An Analysis of Social Data Credibility for Services Systems in Smart Cities – Credibility Assessment and Classification of Tweets

  • Iman Abu Hashish
  • Gianmario Motta
  • Tianyi Ma
  • Kaixu Liu
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 189)

Abstract

In the “Information Age”, Smart Cities rely on a wide range of different data sources. Among them, social networks can play a big role, if information veracity is assessed. Veracity assessment has been, and is, a rather popular research field. Specifically, our work investigates the credibility of data from Twitter, an online social network and a news media, by considering not only credibility, and type, but also origin. Our analysis proceeds in four phases: Features Extraction, Features Analysis, Features Selection, and Classification. Finally, we classify whether a Tweet is credible or incredible, is rumor or spam, is generated by a human or a Bot. We use Social Media Mining and Machine Learning techniques. Our analysis reaches an overall accuracy higher than the benchmark, and it adds the origin dimension to the credibility analysis method.

Keywords

Smart cities Smart citizens Social data Twitter Twitter bot Credibility Veracity Classification Social media mining Machine learning 

References

  1. 1.
    Motta, G.: Towards the Smart Citizen, New and smart Information Communication Science and Technology to support Sustainable Development (NICST) (2013)Google Scholar
  2. 2.
  3. 3.
    Russel, M.A.: Mining the Social Web, 2nd edn. O’Reilly, Beijing (2014)Google Scholar
  4. 4.
    Motta, G., Sacco, D., Ma, T., You, L., Liu, K.: Personal mobility service system in urban areas: the IRMA project. In: 2015 IEEE Symposium on Service-Oriented System Engineering (2015)Google Scholar
  5. 5.
    Okoli, C., Schabram, K.: A guide to conducting a systematic literature review of information systems research. SSRN Electron. J.Google Scholar
  6. 6.
    Gupta, M., Zhao, P., Han, J.: Evaluating event credibility on Twitter. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 153–164 (2012)Google Scholar
  7. 7.
    Gupta, A., Kumaraguru, P., Castillo, C., Meier, P.: TweetCred: real-time credibility assessment of content on Twitter. In: Aiello, L.M., McFarland, D. (eds.) SocInfo 2014. LNCS, vol. 8851, pp. 228–243. Springer, Cham (2014). doi: 10.1007/978-3-319-13734-6_16 Google Scholar
  8. 8.
    Sikdar, S., Kang, B., Odonovan, J., Hollerer, T., Adah, S.: Understanding information credibility on Twitter. In: 2013 International Conference on Social Computing (2013)Google Scholar
  9. 9.
    Namihira, Y., Segawa, N., Ikegami, Y., Kawai, K., Kawabe, T., Tsuruta, S.: High precision credibility analysis of information on Twitter. In: 2013 International Conference on Signal-Image Technology & Internet-Based Systems (2013)Google Scholar
  10. 10.
    Batool, R., Khattak, A.M., Maqbool, J., Lee, S.: Precise tweet classification and sentiment analysis. In: 2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS) (2013)Google Scholar
  11. 11.
    Castillo, C., Mendoza, M., Poblete, B.: Information credibility on Twitter. In: Proceedings of the 20th International Conference on World Wide Web (WWW 2011) (2011)Google Scholar
  12. 12.
    Sahana, V.P., Pias, A.R., Shastri, R., Mandloi, S.: Automatic detection of rumored tweets and finding its origin. In: 2015 International Conference on Computing and Network Communications (CoCoNet) (2015)Google Scholar
  13. 13.
    Zhang, Q., Zhang, S., Dong, J., Xiong, J., Cheng, X.: Automatic detection of rumor on social network. In: Li, J., Ji, H., Zhao, D., Feng, Y. (eds.) NLPCC 2015. LNCS, vol. 9362, pp. 113–122. Springer, Cham (2015). doi: 10.1007/978-3-319-25207-0_10 CrossRefGoogle Scholar
  14. 14.
    Al-Dayil, R.A., Dahshan, M.H.: Detecting social media mobile botnets using user activity correlation and artificial immune system. In: 7th International Conference on Information and Communication Systems (ICICS) (2016)Google Scholar
  15. 15.
    Sivanesh, S., Kavin, K., Hassan, A.A.: Frustrate Twitter from automation: how far a user can be trusted? In: International Conference on Human Computer Interactions (ICHCI) (2013)Google Scholar
  16. 16.
    Gupta, A., Kaushal, R.: Improving spam detection in online social networks. In: International Conference on Cognitive Computing and Information Processing (CCIP) (2015)Google Scholar
  17. 17.
    Wang, S., Terano, T.: Detecting rumor patterns in streaming social media. In: IEEE International Conference on Big Data (Big Data) (2015)Google Scholar
  18. 18.
    Morris, M.R., Counts, S., Roseway, A., Hoff, A., Schwarz, J.: Tweeting is believing? In: Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work (CSCW 2012) (2012)Google Scholar
  19. 19.
  20. 20.
    Kang, B., O’donovan, J., Höllerer, T.: Modeling topic specific credibility on Twitter. In: Proceedings of the 2012 ACM International Conference on Intelligent User Interfaces (IUI 2012) (2012)Google Scholar
  21. 21.
    Twitter Support: Using Hashtags in Twitter. https://support.twitter.com/articles/49309

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Iman Abu Hashish
    • 1
  • Gianmario Motta
    • 1
  • Tianyi Ma
    • 1
  • Kaixu Liu
    • 1
  1. 1.Department of Electronics, Computer Science and Electrical EngineeringUniversity of PaviaPaviaItaly

Personalised recommendations