Advertisement

Perspectives in Dental Implantology

  • Lukasz Jablonowski
  • Rutger Matthes
  • Kathrin Duske
  • Thomas Kocher
Chapter

Abstract

Plasma in dental implantology.

Cold plasma devices can be used to remove dental plaque biofilms and to decontaminate implant surfaces at physiological temperatures. In addition, they can hydrophilize implant surfaces by means of the reactive plasma process. This process supports the adhesion of connective tissue and bone cells to the implant and supports wound healing processes.

Keywords

Bacteria Biofilm Cold atmospheric pressure plasma Dental implants Dentistry Hydrophilicity Peri-implantitis Wound healing 

References

  1. 1.
    Mombelli A, Müller N, Cionca N. The epidemiology of peri-implantitis. Clin Oral Implants Res. 2012;23(6):67–76.  https://doi.org/10.1111/j.1600-0501.2012.02541.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Derks J, Hakansson J, Wennstrom JL, Tomasi C, Larsson M, Berglundh T. Effectiveness of implant therapy analyzed in a Swedish population: early and late implant loss. J Dent Res. 2015;94:44S–51S.  https://doi.org/10.1177/0022034514563077.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bobia F, Pop RV. Periimplantitis. Aetiology, diagnosis, treatment. A review from the literature. Curr Health Sci J. 2010;36:171–5.Google Scholar
  4. 4.
    Renvert S, Roos-Jansaker A-M, Claffey N. Non-surgical treatment of peri-implant mucositis and peri-implantitis: a literature review. J Clin Periodontol. 2008;35(Suppl. 8):305–15.  https://doi.org/10.1111/j.1600-051X.2008.01276.x.CrossRefPubMedGoogle Scholar
  5. 5.
    Claffey N, Clarke E, Polyzois I, Renvert S. Surgical treatment of peri-implantitis. J Clin Periodontol. 2008;35(Suppl. 8):316–32.  https://doi.org/10.1111/j.1600-051X.2008.01277.x.CrossRefPubMedGoogle Scholar
  6. 6.
    Persson LG, Ericsson I, Berglundh T, Lindhe J. Osseintegration following treatment of peri-implantitis and replacement of implant components. An experimental study in the dog. J Clin Periodontol. 2001;28:258–63.  https://doi.org/10.1034/j.1600-051x.2001.028003258.x.CrossRefPubMedGoogle Scholar
  7. 7.
    Duske K, Wegner K, Donnert M, Kunert U, Podbielski A, Kreikemeyer B, et al. Comparative in vitro study of different atmospheric pressure plasma jets concerning their antimicrobial potential and cellular reaction. Plasma Process Polym. 2015b;12(10):1050–60.  https://doi.org/10.1002/ppap.201400176.CrossRefGoogle Scholar
  8. 8.
    Koban I, Holtfreter B, Hübner N, Matthes R, Sietmann R, Kindel E, et al. Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro - proof of principle experiment. J Clin Periodontol. 2011b;38:956–65.  https://doi.org/10.1111/j.1600-051X.2011.01740.x.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Monetta T, Scala A, Malmo C, Bellucci F. Antibacterial activity of cold plasma-treated titanium alloy. Plasma Med. 2011;1:205–14.  https://doi.org/10.1615/PlasmaMed.v1.i3-4.30.CrossRefGoogle Scholar
  10. 10.
    Nebe B, Finke B, Hippler R, Meichsner J, Podbielski A, Schlosser M, Bader R. Physical plasma processes for surface functionalization of implants for orthopedic surgery. Hyg Med. 2013;38:192–7.Google Scholar
  11. 11.
    de Queiroz JDF, de Sousa Leal AM, Terada M, Agnez-Lima LF, Costa I, de Souza Pinto NC, de Medeiros Batistuzzo SR. Surface modification by argon plasma treatment improves antioxidant defense ability of CHO-k1 cells on titanium surfaces. Toxicol In Vitro. 2014;28:381–7.  https://doi.org/10.1016/j.tiv.2013.11.012.CrossRefPubMedGoogle Scholar
  12. 12.
    Walschus U, Hoene A, Patrzyk M, Finke B, Polak M, Lucke S, et al. Serum profile of pro- and anti-inflammatory cytokines in rats following implantation of low-temperature plasma-modified titanium plates. J Mater Sci Mater Med. 2012;23:1299–307.  https://doi.org/10.1007/s10856-012-4600-z.CrossRefPubMedGoogle Scholar
  13. 13.
    Wiegand C, Beier O, Horn K, Pfuch A, Tölke T, Hipler U, Schimanski A. Antimicrobial impact of cold atmospheric pressure plasma on medical critical yeasts and bacteria cultures. Skin Pharmacol Physiol. 2014;27:25–35.  https://doi.org/10.1159/000351353.CrossRefPubMedGoogle Scholar
  14. 14.
    Bender CP, Hübner N, Weltmann K, Scharf C, Kramer A. Tissue tolerable plasma and polihexanide: are synergistic effects possible to promote healing of chronic wounds? In Vivo and In Vitro results. In: Machala Z, Hensel K, Akishev Y, editors. Plasma for bio-decontamination, medicine and food security. Dordrecht: Springer Netherlands (NATO Science for Peace and Security Series A: Chemistry and Biology); 2012. p. 321–34.CrossRefGoogle Scholar
  15. 15.
    Isbary G, Heinlin J, Shimizu T, Zimmermann J, Morfill G, Schmidt H, et al. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol. 2012;167:404–10.  https://doi.org/10.1111/j.1365-2133.2012.10923.x.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jacofsky MC, Lubahn C, McDonnell C, Seepersad Y, Fridman G, Fridman AA, Dobrynin D. Spatially resolved optical emission spectroscopy of a helium plasma jet and its effects on wound healing rate in a diabetic murine model. Plasma Med. 2014;4:177–91.  https://doi.org/10.1615/PlasmaMed.2015012190.CrossRefGoogle Scholar
  17. 17.
    Chen W, Huang J, Du N, Liu X, Wang X, Lv G, et al. Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition. J Appl Phys. 2012;112:013304.  https://doi.org/10.1063/1.4732135.CrossRefGoogle Scholar
  18. 18.
    Xiong Z, Cao Y, Lu X, Du T. Plasmas in tooth root canal. IEEE Trans Plasma Sci. 2011;39:2968–9.  https://doi.org/10.1109/TPS.2011.2157533.CrossRefGoogle Scholar
  19. 19.
    Bourke P, Zuizina D, Han L, Cullen P, Gilmore BF. Microbiological Interactions with cold plasma. J Appl Microbiol. 2017;123(2):308–24.  https://doi.org/10.1111/jam.13429.CrossRefPubMedGoogle Scholar
  20. 20.
    Li Y, Sun K, Ye G, Liang Y, Pan H, Wang G, et al. Evaluation of cold plasma treatment and safety in disinfecting 3-week root canal enterococcus faecalis biofilm in vitro. J Endod. 2015;41:1325–30.  https://doi.org/10.1016/j.joen.2014.10.020.CrossRefPubMedGoogle Scholar
  21. 21.
    Idlibi AN, Al-Marrawi F, Hannig M, Lehmann A, Rueppell A, Schindler A, et al. Destruction of oral biofilms formed in situ on machined titanium (Ti) surfaces by cold atmospheric plasma. Biofouling. 2013;29:369–79.  https://doi.org/10.1080/08927014.2013.775255.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Matthes R, Jablonowski L, Koban I, Quade A, Hübner N, Schlueter R, et al. In vitro treatment of Candida albicans biofilms on denture base material with volume dielectric barrier discharge plasma (VDBD) compared with common chemical antiseptics. Clin Oral Investig. 2015:1–8.  https://doi.org/10.1007/s00784-015-1463-y.
  23. 23.
    Rupf S, Lehmann A, Hannig M, Schafer B, Schubert A, Feldmann U, Schindler A. Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J Med Microbiol. 2010;59:206–12.  https://doi.org/10.1099/jmm.0.013714-0.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fricke K, Koban I, Tresp H, Jablonowski L, Schroder K, Kramer A, et al. Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms. PLoS One. 2012a;7:e42539.  https://doi.org/10.1371/journal.pone.0042539.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rupf S, Idlibi AN, Marrawi FA, Hannig M, Schubert A, von Mueller L, et al. Removing biofilms from microstructured titanium ex vivo: a novel approach using atmospheric plasma technology. PLoS One. 2011;6:e25893.  https://doi.org/10.1371/journal.pone.0025893.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Duske K, Jablonowski L, Koban I, Matthes R, Holtfreter B, Sckell A, et al. Cold atmospheric plasma in combination with mechanical treatment improves osteoblast growth on biofilm covered titanium discs. Biomaterials. 2015a;52:327–34.  https://doi.org/10.1016/j.biomaterials.2015.02.035.CrossRefGoogle Scholar
  27. 27.
    Shi Q, Song K, Zhou X, Xiong Z, Du T, Lu X, Cao Y. Effects of non-equilibrium plasma in the treatment of ligature-induced peri-implantitis. J Clin Periodontol. 2015;42:478–87.  https://doi.org/10.1111/jcpe.12403. CrossRefGoogle Scholar
  28. 28.
    Matthes R, Duske K, Kebede TG, Pink C, Schlüter R, Woedtke T, et al. Osteoblast growth, after cleaning of biofilm-covered titanium discs with air-polishing and cold plasma. J Clin Periodontol. 2017;44(6):672–80.  https://doi.org/10.1111/jcpe.12720.CrossRefPubMedGoogle Scholar
  29. 29.
    Du T, Shi Q, Shen Y, Cao Y, Ma J, Lu X, et al. Effect of modified nonequilibrium plasma with chlorhexidine digluconate against endodontic biofilms in vitro. J Endod. 2013;39:1438–43.  https://doi.org/10.1016/j.joen.2013.06.027.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhou X, Xiong Z, Cao Y, Lu X, Liu D. The antimicrobial activity of an atmospheric-pressure room-temperature plasma in a simulated root-canal model infected with enterococcus faecalis. IEEE Trans Plasma Sci. 2010;38:3370–4.  https://doi.org/10.1109/TPS.2010.2078522.CrossRefGoogle Scholar
  31. 31.
    Fricke K, Steffen H, von Woedtke T, Schroeder K, Weltmann K. High rate etching of polymers by means of an atmospheric pressure plasma jet. Plasma Process Polym. 2011;8:51–8.CrossRefGoogle Scholar
  32. 32.
    Fricke K, Tresp H, Bussiahn R, Schröder K, Woedtke T, Weltmann K. On the use of atmospheric pressure plasma for the bio-decontamination of polymers and its impact on their chemical and morphological surface properties. Plasma Chem Plasma Process. 2012b;32:801–16.  https://doi.org/10.1007/s11090-012-9378-8.CrossRefGoogle Scholar
  33. 33.
    Jablonowski L, Fricke K, Matthes R, Holtfreter B, Schlüter R, Woedtke T, et al. Removal of naturally grown human biofilm with an atmospheric pressure plasma jet: an in-vitro study. J Biophotonics. 2017;10(5):718–26.  https://doi.org/10.1002/jbio.201600166.CrossRefPubMedGoogle Scholar
  34. 34.
    Coelho PG, Giro G, Teixeira HS, Marin C, Witek L, Thompson VP, et al. Argon-based atmospheric pressure plasma enhances early bone response to rough titanium surfaces. J Biomed Mater Res. 2012;100A:1901–6.  https://doi.org/10.1002/jbm.a.34127.CrossRefGoogle Scholar
  35. 35.
    Danna NR, Beutel BG, Tovar N, Witek L, Marin C, Bonfante EA, et al. Assessment of atmospheric pressure plasma treatment for implant osseointegration. Biomed Res Int. 2015;2015:761718.  https://doi.org/10.1155/2015/761718.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Shon W, Chung SH, Kim H, Han G, Cho B, Park Y. Peri-implant bone formation of non-thermal atmospheric pressure plasma-treated zirconia implants with different surface roughness in rabbit tibiae. Clin Oral Impl Res. 2014;25:573–9.  https://doi.org/10.1111/clr.12115.CrossRefGoogle Scholar
  37. 37.
    Duske K, Koban I, Kindel E, Schröder K, Nebe B, Holtfreter B, et al. Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J Clin Periodontol. 2012;39:400–7.  https://doi.org/10.1111/j.1600-051X.2012.01853.x.CrossRefPubMedGoogle Scholar
  38. 38.
    Lee J-H, Kim Y-H, Choi E-H, Kim K-M, Kim K-N. Air atmospheric-pressure plasma-jet treatment enhances the attachment of human gingival fibroblasts for early peri-implant soft tissue seals on titanium dental implant abutments. Acta Odontol Scand. 2015;73:67–75.  https://doi.org/10.3109/00016357.2014.954265.CrossRefPubMedGoogle Scholar
  39. 39.
    Koban I, Duske K, Jablonowski L, Schröder K, Nebe B, Sietmann R, et al. Atmospheric plasma enhances wettability and osteoblast spreading on dentin in vitro: proof-of-principle. Plasma Process Polym. 2011a;8:975–82.  https://doi.org/10.1002/ppap.201100030.CrossRefGoogle Scholar
  40. 40.
    Lai J, Sunderland B, Xue J, Yan S, Zhao W, Folkard M, et al. Study on hydrophilicity of polymer surfaces improved by plasma treatment. Appl Surf Sci. 2006;252:3375–9.  https://doi.org/10.1016/j.apsusc.2005.05.038.CrossRefGoogle Scholar
  41. 41.
    Ritts AC, Li H, Yu Q, Xu C, Yao X, Hong L, Wang Y. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration. Eur J Oral Sci. 2010;118:510–6.  https://doi.org/10.1111/j.1600-0722.2010.00761.x.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Favia P, d’Agostino R. Plasma treatments and plasma deposition of polymers for biomedical applications. Surf Coat Technol. 1998;98:1102–6.  https://doi.org/10.1016/S0257-8972(97)00285-5.CrossRefGoogle Scholar
  43. 43.
    Duewelhenke N, Eysel P. Serumfreie Kultivierung von Osteoprogenitorzellen und Osteoblasten zur Testung von Biomaterialien. Orthopade. 2007;36:220–6.  https://doi.org/10.1007/s00132-007-1057-8.CrossRefPubMedGoogle Scholar
  44. 44.
    Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, Yoshinari M. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater. 2009;4:045002.  https://doi.org/10.1088/1748-6041/4/4/045002.CrossRefPubMedGoogle Scholar
  45. 45.
    Finke B, Luethen F, Schroeder K, Mueller PD, Bergemann C, Frant M, et al. The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomaterials. 2007;28:4521–34.  https://doi.org/10.1016/j.biomaterials.2007.06.028.CrossRefPubMedGoogle Scholar
  46. 46.
    Satriano C, Marletta G, Guglielmino S, Carnazza S. Cell adhesion to ion- and plasma-treated polymer surfaces: the role of surface free energy. In: Mittal KL, editor. Contact angle, wettability and adhesion. Leiden, Boston: VSP; 2006. p. 471–86. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ResearchSoft&SrcApp=EndNote&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000242465600028.Google Scholar
  47. 47.
    Gristina A. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237:1588–95.  https://doi.org/10.1126/science.3629258.CrossRefPubMedGoogle Scholar
  48. 48.
    Canullo L, Micarelli C, Lembo-Fazio L, Iannello G, Clementini M. Microscopical and microbiologic characterization of customized titanium abutments after different cleaning procedures. Clin Oral Implants Res. 2014a;25:328–36.  https://doi.org/10.1111/clr.12089.CrossRefPubMedGoogle Scholar
  49. 49.
    Canullo L, Penarrocha-Oltra D, Marchionni S, Bagan L, Penarrocha-Diago M, Micarelli C. Soft tissue cell adhesion to titanium abutments after different cleaning procedures: preliminary results of a randomized clinical trial. Med Oral Patol Oral Cir Bucal. 2014b;19:e177–83.CrossRefGoogle Scholar
  50. 50.
    Garcia B, Camacho F, Peñarrocha D, Tallarico M, Perez S, Canullo L. Influence of plasma cleaning procedure on the interaction between soft tissue and abutments: a randomized controlled histologic study. Clin Oral Implants Res. 2017;28(10):1269–77.  https://doi.org/10.1111/clr.12953.CrossRefPubMedGoogle Scholar
  51. 51.
    Canullo CLL, Penarrocha D, Micarelli C, Massidda O, Bazzoli M. Hard tissue response to argon plasma cleaning/sterilisation of customised titanium abutments versus 5-second steam cleaning: results of a 2-year post-loading follow-up from an explanatory randomised controlled trial in periodontally healthy patients. Eur J Oral Implantol. 2013;6(3):251–60.PubMedGoogle Scholar
  52. 52.
    Canullo L, Tallarico M, Peñarrocha-Diago M, Garcia B, Peñarrocha D. Plasma of argon cleaning treatment on implant abutments in periodontally healthy patients: five years post-loading results of an RCT. Clin Oral Implants Res. 2016a;27(Suppl. 13):47.  https://doi.org/10.1111/clr.45_12957.CrossRefGoogle Scholar
  53. 53.
    Canullo L, Dehner JF, Penarrocha D, Checchi V, Mazzoni A, Breschi L. Soft tissue response to titanium abutments with different surface treatment: preliminary histologic report of a randomized controlled trial. Biomed Res Int. 2016b;2016:2952530.  https://doi.org/10.1155/2016/2952530.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Liu D, Xiong Z, Du T, Zhou X, Cao Y, Lu X. Bacterial-killing effect of atmospheric pressure nonequilibrium plasma jet and oral mucosa response. J Huazhong Univ Sci Technolog. 2011;31(6):852–6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lukasz Jablonowski
    • 1
  • Rutger Matthes
    • 1
  • Kathrin Duske
    • 2
  • Thomas Kocher
    • 1
  1. 1.Unit of Periodontology, Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and PedodonticsUniversity Medicine GreifswaldGreifswaldGermany
  2. 2.Department of OrthodonticsSchool of Dentistry “Hans Moral”, University Medicine RostockRostockGermany

Personalised recommendations