The capability to perform comparisons of city performances can be an important guide for stakeholders to detect strengths and weaknesses and to set up strategies for future urban development. Today, the rise of the Open Data culture in public administrations is leading to a larger availability of statistical datasets in machine-readable formats, e.g. the RDF Data Cube. Although these allow easier data access and consumption, appropriate evaluation mechanisms are still needed to perform proper comparisons, together with an explicit representation of how statistical indicators are calculated. In this work, we discuss an approach for analysis and comparison of statistical Linked Data which is based on the formal and mathematical representation of performance indicators. Relying on this knowledge model, a set of logic-based services are able to support novel typologies of comparison of different resources.


Statistical datasets Performance indicators Logic reasoning Smart cities 


  1. 1.
    Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 2nd edn. Wiley, New York (2002)Google Scholar
  2. 2.
    Supply Chain Council: Supply chain operations reference model. SCC (2008)Google Scholar
  3. 3.
    Bosch, P., Jongeneel, S., Rovers, V., Neumann, H.M., Airaksinen, M., Huovila, A.: Deliverable 1.4. smart city kpis and related methodology. Technical report, CITYKeys (2016)Google Scholar
  4. 4.
    Horkoff, J., Barone, D., Jiang, L., Yu, E., Amyot, D., Borgida, A., Mylopoulos, J.: Strategic business modeling: representation and reasoning. Softw. Syst. Model. 13(3), 1015–1041 (2014)CrossRefGoogle Scholar
  5. 5.
    del Río-Ortega, A., Resinas, M., Cabanillas, C., Ruiz-Cortés, A.: On the definition and design-time analysis of process performance indicators. Inf. Syst. 38(4), 470–490 (2013)CrossRefGoogle Scholar
  6. 6.
    Buswell, S., Caprotti, O., Carlisle, D.P., Dewar, M.C., Gaetano, M., Kohlhase, M.: The open math standard. Technical report, version 2.0, The Open Math Society, 2004 (2004).
  7. 7.
    Diamantini, C., Potena, D., Storti, E.: SemPI: a semantic framework for the collaborative construction and maintenance of a shared dictionary of performance indicators. Future Gener. Comput. Syst. 54, 352–365 (2015)CrossRefGoogle Scholar
  8. 8.
    SDMX: SDMX technical specification. Technical report (2013)Google Scholar
  9. 9.
    Cyganiak, R., Reynolds, D., Tennison, J.: The RDF data cube vocabulary. Technical report, World Wide Web Consortium (2014)Google Scholar
  10. 10.
    Diamantini, C., Potena, D., Storti, E.: Extended drill-down operator: digging into the structure of performance indicators. Concurr. Comput. Pract. Exper. 28(15), 3948–3968 (2016)CrossRefGoogle Scholar
  11. 11.
    Etcheverry, L., Vaisman, A., Zimányi, E.: Modeling and querying data warehouses on the semantic web using QB4OLAP. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 45–56. Springer, Cham (2014). doi: 10.1007/978-3-319-10160-6_5 Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Claudia Diamantini
    • 1
  • Domenico Potena
    • 1
  • Emanuele Storti
    • 1
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversita Politecnica delle MarcheAnconaItaly

Personalised recommendations