference on Control, Automation and Systems, art. 6106440, pp. 305–308 (2011)Google Scholar
  10. 10.
    Fazio, M., Celesti, A., Puliafito, A., Villari, M.: Big data storage in the cloud for smart environment monitoring. Procedia Comput. Sci. 52(2015), 500–506 (2015)CrossRefGoogle Scholar
  11. 11.
    Jayakumar, D., Omana, J., Sivakumar, M., Senthil, B.: A safe guard system for mine workers using wireless sensor networks. Int. J. Appl. Eng. Res. 10(8), 21429–21441 (2015)Google Scholar
  12. 12.
    Sung, W.-T., Chen, J.-H., Wang, H.-C.: Wisdom health care environment systems for monitoring and automated control via RBF function. Appl. Mech. Mater. 157–158, 315–318 (2012)CrossRefGoogle Scholar
  13. 13.
    Li, H., Zhao, L., Ling, P.: Wireless control of residential HVAC systems for energy efficient and comfortable homes. ASHRAE Trans. 116(PART 2), 355–367 (2010)Google Scholar
  14. 14.
    Fazio, M., Celesti, A., Villari, M., Puliafito, A.: The need of a hybrid storage approach for IoT in PaaS cloud federation. In: 28th International Conference on Advanced Information Networking and Applications Workshops, pp. 779–784 (2014)Google Scholar
  15. 15.
    Behera, R.K., Gupta, S., Gautam, A.: Big-data empowered cloud centric internet of things. In: International Conference on Man and Machine Interfacing, pp. 1–5 (2015)Google Scholar
  16. 16.
    Yan, Z.: The application of mobile cloud in heterogeneous data storage in web of things system. In: 7th International Conference on Intelligent Computation Technology and Automation, pp. 773–776 (2014)Google Scholar
  17. 17.
    Kang, J., Yin, S., Meng, W.: An Intelligent storage management system based on cloud computing and internet of things. In: Patnaik, S., Li, X. (eds.) Proceedings of International Conference on Computer Science and Information Technology. AISC, vol. 255, pp. 499–505. Springer, New Delhi (2014). doi: 10.1007/978-81-322-1759-6_57 CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Brunno Vanelli
    • 1
  • A. R. Pinto
    • 1
  • Madalena P. da Silva
    • 1
  • M. A. R. Dantas
    • 1
  • M. Fazio
    • 2
  • A. Celesti
    • 2
  • M. Villari
    • 2
    • 3
  1. 1.Federal University of Santa CatarinaFlorianópolisBrazil
  2. 2.University of MessinaMessinaItaly
  3. 3.IRCCS Centro Neurolesi “Bonino Pulejo”MessinaItaly

Personalised recommendations