Treatment of Ulcerations and Wounds

  • Regina Tiede
  • Steffen Emmert
  • Georg Isbary


Chronic wounds comprise a quite heterogeneous group of diseases. The prevailing causes of skin wounds include venous and/or arterial circulatory disorders, diabetes, or constant pressure to the skin (decubitus), which often lead to the development of skin ulceration. Thus, chronic wounds predominately are leg ulcers (with venous leg ulcers prevailing), diabetic foot syndrome, and decubitus on the lower back. Wound debridement, superficial germ reduction, modern wound dressings that keep the wound moist but still allow air exchange, and compression stockings or bandages are the hallmarks of modern wound treatment. The application of biocompatible, cold atmospheric pressure plasma (CAP) is an innovative addition to these treatments, because CAP combines several treatment modalities within one application. Firstly, plasma treatment supports wound healing via its effective and broad antimicrobial activity, as germs often hamper the healing process. Secondly, the unique plasma composition mediates different effects, which positively affect the wound milieu within the different phases of wound healing (e.g. pH reduction, enhanced microcirculation, and cell stimulation). The international study landscape including our own studies reveal that plasma application is safe, effective, and medically applicable. As a consequence of the development of more and more medical plasma devices, standardization of such devices is mandatory to allow for a comparison between devices and to ensure patients’ as well as operators’ safety. To this end, a first DIN-Specification was developed in Germany describing some basic test systems to allow for the general evaluation of safety and efficacy aspects of plasma devices; the DIN-SPEC 91315 (DIN SPEC 91315: General requirements for plasma sources in medicine, 2014).


Chronic wounds Ulcus Wound classification Wound healing Clinical trials Plasma as add-on therapy DIN-SPEC Risk assessment 


  1. 1.
    German Society for Pediatric Surgery. Leitlinie zu Wunden und Wundbehandlung AWMF-Leitlinienregister Nr 006/129. 2014.Google Scholar
  2. 2.
    German Society for Wound Healing and Wound Treatment e.V. Lokaltherapie chronischer Wunden bei Patienten mit den Risiken periphere arterielle Verschlusskrankheit, Diabetes mellitus, chronische venöse Insuffizienz. AWMF-Leitlinienregister Nr. 091/001. 2012.Google Scholar
  3. 3.
    Jung E. Duale Reihe Dermatologie. 7th ed. Stuttgart: Thieme; 2010. Moll I.Google Scholar
  4. 4.
    German Society for Phlebology. Leitlinien zur Diagnostik und Therapie des Ulcus cruris venosum AWMF-Leitlinien-Register Nr 037/009. 2008.Google Scholar
  5. 5.
    Valencia IC, Falabella A, Kirsner RS, Eaglstein WH. Chronic venous insufficiency and venous leg ulceration. J Am Acad Dermatol. 2001;44:401–24.CrossRefGoogle Scholar
  6. 6.
    Etufugh CN, Phillips TJ. Venous ulcers. Clin Dermatol. 2007;25:121–30.CrossRefGoogle Scholar
  7. 7.
    Nord D. Kosteneffektivität in der Wundbehandlung. Zentralbl Chir. 2006;131:185–8. Scholar
  8. 8.
    De Araujo T, Valencia I, Federman DG, Kirsner RS. Managing the patient with venous ulcers. Ann Intern Med. 2003;138:326–34.CrossRefGoogle Scholar
  9. 9.
    Heit JA. Venous thromboembolism epidemiology: implications for prevention and management. Semin Thromb Hemost. 2002;28:3–13.CrossRefGoogle Scholar
  10. 10.
    Kurz X, Kahn SR, Abenhaim L, et al. Chronic venous disorders of the leg: epidemiology, outcomes, diagnosis and management. Summary of an evidence-based report of the VEINES task force. Venous insufficiency epidemiologic and economic studies. Int Angiol. 1999;18:83–102.PubMedGoogle Scholar
  11. 11.
    German Society for Angiology and Society for Vascular Medicine e.V. Leitlinien zur Diagnostik und Therapie der peripheren arteriellen Verschlusskrankheit (PAVK). AWMF-Leitlinienregister Nr. 065/003. 2009.Google Scholar
  12. 12.
    Programm für Nationale Versorgungs-Leitlinien. Nationale Versorgungs-Leitlinie Typ-2-Diabetes: Präventions- und Behandlungsstrategien für Fußkomplikationen. AWMF-Leitlinienregister Nr nvl/001c Version 2.8. 2010.Google Scholar
  13. 13.
    Nordrheinische Gemeinsame Einrichtung Disease Management Programme. Qualitätssicherungsbericht 2009. Disease-Management-Programme in Nordrhein-Westfalen, Düsseldorf. 2010.Google Scholar
  14. 14.
    Purwins S, Herberger K, Debus ES, Rustenbach SJ, Pelzer P, Rabe E, Schäfer E, Stadler R, Augustin M. Cost-of-illness of chronic leg ulcers in Germany. Int Wound J. 2010;7:97–102.CrossRefGoogle Scholar
  15. 15.
    Bosanquet N, Franks P. Venous disease: the new international challenge. Phlebology. 1996;11:6–9.CrossRefGoogle Scholar
  16. 16.
    Robson MC. Wound infection: a failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am. 1997;77:637–50.CrossRefGoogle Scholar
  17. 17.
    Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9:283–9.CrossRefGoogle Scholar
  18. 18.
    Hart CA, Scott LJ, Bagley S, Bryden AA, Clarke NW, Lang SH. Role of proteolytic enzymes in human prostate bone metastasis formation: in vivo and in vitro studies. Br J Cancer. 2002;86:1136–42.CrossRefGoogle Scholar
  19. 19.
    Sylvia CJ. The role of neutrophil apoptosis in influencing tissue repair. J Wound Care. 2003;12:13–6.CrossRefGoogle Scholar
  20. 20.
    Broughton IG, Janis JE, Attinger CE. The basic science of wound healing. Plast Reconstr Surg. 2006;117:12–34.CrossRefGoogle Scholar
  21. 21.
    Artuc M, Hermes B, Steckelings UM, Grützkau A, Henz BM. Mast cells and their mediators in cutaneous wound healing—active participants or innocent bystanders? Exp Dermatol. 1999;8:1–16.CrossRefGoogle Scholar
  22. 22.
    Diegelmann RFPD, Cohen IKMD, Kaplan AMPD. The role of macrophages in wound repair: a review. Plast Reconstr Surg. 1981;68:107–13.CrossRefGoogle Scholar
  23. 23.
    Heng MCY. Wound healing in adult skin: aiming for perfect regeneration. Int J Dermatol. 2011;50:1058–66.CrossRefGoogle Scholar
  24. 24.
    Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M. Epithelialization in wound healing: a comprehensive review. Adv Wound Care. 2014;3:445–64.CrossRefGoogle Scholar
  25. 25.
    Roberts AB, McCune BK, Sporn MB. TGF-β: Regulation of extracellular matrix. Kidney Int. 1992;41:557–9.CrossRefGoogle Scholar
  26. 26.
    Hall MC, Young DA, Waters JG, Rowan AD, Chantry A, Edwards DR, Clark IM. The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-beta1. J Biol Chem. 2003;278:10304–13.CrossRefGoogle Scholar
  27. 27.
    Peranteau WH, Zhang L, Muvarak N, Badillo AT, Radu A, Zoltick PW, Liechty KW. IL-10 Overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation. J Invest Dermatol. 2008;128:1852–60.CrossRefGoogle Scholar
  28. 28.
    Knighton D, Hunt T, Scheuenstuhl H, Halliday B, Werb Z, Banda M. Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science. 1983;221:1283–5.CrossRefGoogle Scholar
  29. 29.
    LaVan FB, Hunt TK. Oxygen and wound healing. Clin Plast Surg. 1990;17:463–72.PubMedGoogle Scholar
  30. 30.
    Steed DL, Attinger C, Brem H, et al. Guidelines for the prevention of diabetic ulcers. Wound Repair Regen. 2008;16:169–74.CrossRefGoogle Scholar
  31. 31.
    Dissemond J. Moderne Wundauflagen für die Therapie chronischer Wunden. Hautarzt. 2006;57:881–7.CrossRefGoogle Scholar
  32. 32.
    Isbary G, Shimizu T, Li Y-F, Stolz W, Thomas HM, Morfill GE, Zimmermann JL. Cold atmospheric plasma devices for medical issues. Expert Rev Med Devices. 2013;10:367–77.CrossRefGoogle Scholar
  33. 33.
    Tiede R, Hirschberg J, Daeschlein G, von Woedtke T, Vioel W, Emmert S. Plasma applications: a dermatological view. Contrib Plasma Phys. 2014;54:118–30.CrossRefGoogle Scholar
  34. 34.
    Tiede R, Mann M, Viöl W, Welz C, Daeschlein G, Wolff HA, Von Woedtke T, Lademann J, Emmert S. New therapeutic options: plasma medicine in dermatology|Neue therapiemöglichkeiten: plasmamedizin in der dermatologie. HAUT. 2014;6:283–9.Google Scholar
  35. 35.
    Baxter HC, Campbell GA, Richardson PR, Jones AC, Whittle IR, Casey M, Whittaker AG, Baxter RL. Surgical instrument decontamination: efficacy of introducing an Argon: oxygen RF gas-plasma cleaning step as part of the cleaning cycle for stainless steel instruments. IEEE Trans Plasma Sci. 2006;34:1337–44.CrossRefGoogle Scholar
  36. 36.
    Raiser J, Zenker M. Argon plasma coagulation for open surgical and endoscopic applications: state of the art. J Phys D Appl Phys. 2006;39:3520–3.CrossRefGoogle Scholar
  37. 37.
    Koban I, Holtfreter B, Hübner NO, Matthes R, Sietmann R, Kindel E, Weltmann KD, Welk A, Kramer A, Kocher T. Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro—proof of principle experiment. J Clin Periodontol. 2011;38:956–65.CrossRefGoogle Scholar
  38. 38.
    Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A. Applied plasma medicine. Plasma Process Polym. 2008;5:503–33.CrossRefGoogle Scholar
  39. 39.
    Shimizu T, Steffes B, Pompl R, et al. Characterization of microwave plasma torch for decontamination. Plasma Process Polym. 2008;5:577–82.CrossRefGoogle Scholar
  40. 40.
    Farin G, Grund KE. Technology of argon plasma coagulation with particular regard to endoscopic applications. Endosc Surg Allied Technol. 1994;2:71–7.PubMedGoogle Scholar
  41. 41.
    Stoffels E, Flikweert AJ, Stoffels WW, Kroesen GMW. Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sources Sci Technol. 2002;11:383–8.CrossRefGoogle Scholar
  42. 42.
    Moreau M, Orange N, Feuilloley MGJ. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv. 2008;26:610–7.CrossRefGoogle Scholar
  43. 43.
    Dobrynin D, Fridman G, Friedman G, Fridman A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys. 2009;11:115020. (26pp)CrossRefGoogle Scholar
  44. 44.
    Joaquin JC, Kwan C, Abramzon N, Vandervoort K, Brelles-Marino G. Is gas-discharge plasma a new solution to the old problem of biofilm inactivation? Microbiology. 2009;155:724–32.CrossRefGoogle Scholar
  45. 45.
    Ehlbeck J, Schnabel U, Polak M, Winter J, von Woedtke T, Brandenburg R, von dem Hagen T, Weltmann K-D. Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys. 2011;44:013002. (18pp).CrossRefGoogle Scholar
  46. 46.
    Daeschlein G, Scholz S, von Woedtke T, Niggemeier M, Kindel E, Brandenburg R, Weltmann K, Junger M. In vitro killing of clinical fungal strains by low-temperature atmospheric-pressure plasma jet. IEEE Trans Plasma Sci. 2011;39:815–21.CrossRefGoogle Scholar
  47. 47.
    Zimmermann JL, Dumler K, Shimizu T, Morfill GE, Wolf A, Boxhammer V, Schlegel J, Gansbacher B, Anton M. Effects of cold atmospheric plasmas on adenoviruses in solution. J Phys D Appl Phys. 2011;44:505201. (9pp).CrossRefGoogle Scholar
  48. 48.
    Klämpfl TG, Isbary G, Shimizu T, Li YF, Zimmermann JL, Stolz W, Schlegel J, Morfill GE, Schmidt HU. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol. 2012;78:5077–82.CrossRefGoogle Scholar
  49. 49.
    Maisch T, Shimizu T, Li YF, Heinlin J, Karrer S, Morfill G, Zimmermann JL. Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS One. 2012;7:1–9.CrossRefGoogle Scholar
  50. 50.
    Daeschlein G, Napp M, von Podewils S, et al. In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym. 2014;11:175–83.CrossRefGoogle Scholar
  51. 51.
    Daeschlein G, von Woedtke T, Kindel E, Brandenburg R, Weltmann K-D, Jünger M. Antibacterial activity of an atmospheric pressure plasma jet against relevant wound Pathogens in vitro on a simulated wound environment. Plasma Process Polym. 2010;7:224–30.CrossRefGoogle Scholar
  52. 52.
    Fridman G, Peddinghaus M, Ayan H, Fridman A, Balasubramanian M, Gutsol A, Brooks A, Friedman G. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process. 2006;26:425–42.CrossRefGoogle Scholar
  53. 53.
    Hammann A, Huebner NO, Bender C, et al. Antiseptic efficacy and tolerance of tissue-tolerable plasma compared with two wound antiseptics on artificially bacterially contaminated eyes from commercially slaughtered pigs. Skin Pharmacol Physiol. 2010;23:328–32.CrossRefGoogle Scholar
  54. 54.
    Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis. 2004;17:91–6.CrossRefGoogle Scholar
  55. 55.
    Kalghatgi S, Friedman G, Fridman A, Clyne AM. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann Biomed Eng. 2010;38:748–57.CrossRefGoogle Scholar
  56. 56.
    Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, Vasilets V, Friedman G. Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in Melanoma skin cancer cell lines. Plasma Chem Plasma Process. 2007;27:163–76.CrossRefGoogle Scholar
  57. 57.
    Helmke A, Hoffmeister D, Mertens N, Emmert S, Schuette J, Vioel W. The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air. New J Phys. 2009;11:115025. (10pp)CrossRefGoogle Scholar
  58. 58.
    Schneider LA, Korber A, Grabbe S, Dissemond J. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res. 2007;298:413–20.CrossRefGoogle Scholar
  59. 59.
    Arndt S, Unger P, Wacker E, et al. Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS One. 2013;8:e79325. (9pp).CrossRefGoogle Scholar
  60. 60.
    Arndt S, Landthaler M, Zimmermann JL, Unger P, Wacker E, Shimizu T, Li YF, Morfill GE, Bosserhoff AK, Karrer S. Effects of cold atmospheric plasma (CAP) on ß-defensins, inflammatory cytokines, and apoptosis-related molecules in keratinocytes in vitro and in vivo. PLoS One. 2015;10:1–16.CrossRefGoogle Scholar
  61. 61.
    Sosnin EA, Stoffels E, Erofeev MV, Kieft IE, Kunts SE. The effects of UV irradiation and gas plasma treatment on living mammalian cells and bacteria: a comparative approach. IEEE Trans Plasma Sci. 2004;32:1544–50.CrossRefGoogle Scholar
  62. 62.
    Awakowicz P, Bibinov N, Born M, et al. Biological stimulation of the human skin applying healthpromoting light and plasma sources. Contrib Plasma Phys. 2009;49:641–7.CrossRefGoogle Scholar
  63. 63.
    Wende K, Landsberg K, Lindequist U, Weltmann K-D, von Woedtke T. Distinctive activity of a nonthermal atmospheric-pressure plasma jet on eukaryotic and prokaryotic cells in a cocultivation approach of keratinocytes and microorganisms. IEEE Trans Plasma Sci. 2010;38:2479–85.CrossRefGoogle Scholar
  64. 64.
    Isbary G, Morfill G, Schmidt HU, et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163:78–82.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Isbary G, Heinlin J, Shimizu T, et al. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol. 2012;167:404–10.CrossRefGoogle Scholar
  66. 66.
    Isbary G, Stolz W, Shimizu T, et al. Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: results of an open retrospective randomized controlled study in vivo. Clin Plasma Med. 2013;1:25–30.CrossRefGoogle Scholar
  67. 67.
    Heinlin J, Isbary G, Stolz W, Zeman F, Landthaler M, Morfill G, Shimizu T, Zimmermann JL, Karrer S. A randomized two-sided placebo-controlled study on the efficacy and safety of atmospheric non-thermal argon plasma for pruritus. J Eur Acad Dermatol Venereol. 2013;27:324–31.CrossRefGoogle Scholar
  68. 68.
    Brehmer F, Haenssle HA, Daeschlein G, Ahmed R, Pfeiffer S, Görlitz A, Simon D, Schön MP, Wandke D, Emmert S. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm® VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol. 2015;29:148–55.CrossRefGoogle Scholar
  69. 69.
    Ulrich C, Kluschke F, Patzelt A, et al. Clinical use of cold atmospheric pressure argon plasma in chronic leg ulcers: a pilot study. J Wound Care. 2015;24:196–203.CrossRefGoogle Scholar
  70. 70.
    Daeschlein G, Scholz S, Arnold A, von Woedtke T, Kindel E, Niggemeier M, Weltmann K, Junger M. In vitro activity of atmospheric pressure plasma jet (APPJ) plasma against clinical isolates of demodex folliculorum. IEEE Trans Plasma Sci. 2010;38:2969.CrossRefGoogle Scholar
  71. 71.
    Ermolaeva SA, Varfolomeev AF, Chernukha MY, et al. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol. 2011;60:75–83.CrossRefGoogle Scholar
  72. 72.
    Heinlin J, Morfill G, Landthaler M, Stolz W, Isbary G, Zimmermann JL, Shimizu T, Karrer S. Plasma medicine: possible applications in dermatology. J Dtsch Dermatol Ges. 2010;8:968–76.PubMedGoogle Scholar
  73. 73.
    Lademann J, Richter H, Alborova A, et al. Risk assessment of the application of a plasma jet in dermatology. J Biomed Opt. 2009;14:054025. (6pp).CrossRefGoogle Scholar
  74. 74.
    von Woedtke T, Reuter S, Masur K, Weltmann K-D. Plasmas for medicine. Phys Rep. 2013;530:291–320.CrossRefGoogle Scholar
  75. 75.
    DIN SPEC 91315: General requirements for plasma sources in medicine. Berlin: Beuth-Verlag; 2014.Google Scholar
  76. 76.
    Yan X, Zou F, Lu XP, et al. Effect of the atmospheric pressure nonequilibrium plasmas on the conformational changes of plasmid DNA. Appl Phys Lett. 2009;95:083702. (3pp).CrossRefGoogle Scholar
  77. 77.
    Leduc M, Guay D, Leask RL, Coulombe S. Cell permeabilization using a non-thermal plasma. New J Phys. 2009;11:115021. (12pp).CrossRefGoogle Scholar
  78. 78.
    Bahnev B, Bowden MD, Stypczyńska A, Ptasińska S, Mason NJ, Braithwaite NSJ. A novel method for the detection of plasma jet boundaries by exploring DNA damage. Eur Phys J D. 2014;68:140. (5pp).CrossRefGoogle Scholar
  79. 79.
    Alkawareek MY, Gorman SP, Graham WG, Gilmore BF. Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. Int J Antimicrob Agents. 2014;43:154–60.CrossRefGoogle Scholar
  80. 80.
    Arjunan K, Sharma V, Ptasinska S. Effects of atmospheric pressure plasmas on isolated and cellular DNA—a review. Int J Mol Sci. 2015;16:2971–3016.CrossRefGoogle Scholar
  81. 81.
    Tiede R. Evaluation strategies for risk assessment and usability of medical plasma sources in dermatology. Georg-Göttingen: August University Göttingen; 2017.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Clinic for Dermatology, Venereology and AllergologyUniversity Medical Center GöttingenGöttingenGermany
  2. 2.Clinic and Policlinic for Dermatology and VenereologyUniversity Medical Center RostockRostockGermany
  3. 3.Roche Pharma AGGrenzach-WhylenGermany

Personalised recommendations