Cancer Immunology

  • Sander Bekeschus
  • Jean-Michel Pouvesle
  • Alexander Fridman
  • Vandana Miller
Chapter

Abstract

Cold physical plasma is receiving increasing attention in oncology. Generation of a plethora of different reactive species is a major trait of cold plasmas. Reactive species and mitochondria have been the focus of cancer and cell death research for many decades. This links the field of plasma medicine to past and ongoing work in oncology. In the two extremes, cell death can be of tolerogenic or immunogenic nature. The latter is capable of inducing an immune response (immunogenic cell death, ICD). ICD is associated with tumor-reactive T cells, which are positively linked to survival in cancer patients. Several physical treatment modalities were shown to be potent ICD inducers, for example, ionizing radiation, and hyperthermia. Recent reports suggest that cold plasma may also increase the immunogenicity of cancer cells. This book chapter describes current concepts of immunity in oncology, sheds light on physical therapies in ICD, outlines current research in plasma-induced immunogenic cell death (PICD), and provides an outlook on future research and directions necessary to provide potential therapeutic benefit of plasma treatment in oncology.

Keywords

Damage-associated molecular patterns DAMPs ICD Immunogenic cell death Oncology Plasma oncotherapy 

References

  1. 1.
    Kramer A, Bekeschus S, Broker BM, Schleibinger H, Razavi B, Assadian O. Maintaining health by balancing microbial exposure and prevention of infection: the hygiene hypothesis versus the hypothesis of early immune challenge. J Hosp Infect. 2013;83(Suppl 1):S29–34.CrossRefGoogle Scholar
  2. 2.
    Leliefeld PH, Wessels CM, Leenen LP, Koenderman L, Pillay J. The role of neutrophils in immune dysfunction during severe inflammation. Crit Care. 2016;20(1):73.CrossRefGoogle Scholar
  3. 3.
    Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: Immunoselection and immunosubversion. Nat Rev Immunol. 2006;6(10):715–27.CrossRefGoogle Scholar
  4. 4.
    Penn I, Starzl TE. Malignant tumors arising de novo in immunosuppressed organ transplant recipients. Transplantation. 1972;14(4):407–17.CrossRefGoogle Scholar
  5. 5.
    Raulet DH, Guerra N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol. 2009;9(8):568–80.CrossRefGoogle Scholar
  6. 6.
    Abdollahi A, Folkman J. Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat. 2010;13(1–2):16–28.CrossRefGoogle Scholar
  7. 7.
    Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HM, Signori E, Honoki K, Georgakilas AG, Amin A, Helferich WG, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Keith WN, Bilsland A, Bhakta D, Halicka D, Fujii H, Aquilano K, Ashraf SS, Nowsheen S, Yang X, Choi BK, Kwon BS. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35(Suppl):S185–98.CrossRefGoogle Scholar
  8. 8.
    Ehlers G, Fridman M. Abscopal effect of radiation in papillary adenocarcinoma. Br J Radiol. 1973;46(543):220–2.CrossRefGoogle Scholar
  9. 9.
    Mole RH. Whole body irradiation; radiobiology or medicine? Br J Radiol. 1953;26(305):234–41.CrossRefGoogle Scholar
  10. 10.
    Schirrmacher V. Cancer-reactive memory t cells from bone marrow: spontaneous induction and therapeutic potential (review). Int J Oncol. 2015;47(6):2005–16.CrossRefGoogle Scholar
  11. 11.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.CrossRefGoogle Scholar
  12. 12.
    Claude L, Perol D, Ray-Coquard I, Petit T, Blay JY, Carrie C, Bachelot T. Lymphopenia: a new independent prognostic factor for survival in patients treated with whole brain radiotherapy for brain metastases from breast carcinoma. Radiother Oncol. 2005;76(3):334–9.CrossRefGoogle Scholar
  13. 13.
    Galon J, Franchimont D, Hiroi N, Frey G, Boettner A, Ehrhart-Bornstein M, O’Shea JJ, Chrousos GP, Bornstein SR. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J. 2002;16(1):61–71.CrossRefGoogle Scholar
  14. 14.
    Panici PB, Maggioni A, Hacker N, Landoni F, Ackermann S, Campagnutta E, Tamussino K, Winter R, Pellegrino A, Greggi S, Angioli R, Manci N, Scambia G, Dell’Anna T, Fossati R, Floriani I, Rossi RS, Grassi R, Favalli G, Raspagliesi F, Giannarelli D, Martella L, Mangioni C. Systematic aortic and pelvic lymphadenectomy versus resection of bulky nodes only in optimally debulked advanced ovarian cancer: a randomized clinical trial. J Natl Cancer Inst. 2005;97(8):560–6.CrossRefGoogle Scholar
  15. 15.
    Weiner HL, Cohen JA. Treatment of multiple sclerosis with cyclophosphamide: critical review of clinical and immunologic effects. Mult Scler. 2002;8(2):142–54.CrossRefGoogle Scholar
  16. 16.
    Fraser JM, Janicki CN, Raveney BJ, Morgan DJ. Abortive activation precedes functional deletion of cd8+ t cells following encounter with self-antigens expressed by resting b cells in vivo. Immunology. 2006;119(1):126–33.CrossRefGoogle Scholar
  17. 17.
    Wyllie AH. Cell death: a new classification separating apoptosis from necrosis. In: Bowen ID, Lockshin RA, editors. Cell death in biology and pathology. Dordrecht: Springer; 1981. p. 9–34.CrossRefGoogle Scholar
  18. 18.
    Green DR, Ferguson T, Zitvogel L, Kroemer G. Immunogenic and tolerogenic cell death. Nat Rev Immunol. 2009;9(5):353–63.CrossRefGoogle Scholar
  19. 19.
    Garg AD, Romano E, Rufo N, Agostinis P. Immunogenic versus tolerogenic phagocytosis during anticancer therapy: mechanisms and clinical translation. Cell Death Differ. 2016;23(6):938–51.CrossRefGoogle Scholar
  20. 20.
    Garg AD, Dudek AM, Agostinis P. Cancer immunogenicity, danger signals, and damps: what, when, and how? Biofactors. 2013;39(4):355–67.CrossRefGoogle Scholar
  21. 21.
    Fehres CM, Unger WW, Garcia-Vallejo JJ, van Kooyk Y. Understanding the biology of antigen cross-presentation for the design of vaccines against cancer. Front Immunol. 2014;5:149.CrossRefGoogle Scholar
  22. 22.
    Garg AD, Martin S, Golab J, Agostinis P. Danger signalling during cancer cell death: origins, plasticity and regulation. Cell Death Differ. 2014;21(1):26–38.CrossRefGoogle Scholar
  23. 23.
    Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.CrossRefGoogle Scholar
  24. 24.
    Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, Metivier D, Larochette N, van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13(1):54–61.CrossRefGoogle Scholar
  25. 25.
    Adkins I, Fucikova J, Garg AD, Agostinis P, Spisek R. Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. Oncoimmunology. 2014;3(12):e968434.CrossRefGoogle Scholar
  26. 26.
    Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17(2):97–111.CrossRefGoogle Scholar
  27. 27.
    Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev. 2015;41(6):503–10.CrossRefGoogle Scholar
  28. 28.
    Golden EB, Apetoh L. Radiotherapy and immunogenic cell death. Semin Radiat Oncol. 2015;25(1):11–7.CrossRefGoogle Scholar
  29. 29.
    Kamensek U, Kos S, Sersa G. Adjuvant immunotherapy as a tool to boost effectiveness of electrochemotherapy. Handbook of electroporation. 2016. p. 1–16.Google Scholar
  30. 30.
    Mir LM, Gehl J, Sersa G, Collins CG, Garbay JR, Billard V, Geertsen PF, Rudolf Z, O'Sullivan GC, Marty M. Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the cliniporator (tm) by means of invasive or non-invasive electrodes. EJC Suppl. 2006;4(11):14–25.CrossRefGoogle Scholar
  31. 31.
    Matthiessen LW, Johannesen HH, Hendel HW, Moss T, Kamby C, Gehl J. Electrochemotherapy for large cutaneous recurrence of breast cancer: a phase ii clinical trial. Acta Oncol. 2012;51(6):713–21.CrossRefGoogle Scholar
  32. 32.
    Snoj M, Matthiessen LW. Electrochemotherapy of cutaneous metastases. Handbook of electroporation. 2016. p. 1–14.Google Scholar
  33. 33.
    Griffin LL, Lear JT. Photodynamic therapy and non-melanoma skin cancer. Cancers (Basel). 2016;8(10).CrossRefGoogle Scholar
  34. 34.
    DeRosa MC, Crutchley RJ. Photosensitized singlet oxygen and its applications. Coord Chem Rev. 2002;233:351–71.CrossRefGoogle Scholar
  35. 35.
    Mallidi S, Anbil S, Bulin AL, Obaid G, Ichikawa M, Hasan T. Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy. Theranostics. 2016;6(13):2458–87.CrossRefGoogle Scholar
  36. 36.
    Duan X, Chan C, Guo N, Han W, Weichselbaum RR, Lin W. Photodynamic therapy mediated by nontoxic core-shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J Am Chem Soc. 2016;138(51):16686–95.CrossRefGoogle Scholar
  37. 37.
    Maeding N, Verwanger T, Krammer B. Boosting tumor-specific immunity using pdt. Cancers (Basel). 2016;8(10)CrossRefGoogle Scholar
  38. 38.
    Tanaka M, Kataoka H, Yano S, Sawada T, Akashi H, Inoue M, Suzuki S, Inagaki Y, Hayashi N, Nishie H, Shimura T, Mizoshita T, Mori Y, Kubota E, Tanida S, Takahashi S, Joh T. Immunogenic cell death due to a new photodynamic therapy (pdt) with glycoconjugated chlorin (g-chlorin). Oncotarget. 2016;7(30):47242–51.CrossRefGoogle Scholar
  39. 39.
    Frey B, Weiss EM, Rubner Y, Wunderlich R, Ott OJ, Sauer R, Fietkau R, Gaipl US. Old and new facts about hyperthermia-induced modulations of the immune system. Int J Hyperthermia. 2012;28(6):528–42.CrossRefGoogle Scholar
  40. 40.
    Larson N, Gormley A, Frazier N, Ghandehari H. Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted hpma copolymer-drug conjugates and gold nanorod induced hyperthermia. J Control Release. 2013;170(1):41–50.CrossRefGoogle Scholar
  41. 41.
    Fucikova J, Moserova I, Truxova I, Hermanova I, Vancurova I, Partlova S, Fialova A, Sojka L, Cartron PF, Houska M, Rob L, Bartunkova J, Spisek R. High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int J Cancer. 2014;135(5):1165–77.CrossRefGoogle Scholar
  42. 42.
    Moserova I, Truxova I, Garg AD, Tomala J, Agostinis P, Cartron PF, Vosahlikova S, Kovar M, Spisek R, Fucikova J. Caspase-2 and oxidative stress underlie the immunogenic potential of high hydrostatic pressure-induced cancer cell death. Oncoimmunology. 2017;6(1):e1258505.CrossRefGoogle Scholar
  43. 43.
    Vandenberk L, Belmans J, Van Woensel M, Riva M, Van Gool SW. Exploiting the immunogenic potential of cancer cells for improved dendritic cell vaccines. Front Immunol. 2015;6:663.PubMedGoogle Scholar
  44. 44.
    Schmidt-Bleker A, Bansemer R, Reuter S, Weltmann K-D. How to produce an nox- instead of ox-based chemistry with a cold atmospheric plasma jet. Plasma Process Polym. 2016;13(11):1120–7.CrossRefGoogle Scholar
  45. 45.
    Jablonowski H, von Woedtke T. Research on plasma medicine-relevant plasma–liquid interaction: what happened in the past five years? Clin Plasma Med. 2015;3(2):42–52.CrossRefGoogle Scholar
  46. 46.
    Dunnbier M, Schmidt-Bleker A, Winter J, Wolfram M, Hippler R, Weltmann KD, Reuter S. Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry. J Phys D. 2013;46(43):435203.CrossRefGoogle Scholar
  47. 47.
    Bekeschus S, Wende K, Hefny MM, Rodder K, Jablonowski H, Schmidt A, Woedtke TV, Weltmann KD, Benedikt J. Oxygen atoms are critical in rendering thp-1 leukaemia cells susceptible to cold physical plasma-induced apoptosis. Sci Rep. 2017;7(1):2791.CrossRefGoogle Scholar
  48. 48.
    Lin A, Truong B, Patel S, Kaushik N, Choi EH, Fridman G, Fridman A, Miller V. Nanosecond-pulsed dbd plasma-generated reactive oxygen species trigger immunogenic cell death in a549 lung carcinoma cells through intracellular oxidative stress. Int J Mol Sci. 2017;18(5)CrossRefGoogle Scholar
  49. 49.
    Bekeschus S, Roder K, Fregin B, Otto O, Lippert M, Weltmann KD, Wende K, Schmidt A, Gandhirajan RK. Toxicity and immunogenicity in murine melanoma following exposure to physical plasma-derived oxidants. Oxidative Med Cell Longev. 2017;2017:4396467.Google Scholar
  50. 50.
    Lin A, Truong B, Pappas A, Kirifides L, Oubarri A, Chen S, Lin S, Dobrynin D, Fridman G, Fridman A, Sang N, Miller V. Uniform nanosecond pulsed dielectric barrier discharge plasma enhances anti-tumor effects by induction of immunogenic cell death in tumors and stimulation of macrophages. Plasma Process Polym. 2015;12(12):1392–9.CrossRefGoogle Scholar
  51. 51.
    Kaushik NK, Kaushik N, Min B, Choi KH, Hong YJ, Miller V, Fridman A, Choi EH. Cytotoxic macrophage-released tumour necrosis factor-alpha (tnf-alpha) as a killing mechanism for cancer cell death after cold plasma activation. J Phys D. 2016;49(8):084001.CrossRefGoogle Scholar
  52. 52.
    Kazue M, Kenta Y, Yuki S, Taketoshi A, Ryo O. Anti-tumor immune response induced by nanosecond pulsed streamer discharge in mice. J Phys D. 2017;50(12):12LT01.CrossRefGoogle Scholar
  53. 53.
    Miller V, Lin A, Fridman G, Dobrynin D, Fridman A. Plasma stimulation of migration of macrophages. Plasma Process Polym. 2014;11(12):1193–7.CrossRefGoogle Scholar
  54. 54.
    Bekeschus S, Winterbourn CC, Kolata J, Masur K, Hasse S, Broker BM, Parker HA. Neutrophil extracellular trap formation is elicited in response to cold physical plasma. J Leukoc Biol. 2016;100(4):791–9.CrossRefGoogle Scholar
  55. 55.
    Bekeschus S, Kolata J, Muller A, Kramer A, Weltmann K-D, Broker B, Masur K. Differential viability of eight human blood mononuclear cell subpopulations after plasma treatment. Plasma Med. 2013;3(1–2):1–13.CrossRefGoogle Scholar
  56. 56.
    Bundscherer L, Bekeschus S, Tresp H, Hasse S, Reuter S, Weltmann K-D, Lindequist U, Masur K. Viability of human blood leucocytes compared with their respective cell lines after plasma treatment. Plasma Med. 2013;3(1–2):71–80.CrossRefGoogle Scholar
  57. 57.
    Bekeschus S, Iseni S, Reuter S, Masur K, Weltmann K-D. Nitrogen shielding of an argon plasma jet and its effects on human immune cells. IEEE Trans Plasma Sci. 2015;43(3):776–81.CrossRefGoogle Scholar
  58. 58.
    Bekeschus S, Rödder K, Schmidt A, Stope MB, von Woedtke T, Miller V, Fridman A, Weltmann K-D, Masur K, Metelmann H-R, Wende K, Hasse S. Cold physical plasma selects for specific t helper cell subsets with distinct cells surface markers in a caspase-dependent and nf-κb-independent manner. Plasma Process Polym. 2016;13(12):1144–50.CrossRefGoogle Scholar
  59. 59.
    Wende K, Reuter S, von Woedtke T, Weltmann KD, Masur K. Redox-based assay for assessment of biological impact of plasma treatment. Plasma Process Polym. 2014;11(7):655–63.CrossRefGoogle Scholar
  60. 60.
    Miller V, Lin A, Fridman A. Why target immune cells for plasma treatment of cancer. Plasma Chem Plasma Process. 2016;36(1):259–68.CrossRefGoogle Scholar
  61. 61.
    Garg AD, Vandenberk L, Koks C, Verschuere T, Boon L, Van Gool SW, Agostinis P. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and t cell-driven rejection of high-grade glioma. Sci Transl Med. 2016;8(328):328ra327.CrossRefGoogle Scholar
  62. 62.
    Kyte JA, Mu L, Aamdal S, Kvalheim G, Dueland S, Hauser M, Gullestad HP, Ryder T, Lislerud K, Hammerstad H, Gaudernack G. Phase i/ii trial of melanoma therapy with dendritic cells transfected with autologous tumor-mrna. Cancer Gene Ther. 2006;13(10):905–18.CrossRefGoogle Scholar
  63. 63.
    Vandenberk L, Garg AD, Verschuere T, Koks C, Belmans J, Beullens M, Agostinis P, De Vleeschouwer S, Van Gool SW. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (dcs), potentiates dc vaccine-induced antitumor immunity against high-grade glioma. Oncoimmunology. 2016;5(2):e1083669.CrossRefGoogle Scholar
  64. 64.
    Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. Integrating next-generation dendritic cell vaccines into the current cancer immunotherapy landscape. Trends Immunol. 2017;38:577–93.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sander Bekeschus
    • 1
  • Jean-Michel Pouvesle
    • 2
  • Alexander Fridman
    • 3
  • Vandana Miller
    • 3
  1. 1.Leibniz-Institute for Plasma Science and Technology, ZIK PlasmatisGreifswaldGermany
  2. 2.GREMI UMR-6606 CNRS, Université d’OrléansOrleansFrance
  3. 3.Nyheim Plasma Institute, Drexel UniversityCamdenUSA

Personalised recommendations