Skip to main content

Perspectives in Dental Caries

  • Chapter
  • First Online:
  • 1278 Accesses

Abstract

Cold atmospheric plasmas for caries prophylaxis and for caries therapy are still subject of intensive biomedical basic research. From today’s perspective, plasma medicine provides promising potential in the field of cariology as an adjunctive measure for the disinfection of the dentine and for the improvement of the durability of composite fillings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545–602.

    Article  Google Scholar 

  2. Listl S, Galloway J, Mossey PA, Marcenes W. Global economic impact of dental diseases. J Dent Res. 2015;94(10):1355–61.

    Article  CAS  Google Scholar 

  3. Micheelis W, Schiffner U. The Fifth German Oral Health Study (Fünfte Deutsche Mundgesundheitsstudie, DMS V). Köln: Deutscher Zahnärzteverlag DÄV; 2016.

    Google Scholar 

  4. Steiner M, Menghini G, Marthaler TM, Imfeld T. Changes in dental caries in Zurich school-children over a period of 45 years. Schweiz Monatsschr Zahnmed. 2010;120:1084–104.

    PubMed  Google Scholar 

  5. Robertson DP, Keys W, Rautemaa-Richardson R, Burns R, Smith AJ. Management of severe acute dental infections. BMJ. 2015;350:h1300. https://doi.org/10.1136/bmj.h1300.

    Article  PubMed  Google Scholar 

  6. Nyvad B, Crielaard W, Mira A, Takahashi N, Beighton D. Dental caries from a molecular microbiological perspective. Caries Res. 2013;47:89–102.

    Article  CAS  Google Scholar 

  7. Hannig C, Hannig M. The oral cavity-a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin Oral Investig. 2009;13:123–39.

    Article  Google Scholar 

  8. Marsh PD. Dental plaque as a microbial biofilm. Caries Res. 2004;38:204–11.

    Article  CAS  Google Scholar 

  9. Hannig C, Hannig M. Natural enamel wear—a physiological source of hydroxylapatite nanoparticles for biofilm management and tooth repair? Med Hypotheses. 2010a;74:670–2.

    Article  CAS  Google Scholar 

  10. Hannig M, Hannig C. Nanomaterials in preventive dentistry. Nat Nanotechnol. 2010b;5:565–9.

    Article  CAS  Google Scholar 

  11. Pretty IA, Ellwood RP. The caries continuum: opportunities to detect, treat and monitor the re-mineralization of early caries lesions. J Dent. 2013;41(Suppl 2):S12–21.

    Article  Google Scholar 

  12. Beighton D. The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol. 2005;33:248–55.

    Article  Google Scholar 

  13. Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 2011;90:294–303.

    Article  CAS  Google Scholar 

  14. Hannig C, Berndt D, Hoth-Hannig W, Hannig M. The effect of acidic beverages on the ultrastructure of the acquired pellicle—an in situ study. Arch Oral Biol. 2009;54:518–26.

    Article  CAS  Google Scholar 

  15. Siqueira WL, Custodio W, McDonald EE. New insights into the composition and functions of the acquired enamel pellicle. J Dent Res. 2012;91:1110–8.

    Article  CAS  Google Scholar 

  16. Kumar S, Tadakamadla J, Johnson NW. Effect of Toothbrushing Frequency on Incidence and Increment of Dental Caries: A Systematic Review and Meta-Analysis. J Dent Res. 2016;95:1230-1236.

    Article  CAS  Google Scholar 

  17. Anneli Ahovuo-Saloranta, Helena Forss, Tanya Walsh, Anne Nordblad, Marjukka Mäkelä, Helen V Worthington, Pit and fissure sealants for preventing dental decay in permanent teeth. Cochrane Database of Systematic Reviews. 2017;7:CD001830.

    Google Scholar 

  18. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, Tagami J, Twetman S, Tsakos G, Ismail A. Dental caries. Nat Rev Dis Primers. 2017;3:17030.

    Article  Google Scholar 

  19. Meyer-Lueckel H, Paris S. When and How to Intervene in the Caries Process. Oper Dent. 2016;41:S35-S47.

    Article  CAS  Google Scholar 

  20. Heintze SD, Rousson V, Hickel R. Clinical effectiveness of direct anterior restorations—a meta-analysis. Dent Mater. 2015;31:481–95.

    Article  Google Scholar 

  21. Mante FK, Ozer F, Walter R, Atlas AM, Saleh N, Dietschi D, Blatz MB. The current state of adhesive dentistry: a guide for clinical practice. Compend Contin Educ Dent. 2013;(34 Spec 9):2–8.

    Google Scholar 

  22. Pioch T, Staehle HJ, Schneider H, Duschner H, Dörfer CE. Effect of intrapulpal pressure simulation in vitro on shear bond strengths and hybrid layer formation. Am J Dent. 2001;4:319–23.

    Google Scholar 

  23. Mount GJ, Hume WR. Preservation and restoration of tooth structure. Mosby; 1998.

    Google Scholar 

  24. Robinson C. Fluoride and the caries lesion: interactions and mechanism of action. Eur Arch Paediatr Dent. 2009;10:136–40.

    Article  CAS  Google Scholar 

  25. Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res. 1955;34:849–53.

    Article  CAS  Google Scholar 

  26. Cardoso MV, de Almeida Neves A, Mine A, Coutinho E, Van Landuyt K, De Munck J, Van Meerbeek B. Current aspects on bonding effectiveness and stability in adhesive dentistry. Aust Dent J. 2011;56(Suppl 1):31–44.

    Article  Google Scholar 

  27. Sladek REJ, Stoffels E, Walraven R, Tielbeek PJA, Koolhoven RA. Plasma treatment of dental cavities: a feasibility study. IEEE Trans Plasma Sci. 2004;32:1540–3.

    Article  Google Scholar 

  28. Stoffels E, Flikweert AJ, Stoffels WW, Kroesen GMW. Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sources Sci Technol. 2002;11:383–8.

    Article  CAS  Google Scholar 

  29. Cha S, Park YS. Plasma in dentistry. Clin Plasma Med. 2014;2:4–10.

    Article  Google Scholar 

  30. Fricke K, Koban I, Tresp H, Jablonowski L, Schroder K, Kramer A, et al. Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms. PLoS One. 2012;7:e42539.

    Article  CAS  Google Scholar 

  31. Goree J, Liu B, Drake D, Stoffels E. Killing of S. mutans bacteria using a plasma needle at atmospheric pressure. IEEE Trans Plasma Sci. 2006;34:1317–24.

    Article  CAS  Google Scholar 

  32. Gorynia S, Koban I, Matthes R, Welk A, Gorynia S, Hübner NO, Kocher T, Kramer A. In vitro efficacy of cold atmospheric pressure plasma on S. sanguinis biofilms in comparison of two test models. GMS Hyg Infect Control. 2013;8(1):Doc01.

    PubMed  PubMed Central  Google Scholar 

  33. Idlibi AN, Al-Marrawi F, Hannig M, Lehmann A, Rueppell A, Schindler A, Jentsch H, Rupf S. Destruction of oral biofilms formed in situ on machined titanium (Ti) surfaces by cold atmospheric plasma. Biofouling. 2013;29:369–79.

    Article  CAS  Google Scholar 

  34. Koban I, Matthes R, Hubner NO, Welk A, Meisel P, et al. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet. New J Phys. 2010;12:073039.

    Article  Google Scholar 

  35. Koban I, Holtfreter B, Hübner NO, Matthes R, Sietmann R, Kindel E, Weltmann KD, Welk A, Kramer A, Kocher T. Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro - proof of principle experiment. J Clin Periodontol. 2011;38:956–65.

    Article  CAS  Google Scholar 

  36. Rupf S, Lehmann A, Hannig M, Schäfer B, Schubert A, Feldmann U, Schindler A. Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J Med Microbiol. 2010;59:206–12.

    Article  Google Scholar 

  37. Rupf S, Idlibi AN, Marrawi FA, Hannig M, Schubert A, et al. Removing biofilms from microstructured titanium ex vivo: a novel approach using atmospheric plasma technology. PLoSOne. 2011;6:e25893.

    Article  CAS  Google Scholar 

  38. Sladek REJ, Filoche SK, Sissons CH, Stoffels E. Treatment of Streptococcus mutans biofilms with a nonthermal atmospheric plasma. Lett Appl Microbiol. 2007;45:318–23.

    Article  CAS  Google Scholar 

  39. Yamazaki H, Ohshima T, Tsubota Y, Yamaguchi H, Jayawardena JA, et al. Microbicidal activities of low frequency atmospheric pressure plasma jets on oral pathogens. Dent Mater J. 2011;30:384–91.

    Article  Google Scholar 

  40. Yang B, Chen J, Yu Q, Li H, Lin M, et al. Oral bacterial deactivation using a low-temperature atmospheric argon plasma brush. J Dent. 2011;9:48–56.

    Article  Google Scholar 

  41. Zhang X, Huang J, Liu X, Peng L, Guo L, Lv G, Chen W, Feng K, Yang S. Treatment of Streptococcus mutans bacteria by a plasma needle. J Appl Phys. 2009;105:063302.

    Article  Google Scholar 

  42. Chen M, Zhang Y, Sky Driver M, Caruso AN, Yu Q, Wang Y. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush. Dent Mater. 2013;29:871–80.

    Article  Google Scholar 

  43. Lehmann A, Rueppell A, Schindler A, Zylla I-M, Seifert HJ, Nothdurft F, Hannig M, Rupf S. Modification of enamel and dentin surfaces by non-thermal atmospheric plasma. Plasma Processes Polym. 2013;10:262–70.

    Article  CAS  Google Scholar 

  44. Pierdzioch P, Hartwig S, Herbst SR, Raguse JD, Dommisch H, Abu-Sirhan S, Wirtz HC, Hertel M, Paris S, Preissner S. Cold plasma: a novel approach to treat infected dentin-a combined ex vivo and in vitro study. Clin Oral Investig. 2016;20(9):2429–35.

    Article  Google Scholar 

  45. Wang R, Zhou H, Sun P, Wu H, Pan J, Zhu W. The effect of an atmospheric pressure, DC non-thermal plasma microjet on tooth root canal, dentinal tubules infection and re-infection prevention. J Plasma Med. 2012;1:143–55.

    Article  Google Scholar 

  46. Dong X, Ritts AC, Staller C, Yu Q, Chen M, Wang Y. Evaluation of plasma treatment effects on improving adhesive-dentin bonding by using the same tooth controls and varying cross-sectional surface areas. Eur J Oral Sci. 2013;121:355–62.

    Article  Google Scholar 

  47. Ritts AC, Li H, Yu Q, Xu C, Yao X, et al. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration. Eur J Oral Sci. 2010;118:510–6.

    Article  Google Scholar 

  48. Dong X, Chen M, Wang Y, Yu Q. A mechanistic study of plasma treatment effects on demineralized dentin surfaces for improved adhesive/dentin interface bonding. Clin Plasma Med. 2014;2:11–6.

    Article  Google Scholar 

  49. Dong X, Li H, Chen M, Wang Y, Yu Q. Plasma treatment of dentin surfaces for improving self-etching adhesive/dentin interface bonding. Clin Plasma Med. 2015;3:10–6.

    Article  Google Scholar 

  50. Yavirach P, Chaijareenont P, Boonyawan D, Pattamapun K, Tunma S, et al. Effects of plasma treatment on the shear bond strength between fiber-reinforced composite posts and resin composite for core build-up. Dent Mater J. 2009;6:686–92.

    Article  Google Scholar 

  51. Rupf S, Georg M, Hannig M, Laschke M, Lehmann A, Rueppell A, Schindler A. Effect of cold atmospheric plasma treatment on dental pulp in rat molars. Orleans: Tagungsbeitrag ICPM4; 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Rupf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rupf, S. (2018). Perspectives in Dental Caries. In: Metelmann, HR., von Woedtke, T., Weltmann, KD. (eds) Comprehensive Clinical Plasma Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-67627-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67627-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67626-5

  • Online ISBN: 978-3-319-67627-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics