Skip to main content

Antimicrobial Activity of Plasma

  • Chapter
  • First Online:

Abstract

In this chapter we introduce the relevance of CAP for infection treatment and the role of this new tool in the management of multiresistant pathogens. Cap can be used for decolonization of patients e.g. with multiresistant Staphylococci (MRSA), enterococci (VRE) and gramnegative rods like ESBL-coli therewith demonstrating a role beside conventional antiseptics. It can be shown how CAP efficacy is related to the pathogen’s drug susceptibility and depends on gram stain behavior. Additionally, despite principal suitability killing all kind of tested pathogens that can be found in patients so far, clear differences in CAP efficacy towards different species can be elucidated and also significantly depending on the device type. To compare CAP devices testing susceptibility of a set of important pathogens is recommended, comparing also time and distance for successful treatment in vitro. The different test options are discussed in comparison with conventional drug susceptibility test methods (agar diffusion, bouillon dilution). Options and limitations of CAP application are presented to understand what we can await from practical use and where conventional treatment still is justified.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A. Applied plasma medicine. Plasma Process Polym. 2008;5:503–33.

    Article  CAS  Google Scholar 

  2. Laroussi M. Low temperature plasmas for medicine? IEEE Trans Plasma Sci. 2009;37(6):714–25.

    Article  CAS  Google Scholar 

  3. Daeschlein G, Napp M, Lutze S, Arnold A, von Podewils S, Guembel D, Jünger M. Skin and wound decontamination of multidrug-resistant bacteria by cold atmospheric plasma coagulation. J Dtsch Dermatol Ges. 2015c;13(2):143–50.

    PubMed  Google Scholar 

  4. Hury S, Vidal DR, Desor F, Pelletier J, Lagarde T. A parametric study of the destruction efficiency of Bacillus spores in low pressure oxygen-based plasmas. Lett Appl Microbiol. 1998;26:417–21.

    Article  CAS  PubMed  Google Scholar 

  5. Lassen KS, Nordby B, Grün R. The dependence of the sporicidal effects on the power and pressure of RF-generated plasma processes. J Biomed Mater Res B Appl Biomater. 2005;74:553–9.

    Article  PubMed  Google Scholar 

  6. Lerouge S, Wertheimer MR, Marchand R, Tabrizian M, Yahia L. Effect of gas composition on spore mortality and etching during low-pressure plasma sterilization. J Biomed Mater Res. 2000;51:128–35.

    Article  CAS  PubMed  Google Scholar 

  7. Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003;36:53–9.

    Article  PubMed  Google Scholar 

  8. Pasternack MS. Decontamination strategies for MRSA-colonized patients. Curr Infect Dis Rep. 2008;10(5):385–6.

    Article  PubMed  Google Scholar 

  9. Fridman G, Shereshevsky A, Peddinghaus M, Gutsol A, Vasilets V, Brooks A, Balasubramanian M, Friedman G, Fridman A. Bio-medical applications of non-thermal atmospheric pressure plasma. In: 37th AIAA plasmadynamics and lasers conference, fluid dynamics and co-located conferences, San Francisco, CA; 2006. https://doi.org/10.2514/6.2006-2902.

  10. Daeschlein G, Scholz S, Arnold A, von Woedtke T, Kindel E, Niggemeier M, Weltmann KD, Jünger M. In vitro activity of atmospheric pressure plasma jet (APPJ) against clinical isolates of Demodex folliculorum. IEEE Trans Plasma Sci. 2010b;38(10):2969–73.

    Article  Google Scholar 

  11. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;36:493–6.

    Article  Google Scholar 

  12. Daeschlein G, Napp M, von Podewils S, Klare I, Haase H, Kasch R, Ekkernkamp A, Jünger M. Does antibiotic susceptibility impair plasma susceptibility of multi drug resistant enterococci in vitro? Gut Pathog. 2015b;8(1):41.

    Google Scholar 

  13. Daeschlein G, von Woedtke T, Kindel E, Brandenburg R, Weltmann KD, Jünger M. Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Process Polym. 2010a;7(3–4):224–30.

    Article  CAS  Google Scholar 

  14. Daeschlein G, Napp M, von Podewils S, Scholz S, Arnold A, Emmert S, Haase H, Napp J, Spitzmüller R, Gümbel D, Jünger M. Antimicrobial efficacy of a historical high-frequency plasma apparatus in comparison with 2 modern, cold atmospheric pressure plasma devices. Surg Innov. 2015a;22(4):394–400.

    Article  PubMed  Google Scholar 

  15. Hong YF, Kang JG, Lee HY, Uhm HS, Moon E, Park YH. Sterilization effect of atmospheric plasma on Escherichia coli and Bacillus subtilis endospores. Lett Appl Microbiol. 2009;48:33–7.

    Article  CAS  PubMed  Google Scholar 

  16. Lee K, Paek K, Ju W, Lee Y. Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J Microbiol. 2006;44:269–75.

    PubMed  Google Scholar 

  17. Kayes MM, Critzer FJ, Kelly-Wintenberg K, Roth JR, Montie T, Golden DA. Inactivation of foodborne pathogens using a one atmosphere uniform glow discharge plasma. Foodborne Pathog Dis. 2007;4:50–9.

    Article  PubMed  Google Scholar 

  18. Daeschlein G, Scholz S, Arnold A, von Podewils S, Haase H, Emmert S, von Woedtke T, Weltmann KD, Jünger M. In vitro susceptibility of important skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym. 2012;9(4):380–9.

    Article  CAS  Google Scholar 

  19. Daeschlein G, Napp M, von Podewils M, Lutze S, Emmert S, Lange A, Klare I, Haase H, Gümbel D, von Woedtke T, Jünger M. In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier disc harge plasma (DBD). Plasma Process Polym. 2014;11(2):175–83. https://doi.org/10.1002/ppap.201300070.

    Article  Google Scholar 

  20. Napp M, Daeschlein G, von Podewils S, Hinz P, Emmert S, Haase H, Spitzmueller R, Gümbel D, Katsch R, Jünger M. In vitro susceptibility of methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus to two different cold atmospheric plasma sources. Infection. 2016;44(4):531–7.

    Article  CAS  PubMed  Google Scholar 

  21. Kawai M, Yamada S, Ishidoshiro A, et al. Cell-wall thickness: possible mechanism of acriflavine resistance in 05.16 – 17:59 Springer-book-ProfMed Seite 11 von 11 meticillin-resistant Staphylococcus aureus. J Med Microbiol. 2009;58(3):331–6.

    Article  CAS  PubMed  Google Scholar 

  22. Maisch T, Shimizu T, Li YF, Heinlin J, Karrer S, Morfill G, Zimmermann JL. Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS One. 2012;7(4):e34610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K, Heinlin J, Karrer S, Landthaler M, et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163(1):78–82.

    CAS  PubMed  Google Scholar 

  24. Brehmer F, Haenssle HA, Daeschlein G, et al. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm® VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol. 2015;29(1):148–55. https://doi.org/10.1111/jdv.12490.

    Article  CAS  PubMed  Google Scholar 

  25. Daeschlein G, Kramer A. Microbiological sampling in chronic wounds. GMS Krankenhaushyg Interdiszip. 2006;1(1):Doc10.

    Google Scholar 

  26. Traylor MJ, Pavlovich MJ, Karim S, Hait P, Sakiyama Y, Clark DS, Graves DB. Long-term antibacterial efficacy of air plasma-activated water. J Phys D. 2011;44:1–4.

    Article  Google Scholar 

  27. Ermolaeva SA, Varfolomeev AF, Chernukha MY, Yurov DS, Vasiliev MM, Kaminskaya AA, et al. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol. 2011;60:75–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Daeschlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daeschlein, G. (2018). Antimicrobial Activity of Plasma. In: Metelmann, HR., von Woedtke, T., Weltmann, KD. (eds) Comprehensive Clinical Plasma Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-67627-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67627-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67626-5

  • Online ISBN: 978-3-319-67627-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics