Advertisement

Key Roles of Reactive Oxygen and Nitrogen Species

  • David B. Graves
  • Georg Bauer
Chapter

Abstract

Reactive oxygen and nitrogen species (RONS) are formed in biologically significant quantities whenever cold atmospheric pressure plasma is established in or near air. RONS enter adjacent aqueous liquid solutions readily and can strongly affect cells and tissue, mainly through their influence on redox (‘oxidation-reduction’) biological processes. Understanding and controlling these interactions is essential to plasma biomedical interactions. Plasma biomedicine is therefore significantly based on the complex and multiple properties of free radicals and other reactive species in a biological context. This chapter briefly summarizes some of the key emerging concepts of RONS in plasma biomedicine as well as some of the classic references regarding the roles of RONS in aerobic biology and medicine.

Keywords

Cold atmospheric pressure plasma Reactive oxygen and nitrogen species Redox biology Oxidative cancer therapy 

References

  1. 1.
    Herrmann J, Dick T. Redox biology on the rise. Biol Chem. 2012;393(9):999–1004.CrossRefGoogle Scholar
  2. 2.
    Trefil J, Morowitz H, Smith E. The origin of life: a case is made for the descent of electrons. Am Sci. 2009;97:206–13.CrossRefGoogle Scholar
  3. 3.
    Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys. 2012;45:263001.CrossRefGoogle Scholar
  4. 4.
    Lackmann J-W, Baldus S, Steinborn E, Edengeiser E, Kogelheide F, Langklotz S, Schneider S, Leichert LIO, Benedikt J, Awakowicz P, Bandow JE. A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds. J Phys D Appl Phys. 2015;48:494003.  https://doi.org/10.1088/0022-3727/48/49/494003.CrossRefGoogle Scholar
  5. 5.
    Barcellos-Hoff MH, Dix AT. Redox-mediated activation of latent transforming growth factor-beta-1. Mol Endocrinol. 1996;10:1077–83.PubMedGoogle Scholar
  6. 6.
    Temme J, Bauer G. Low-dose gamma irradiation enhances superoxide anion production by nonirradiated cells through TGF-β1-dependent bystander signaling. Radiat Res. 2013;179:422–32.CrossRefGoogle Scholar
  7. 7.
    Kim YK, Kwon OJ, Park J-W. Inactivation of catalase and superoxide dismutase by singlet oxygen derived from photoactivated dye. Biochimie. 2001;83:437–44.CrossRefGoogle Scholar
  8. 8.
    Bauer G, Graves DB. Mechanisms of selective antitumor action of cold atmospheric plasma-derived reactive oxygen and nitrogen species. Plasma Process Polym. 2016;13:1157–78.  https://doi.org/10.1002/ppap.201600089.CrossRefGoogle Scholar
  9. 9.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine By Barry Halliwell and John M. C. Gutteridge. 5th ed. New York: Oxford University Press; 2015.CrossRefGoogle Scholar
  10. 10.
    Nespolo M. Book review: free radicals in biology and medicine by Barry Halliwell and John M. C. Gutteridge. 5th ed. New York: Oxford University Press; 2015.Google Scholar
  11. 11.
    Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141:312.CrossRefGoogle Scholar
  12. 12.
    Halliwell B. Free radicals and antioxidants: updating a personal review. Nutr Rev. 2012;70(5):257–65.CrossRefGoogle Scholar
  13. 13.
    Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47.CrossRefGoogle Scholar
  14. 14.
    Acworth I. The handbook of redox biochemistry. Chelmsford: ESA Biosciences; 2003.Google Scholar
  15. 15.
    Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox Biol. 2013;1:244–57.CrossRefGoogle Scholar
  16. 16.
    Jones D, Sies H. The redox code. Antioxid Redox Signal. 2015;23(9):734–46.CrossRefGoogle Scholar
  17. 17.
    Holmstrom K, Finkel T. Cellular mechanisms and physiological consequences of redox- dependent signalling. Nat Rev Mol Cell Biol. 2014;15(6):411–21.CrossRefGoogle Scholar
  18. 18.
    Lismont C, Nordgren M, Van Veldhoven PP, Fransen M. Redox interplay between mitochondria and peroxisomes. Front Cell Dev Biol. 2015;3:35.CrossRefGoogle Scholar
  19. 19.
    Beckman J, Koppenol W. Nitric oxide, superoxide, peroxynitrite: the good, the bad and the ugly. Am J Physiol. 1996;271(5 Pt 1):C1424–37.CrossRefGoogle Scholar
  20. 20.
    Bauer G. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells. Redox Biol. 2015;6:353–71.CrossRefGoogle Scholar
  21. 21.
    Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315.CrossRefGoogle Scholar
  22. 22.
    Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal. 2009;11:861–905.CrossRefGoogle Scholar
  23. 23.
    Torres MA. ROS in biotic interactions. Physiol Plant. 2010;138:414–29.CrossRefGoogle Scholar
  24. 24.
    Gill J, Piskounova E, Morrison SJ. Cancer, oxidative stress, and metastasis. Cold Spring Harb Symp Quant Biol. 2016;81:163–75.CrossRefGoogle Scholar
  25. 25.
    Scheit K, Bauer G. Direct and indirect inactivation of tumor cell protective catalase by salicylic acid and anthocyanidins reactivates intercellular ROS signaling and allows for synergistic effects. Carcinogenesis. 2015;36:400–11.CrossRefGoogle Scholar
  26. 26.
    Bauer G. Nitric oxide contributes to selective apoptosis induction in malignant cells through multiple reaction steps. Crit Rev Oncog. 2016;i21(5–6):365–98. DOI:  10.1615/CritRevOncog.2017021056.CrossRefGoogle Scholar
  27. 27.
    Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell. 2006;10(3):241–52.CrossRefGoogle Scholar
  28. 28.
    Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.CrossRefGoogle Scholar
  29. 29.
    Schumaker P. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10(3):175–6.CrossRefGoogle Scholar
  30. 30.
    Schumaker P. Reactive oxygen species in cancer: a dance with the devil. Cancer Cell. 2015;27(2):156–7.CrossRefGoogle Scholar
  31. 31.
    Gorrini C, Harris I, Mak T. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12:931–47.CrossRefGoogle Scholar
  32. 32.
    Baskar R, Dai J, Wenlong N, Yeo R, Yeoh K-W. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 2014;1(24):1–9.Google Scholar
  33. 33.
    Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene. 2003;22:5734–54.CrossRefGoogle Scholar
  34. 34.
    Ward JF. DNA damage as the cause of ionizing radiation-induced gene activation. Radiat Res. 1994;138:S85–8.CrossRefGoogle Scholar
  35. 35.
    Mavragani I, et al. Key mechanisms involved in ionizing radiation-induced systemic effects. A current review. Toxicol Res. 2016;5:12–33.CrossRefGoogle Scholar
  36. 36.
    Bauer G. Signal amplification by tumor cells: clue to the understanding of the antitumor effects of cold atmospheric plasma and plasma-activated medium. IEEE Transactions on Radiation and Plasma Medical Sciences. 2018;2: 87–98. DOI: 10.1109.TRPMS.2017.2742000.Google Scholar
  37. 37.
    Bauer G. Targeting the protective catalase of tumor cells with cold atmospheric plasma-treated medium (PAM). Anticancer Agents Med Chem. 2017. DOI:  10.2174/1871520617666170801103708. (in press).
  38. 38.
    Yan D, Xiao H, Zhu W, Nourmohammadi N, Zhang L, Bian K, Keidar M. The role of aquaporins in the anti-glioblastoma capacity of the cold plasma-stimulated medium. J Phys D Appl Phys. 2017;50(5):055401.CrossRefGoogle Scholar
  39. 39.
    Lin A, Truong B, Pappas A, Kirifides L, Oubarri A, Chen S, Lin S, Dobrynin D, Fridman G, Fridman A, Sang N, Miller V. Uniform nanosecond pulsed dielectric barrier discharge plasma enhances anti-tumor effects by induction of immunogenic cell death in tumors and stimulation of macrophages. Plasma Process Polym. 2015;12:1392–9.CrossRefGoogle Scholar
  40. 40.
    Dolmans D, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nature. 2003;3:1–8.Google Scholar
  41. 41.
    Riethmüller M, Burger N, Bauer G. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling. Redox Biol. 2015;6:157–68.CrossRefGoogle Scholar
  42. 42.
    Suschek C, Opländer C. The application of cold atmospheric plasma in medicine: the potential role of nitric oxide in plasma-induced effects. Clin Plasma Med. 2016;4:1–8.CrossRefGoogle Scholar
  43. 43.
    Wang P, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk J. Nitric oxide donors: chemical activities and biological applications. Chem Rev. 2002;102(4):1091–134.CrossRefGoogle Scholar
  44. 44.
    Coulter J, et al. Nitric oxide—a novel therapeutic for cancer. Nitric Oxide. 2008;19:192–8.CrossRefGoogle Scholar
  45. 45.
    Kamgang-Youbi G, Herry JM, Meylheuc T, Brisset JL, Bellon-Fontaine MN, Doubla A, Naïtali M. Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Lett Appl Microbiol. 2009;48(1):13–8.CrossRefGoogle Scholar
  46. 46.
    Lukes P, Dolezalova E, Sisrova I, Clupek M. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci Technol. 2014;23:015019.CrossRefGoogle Scholar
  47. 47.
    Lundberg JO, Weitzberg E, Gladwin MT. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7:15.CrossRefGoogle Scholar
  48. 48.
    Graves DB. Reactive species from cold atmospheric plasma: implications for cancer therapy. Plasma Process Polym. 2014;11:1120.CrossRefGoogle Scholar
  49. 49.
    Graves DB. Oxy-nitroso shielding burst model of cold atmospheric plasma therapeutics. Clin Plasma Med. 2014;2:38.CrossRefGoogle Scholar
  50. 50.
    Adkins I, Fucikova J, Garg A, Agostinis P, Spisek R. Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. Oncoimmunology. 3(12):e968434.  https://doi.org/10.4161/21624011.2014.968434.CrossRefGoogle Scholar
  51. 51.
    Calvet C, Mir L. The promising alliance of anti-cancer electrochemotherapy with immunotherapy. Cancer Metastasis Rev. 2016;35:165–77.CrossRefGoogle Scholar
  52. 52.
    Mizuno K, Yonetamari K, Shirakawa Y, Akiyama T, Ono R. Anti-tumor immune response induced by nanosecond pulsed streamer discharge in mice. J Phys D Appl Phys. 2017;50:12LT01.  https://doi.org/10.1088/1361-6463/aa5dbb.CrossRefGoogle Scholar
  53. 53.
    Di Mascio P, Bechara EJH, Medeiros MHG, Briviba K, Sies H. Singlet molecular oxygen production in the reaction of peroxynitrite with hydrogen peroxide. FEBS Lett. 1994;355:287–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Institute of Virology, Medical Center and Faculty of MedicineUniversity of FreiburgFreiburgGermany

Personalised recommendations