Advertisement

Perspectives in Dental Caries

  • Stefan Rupf
Chapter

Abstract

Cold atmospheric plasmas for caries prophylaxis and for caries therapy are still subject of intensive biomedical basic research. From today’s perspective, plasma medicine provides promising potential in the field of cariology as an adjunctive measure for the disinfection of the dentine and for the improvement of the durability of composite fillings.

Keywords

Dental caries Biofilm treatment Dental restoration Composite resins Cold atmospheric plasma 

References

  1. 1.
    GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545–602.CrossRefGoogle Scholar
  2. 2.
    Listl S, Galloway J, Mossey PA, Marcenes W. Global economic impact of dental diseases. J Dent Res. 2015;94(10):1355–61.CrossRefGoogle Scholar
  3. 3.
    Micheelis W, Schiffner U. The Fifth German Oral Health Study (Fünfte Deutsche Mundgesundheitsstudie, DMS V). Köln: Deutscher Zahnärzteverlag DÄV; 2016.Google Scholar
  4. 4.
    Steiner M, Menghini G, Marthaler TM, Imfeld T. Changes in dental caries in Zurich school-children over a period of 45 years. Schweiz Monatsschr Zahnmed. 2010;120:1084–104.PubMedGoogle Scholar
  5. 5.
    Robertson DP, Keys W, Rautemaa-Richardson R, Burns R, Smith AJ. Management of severe acute dental infections. BMJ. 2015;350:h1300.  https://doi.org/10.1136/bmj.h1300.CrossRefPubMedGoogle Scholar
  6. 6.
    Nyvad B, Crielaard W, Mira A, Takahashi N, Beighton D. Dental caries from a molecular microbiological perspective. Caries Res. 2013;47:89–102.CrossRefGoogle Scholar
  7. 7.
    Hannig C, Hannig M. The oral cavity-a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin Oral Investig. 2009;13:123–39.CrossRefGoogle Scholar
  8. 8.
    Marsh PD. Dental plaque as a microbial biofilm. Caries Res. 2004;38:204–11.CrossRefGoogle Scholar
  9. 9.
    Hannig C, Hannig M. Natural enamel wear—a physiological source of hydroxylapatite nanoparticles for biofilm management and tooth repair? Med Hypotheses. 2010a;74:670–2.CrossRefGoogle Scholar
  10. 10.
    Hannig M, Hannig C. Nanomaterials in preventive dentistry. Nat Nanotechnol. 2010b;5:565–9.CrossRefGoogle Scholar
  11. 11.
    Pretty IA, Ellwood RP. The caries continuum: opportunities to detect, treat and monitor the re-mineralization of early caries lesions. J Dent. 2013;41(Suppl 2):S12–21.CrossRefGoogle Scholar
  12. 12.
    Beighton D. The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol. 2005;33:248–55.CrossRefGoogle Scholar
  13. 13.
    Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 2011;90:294–303.CrossRefGoogle Scholar
  14. 14.
    Hannig C, Berndt D, Hoth-Hannig W, Hannig M. The effect of acidic beverages on the ultrastructure of the acquired pellicle—an in situ study. Arch Oral Biol. 2009;54:518–26.CrossRefGoogle Scholar
  15. 15.
    Siqueira WL, Custodio W, McDonald EE. New insights into the composition and functions of the acquired enamel pellicle. J Dent Res. 2012;91:1110–8.CrossRefGoogle Scholar
  16. 16.
    Kumar S, Tadakamadla J, Johnson NW. Effect of Toothbrushing Frequency on Incidence and Increment of Dental Caries: A Systematic Review and Meta-Analysis. J Dent Res. 2016;95:1230-1236.CrossRefGoogle Scholar
  17. 17.
    Anneli Ahovuo-Saloranta, Helena Forss, Tanya Walsh, Anne Nordblad, Marjukka Mäkelä, Helen V Worthington, Pit and fissure sealants for preventing dental decay in permanent teeth. Cochrane Database of Systematic Reviews. 2017;7:CD001830.Google Scholar
  18. 18.
    Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, Tagami J, Twetman S, Tsakos G, Ismail A. Dental caries. Nat Rev Dis Primers. 2017;3:17030.CrossRefGoogle Scholar
  19. 19.
    Meyer-Lueckel H, Paris S. When and How to Intervene in the Caries Process. Oper Dent. 2016;41:S35-S47.CrossRefGoogle Scholar
  20. 20.
    Heintze SD, Rousson V, Hickel R. Clinical effectiveness of direct anterior restorations—a meta-analysis. Dent Mater. 2015;31:481–95.CrossRefGoogle Scholar
  21. 21.
    Mante FK, Ozer F, Walter R, Atlas AM, Saleh N, Dietschi D, Blatz MB. The current state of adhesive dentistry: a guide for clinical practice. Compend Contin Educ Dent. 2013;(34 Spec 9):2–8.Google Scholar
  22. 22.
    Pioch T, Staehle HJ, Schneider H, Duschner H, Dörfer CE. Effect of intrapulpal pressure simulation in vitro on shear bond strengths and hybrid layer formation. Am J Dent. 2001;4:319–23.Google Scholar
  23. 23.
    Mount GJ, Hume WR. Preservation and restoration of tooth structure. Mosby; 1998.Google Scholar
  24. 24.
    Robinson C. Fluoride and the caries lesion: interactions and mechanism of action. Eur Arch Paediatr Dent. 2009;10:136–40.CrossRefGoogle Scholar
  25. 25.
    Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res. 1955;34:849–53.CrossRefGoogle Scholar
  26. 26.
    Cardoso MV, de Almeida Neves A, Mine A, Coutinho E, Van Landuyt K, De Munck J, Van Meerbeek B. Current aspects on bonding effectiveness and stability in adhesive dentistry. Aust Dent J. 2011;56(Suppl 1):31–44.CrossRefGoogle Scholar
  27. 27.
    Sladek REJ, Stoffels E, Walraven R, Tielbeek PJA, Koolhoven RA. Plasma treatment of dental cavities: a feasibility study. IEEE Trans Plasma Sci. 2004;32:1540–3.CrossRefGoogle Scholar
  28. 28.
    Stoffels E, Flikweert AJ, Stoffels WW, Kroesen GMW. Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sources Sci Technol. 2002;11:383–8.CrossRefGoogle Scholar
  29. 29.
    Cha S, Park YS. Plasma in dentistry. Clin Plasma Med. 2014;2:4–10.CrossRefGoogle Scholar
  30. 30.
    Fricke K, Koban I, Tresp H, Jablonowski L, Schroder K, Kramer A, et al. Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms. PLoS One. 2012;7:e42539.CrossRefGoogle Scholar
  31. 31.
    Goree J, Liu B, Drake D, Stoffels E. Killing of S. mutans bacteria using a plasma needle at atmospheric pressure. IEEE Trans Plasma Sci. 2006;34:1317–24.CrossRefGoogle Scholar
  32. 32.
    Gorynia S, Koban I, Matthes R, Welk A, Gorynia S, Hübner NO, Kocher T, Kramer A. In vitro efficacy of cold atmospheric pressure plasma on S. sanguinis biofilms in comparison of two test models. GMS Hyg Infect Control. 2013;8(1):Doc01.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Idlibi AN, Al-Marrawi F, Hannig M, Lehmann A, Rueppell A, Schindler A, Jentsch H, Rupf S. Destruction of oral biofilms formed in situ on machined titanium (Ti) surfaces by cold atmospheric plasma. Biofouling. 2013;29:369–79.CrossRefGoogle Scholar
  34. 34.
    Koban I, Matthes R, Hubner NO, Welk A, Meisel P, et al. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet. New J Phys. 2010;12:073039.CrossRefGoogle Scholar
  35. 35.
    Koban I, Holtfreter B, Hübner NO, Matthes R, Sietmann R, Kindel E, Weltmann KD, Welk A, Kramer A, Kocher T. Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro - proof of principle experiment. J Clin Periodontol. 2011;38:956–65.CrossRefGoogle Scholar
  36. 36.
    Rupf S, Lehmann A, Hannig M, Schäfer B, Schubert A, Feldmann U, Schindler A. Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J Med Microbiol. 2010;59:206–12.CrossRefGoogle Scholar
  37. 37.
    Rupf S, Idlibi AN, Marrawi FA, Hannig M, Schubert A, et al. Removing biofilms from microstructured titanium ex vivo: a novel approach using atmospheric plasma technology. PLoSOne. 2011;6:e25893.CrossRefGoogle Scholar
  38. 38.
    Sladek REJ, Filoche SK, Sissons CH, Stoffels E. Treatment of Streptococcus mutans biofilms with a nonthermal atmospheric plasma. Lett Appl Microbiol. 2007;45:318–23.CrossRefGoogle Scholar
  39. 39.
    Yamazaki H, Ohshima T, Tsubota Y, Yamaguchi H, Jayawardena JA, et al. Microbicidal activities of low frequency atmospheric pressure plasma jets on oral pathogens. Dent Mater J. 2011;30:384–91.CrossRefGoogle Scholar
  40. 40.
    Yang B, Chen J, Yu Q, Li H, Lin M, et al. Oral bacterial deactivation using a low-temperature atmospheric argon plasma brush. J Dent. 2011;9:48–56.CrossRefGoogle Scholar
  41. 41.
    Zhang X, Huang J, Liu X, Peng L, Guo L, Lv G, Chen W, Feng K, Yang S. Treatment of Streptococcus mutans bacteria by a plasma needle. J Appl Phys. 2009;105:063302.CrossRefGoogle Scholar
  42. 42.
    Chen M, Zhang Y, Sky Driver M, Caruso AN, Yu Q, Wang Y. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush. Dent Mater. 2013;29:871–80.CrossRefGoogle Scholar
  43. 43.
    Lehmann A, Rueppell A, Schindler A, Zylla I-M, Seifert HJ, Nothdurft F, Hannig M, Rupf S. Modification of enamel and dentin surfaces by non-thermal atmospheric plasma. Plasma Processes Polym. 2013;10:262–70.CrossRefGoogle Scholar
  44. 44.
    Pierdzioch P, Hartwig S, Herbst SR, Raguse JD, Dommisch H, Abu-Sirhan S, Wirtz HC, Hertel M, Paris S, Preissner S. Cold plasma: a novel approach to treat infected dentin-a combined ex vivo and in vitro study. Clin Oral Investig. 2016;20(9):2429–35.CrossRefGoogle Scholar
  45. 45.
    Wang R, Zhou H, Sun P, Wu H, Pan J, Zhu W. The effect of an atmospheric pressure, DC non-thermal plasma microjet on tooth root canal, dentinal tubules infection and re-infection prevention. J Plasma Med. 2012;1:143–55.CrossRefGoogle Scholar
  46. 46.
    Dong X, Ritts AC, Staller C, Yu Q, Chen M, Wang Y. Evaluation of plasma treatment effects on improving adhesive-dentin bonding by using the same tooth controls and varying cross-sectional surface areas. Eur J Oral Sci. 2013;121:355–62.CrossRefGoogle Scholar
  47. 47.
    Ritts AC, Li H, Yu Q, Xu C, Yao X, et al. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration. Eur J Oral Sci. 2010;118:510–6.CrossRefGoogle Scholar
  48. 48.
    Dong X, Chen M, Wang Y, Yu Q. A mechanistic study of plasma treatment effects on demineralized dentin surfaces for improved adhesive/dentin interface bonding. Clin Plasma Med. 2014;2:11–6.CrossRefGoogle Scholar
  49. 49.
    Dong X, Li H, Chen M, Wang Y, Yu Q. Plasma treatment of dentin surfaces for improving self-etching adhesive/dentin interface bonding. Clin Plasma Med. 2015;3:10–6.CrossRefGoogle Scholar
  50. 50.
    Yavirach P, Chaijareenont P, Boonyawan D, Pattamapun K, Tunma S, et al. Effects of plasma treatment on the shear bond strength between fiber-reinforced composite posts and resin composite for core build-up. Dent Mater J. 2009;6:686–92.CrossRefGoogle Scholar
  51. 51.
    Rupf S, Georg M, Hannig M, Laschke M, Lehmann A, Rueppell A, Schindler A. Effect of cold atmospheric plasma treatment on dental pulp in rat molars. Orleans: Tagungsbeitrag ICPM4; 2012.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Clinic of Operative Dentistry, Periodontology and Preventive DentistrySaarland University HospitalHomburgGermany

Personalised recommendations