Application in Veterinary Medicine

Chapter

Abstract

With Cold Atmospheric Plasma (CAP), chronic wounds in pets, which cannot be controlled by conventional therapy methods, can be healed without side effects. For several cases of wound disorders, e.g. in cases of suture dehiscence, impressive therapeutic results have been achieved by CAP.

Due to antibacterial, antiviral and anti-exudative effects of CAP in hair follicles, CAP is also suitable for the treatment of superficial infected skin diseases. Also Demodex mites can be killed.

On account of the antitumoral effect, the use of CAP also appears to be promising for supporting treatment, for example, of canine papillomatosis or concomitantly after surgical resection of an equine sarcoid or feline squamous cell carcinoma.

Keywords

Chronic wounds Wound healing disorders Demodicosis Superficial infected skin diseases 

References

  1. 1.
    Babington P. Use of cold atmospheric plasma in the treatment of cancer. Biointerphases. 2015;10(2):029403.CrossRefGoogle Scholar
  2. 2.
    Graves DB. Reactive species from cold atmospheric plasma: implications for cancer therapy. Plasma Proc Polym. 2014;11:1120–7.CrossRefGoogle Scholar
  3. 3.
    Keidar M, Shashurin A, Volotskova O, Stepp MA, Srinivasan P, Sandler A, Trink B. Cold atmospheric plasma in cancer therapy. Phys Plasmas. 2013;20:057101.CrossRefGoogle Scholar
  4. 4.
    Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, Ravi R, Guerrero-Preston R, Trink B. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer. 2011;105:1295–301.CrossRefGoogle Scholar
  5. 5.
    Keidar M. Plasma for cancer treatment. Plasma Sourc Sci Technol. 2015;24(033001):20. 5; 10: 029403.Google Scholar
  6. 6.
    Partecke LI, Evert K, Haugk J, Döring F, Normann L, Diedrich S, Weiss F, Evert M, Hübner NO, Günther C, Heidecke C, Kramer A, Bussiahn R, Weltmann K, Pati O, Bender C, Bernstorff W. Tissue tolerable plasma (TTP) induce apoptosis in the human pancreatic cancer cell line Colo-357 in vitro and in vivo. BMC Cancer. 2012;12(1):473.CrossRefGoogle Scholar
  7. 7.
    Yan D, Sherman JH, Keidar M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget. 2017;8(9):15977–95.CrossRefGoogle Scholar
  8. 8.
    Kramer A, Assadian O, Below H, Willy C. Wound antiseptics today—an overview. In: Willy C, editor. Antiseptics in surgery—update 2013. Berlin: Lindqvist; 2013. p. 85–111.Google Scholar
  9. 9.
    Kramer A, Dissemond J, Kim S, Willy C, Mayer D, Papke R, Tuchmann F, Assadian O. Consensus on wound antisepsis: update 2018. Skin Pharmacol Physiol 2017;31(1):28-58. doi:  https://doi.org/10.1159/000481545.CrossRefPubMedGoogle Scholar
  10. 10.
    Schlüter B, KÖnig W. Microbial pathogenicity and host defense mechanisms: crucial parameters of posttraumatic infectitons. Thorac Cardiovasc Surg. 1990;38(6):339–47.CrossRefGoogle Scholar
  11. 11.
    Thomson PD. Immunology, microbiology, and the recalcitrant wound. Ostomy Wound Manage. 2000;46(1A suppl):77S–82S.PubMedGoogle Scholar
  12. 12.
    Kramer A, Hübner NO, Assadian O, Below H, Bender C, Benkhai H, Bröker B, Ekkernkamp A, Eisenbeiß W, Hammann A, Hartmann B, Heidecke CD, Hinz P, Koban I, Koch S, Kocher T, Lademann J, Lademann O, Lerch MM, Maier S, Matthes R, Müller G, Partecke I, Rändler C, Weltmann KD, Zygmunt M. Chancen und Perspektiven der Plasmamedizin durch Anwendung von gewebekompatiblen Atmosphärendruckplasmen (Tissue Tolerable Plasmas, TTP). GMS Krankenhaushyg Interdiszip. 2009;4(2):Doc10.Google Scholar
  13. 13.
    Kramer A, Hübner NO, Weltmann KD, Lademann J, Ekkernkamp A, Hinz P, Assadian O. Polypragmasia in the therapy of infected wounds—conclusions drawn from the perspectives of low temperature plasma technology for plasma wound therapy. GMS Krankenhaushyg Interdiszip. 3(1):Doc13. (20080311).Google Scholar
  14. 14.
    Daeschlein G, Assadian O, Kloth LC, Kramer A. Antibacterial activity of positive and negative polarity low-voltage pulsed current (LVPC) on six typical gram-positive and gram-negative bacterial pathogens of chronic wounds. Wound Repair Regen. 2007;15(3):399–403.CrossRefGoogle Scholar
  15. 15.
    Tai G, Reid B, Cao L, Zhao M. Electrotaxis and wound healing: experimental methods to study electric fields as a directional signal for cell migration. Methods Mol Biol. 2009;571:77–97.CrossRefGoogle Scholar
  16. 16.
    Mercer JB, Nielsen SP, Hoffmann G. Improvement of wound healing by water-filtered infrared-A (wIRA) in patients with chronic venous stasis ulcers of the lower legs including evaluation using infrared thermography. GMS Krankenhaushyg Interdiszip. 2008;6:Doc11.Google Scholar
  17. 17.
    Sen CK, Roy S. Redox signals in wound healing. Biochim Biophys Acta. 2008;1780(11):1348–61.CrossRefGoogle Scholar
  18. 18.
    Matthes R, Bekeschus S, Bender C, Koban I, Hübner NO, Kramer A. Pilot-study on the influence of carrier gas and plasma application (open resp. delimited) modifications on physical plasma and its antimicrobial effect against Pseudomonas aeruginosa and Staphylococcus aureus. GMS Krankenhhyg Interdiszip. 2012;7(1):Doc02.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Matthes R, Lührman A, Holtfreter S, Kolata J, Radke D, Hübner NO, Assadian O, Kramer A. Antibacterial activity of cold atmospheric pressure argon plasma against 78 genetically different (meca, luk-p, agr or capsular polysaccharide type) staphylococcus aureus strains. Skin Pharmacol Physiol. 2016;29(2):83–91.CrossRefGoogle Scholar
  20. 20.
    Shintani H, Shimizu N, Imanishi Y, Sekiya T, Tamazawa K, Taniguchi A, Kido N. Inactivation of microorganisms and endotoxins by low temperature nitrogen gas plasma exposure. Biocontrol Sci. 2007;12(4):131–43.CrossRefGoogle Scholar
  21. 21.
    Kramer A, Lademann J, Bender C, Sckell A, Hartmann B, Münch S, Hinz P, Ekkernkamp A, Matthes R, Koban I, Partecke I, Heidecke CD, Masur K, Reuter S, Weltmann KD, Assadian O. Suitability of tissue tolerable plasmas (TTP) for the management of chronic wounds. Clin Plasma Med. 2013;1:11–8.CrossRefGoogle Scholar
  22. 22.
    Fricke K, Koban I, Tresp H, Jablonowski L, Schröder K, Kramer A, Weltmann KD, von Woedtke T, Kocher T. Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms. PLoS One. 2012;7(8):1–8.CrossRefGoogle Scholar
  23. 23.
    Gorynia S, Koban I, Matthes R, Welk A, Gorynia S, Hübner NO, Kocher T, Kramer A. In vitro efficacy of cold atmospheric pressure plasma on S. sanguinis biofilms in comparison of two test models. GMS Hyg Inf Contr. 2013;8(1):Doc01.Google Scholar
  24. 24.
    Hübner NO, Matthes R, Koban I, Rändler C, Müller G, Bender C, Kindel E, Kocher T, Kramer A. Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas Aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol Physiol. 2010;23(Suppl):28–34.CrossRefGoogle Scholar
  25. 25.
    Koban I, Holtfreter B, Hübner NO, Matthes R, Sietmann R, Kindel E, Weltmann KD, Welk A, Kramer A, Kocher T. Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro–proof of principle experiment. J Clin Periodontol. 2011;38(10):956–65.CrossRefGoogle Scholar
  26. 26.
    Koban I, Matthes R, Hübner NO, Welk A, Meisel P, Holtfreter B, Sietmann R, Kindel E, Weltmann KD, Kramer A, Kocher T. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet. New J Phys. 2010;12:073039.CrossRefGoogle Scholar
  27. 27.
    Matthes R, Bender C, Schlüter R, Koban I, Bussiahn R, Reuter S, Lademann J, Weltmann KD, Kramer A. Antimicrobial efficacy of two surface barrier discharges with air plasma against in vitro biofilms. PLoS One. 2013;8(7):e70462.CrossRefGoogle Scholar
  28. 28.
    Matthes R, Jablonowski L, Koban I, Quade A, Hübner NO, Schlueter R, Weltmann KD, Woedtke v T, Kramer A, Kocher T. In vitro treatment of Candida Albicans biofilms on denture base material with volume dielectric barrier discharge plasma (VDBD) compared with common chemical antiseptics. Clin Oral Invest. 2015;19:2319–26.CrossRefGoogle Scholar
  29. 29.
    Matthes R, Koban I, Bender C, Masur K, Kindel E, Weltmann KD, Kocher T, Kramer A, Hübner NO. Antimicrobial efficacy of an atmospheric pressure plasma jet against biofilms of Pseudomonas aeruginosa and Staphylococcus epidermidis. Plasma Proc Polym. 2013;10(2):161–6.CrossRefGoogle Scholar
  30. 30.
    Koban I, Geisel MH, Holtfreter B, Jablonowski L, Hübner NO, Matthes R, Masur K, Weltmann KD, Kramer A, Kocher T. Synergistic effects of nonthermal plasma and disinfecting agents against dental biofilms in vitro. ISRN Dent. 2013;2013:573262.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Matthes R, Assadian O, Kramer A. Repeated applications of cold atmospheric pressure plasma does not induce resistance in Staphylococcus aureus embedded in biofilms. GMS Hyg Infect Contr. 2014;9(3):Doc17.Google Scholar
  32. 32.
    Hernandez-Divers SJ. Pulmonary candidiasis caused by Candida albicans in a Greek tortoise (Testudo graeca) and treatment with intrapulmonary amphotericin B. J Zoo Wildl Med. 2001;32:352–9.CrossRefGoogle Scholar
  33. 33.
    Sung JM, Lloyd DH, Lindsay JA. Staphylococcus aureus host specificity: comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology. 2008;154(7):1949–59.CrossRefGoogle Scholar
  34. 34.
    Nett J, Andes D. Candida albicans biofilm development, modeling a host-pathogen interaction. Curr Opin Microbiol. 2006;9(4):340–5.CrossRefGoogle Scholar
  35. 35.
    Friedrich A, Friedrich R, Heckers K, Rütten M, Steinmetz HW. Candida-Dermatitis bei einer Spornschildkröte (Geocholone sulcata). Tierärztl Prax Kleint. 2010;5:328–32.Google Scholar
  36. 36.
    Rahme LG, Ausubel FM, Cao H, Drenkard E, Goumnerov BC, Lau GW, Mahajan-Miklos S, Plotnikova J, Tan MW, Tsongalis J, Walendziewicz CL, Tompkins RG. Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci USA. 2000;97(16):8815–21.CrossRefGoogle Scholar
  37. 37.
    Brehmer F, Haenssle HA, Daeschlein G, Ahmed R, Pfeiffer S, Görlitz A, Simon D, Schön MP, Wandke D, Emmert S. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm(®) VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol. 2015;29:148–55.CrossRefGoogle Scholar
  38. 38.
    Hammann A, Hübner NO, Bender C, Ekkernkamp A, Hartmann B, Hinz P, Kindel E, Koban I, Koch S, Kohlmann T, Lademann J, Matthes R, Müller G, Titze R, Weltmann KD, Kramer A. Antiseptic efficacy and tolerance of tissue-tolerable plasma compared with two wound antiseptics on artificially bacterially contaminated eyes from commercially slaughtered pigs. Skin Pharmacol Physiol. 2010;23(6):328–32.CrossRefGoogle Scholar
  39. 39.
    Isbary G, Heinlin J, Shimizu T, Zimmermann JL, Morfill G, Schmidt HU, Monetti R, Steffes B, Bunk W, Li Y, Klaempfl T, Karrer S, Landthaler M, Stolz W. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol. 2012;167:404–10.CrossRefGoogle Scholar
  40. 40.
    Lademann J, Richter H, Schanzer S, Patzelt A, Thiede G, Kramer A, Weltmann KD, Hartmann B, Lange-Asschenfeldt B. Comparison of the antiseptic efficacy of tissue-tolerable plasma and an octenidine hydrochloride-based wound antiseptic on human skin. Skin Pharmacol Physiol. 2012;25(2):100–6.CrossRefGoogle Scholar
  41. 41.
    Ulrich C, Kluschke F, Patzelt A, Vandersee S, Czaika VA, Richter H, Bob A, Hutten J, Painsi C, Hüge R, Kramer A, Assadian O, Lademann J, Lange-Asschenfeldt B. Clinical use of cold atmospheric pressure argon plasma in chronic leg ulcers: a pilot study. J Wound Care. 2015;24:196–203.CrossRefGoogle Scholar
  42. 42.
    Preissner S, Kastner I, Schütte E, Hartwig S, Schmidt-Westhausen AM, Paris S, Preissner R, Hertel M. Adjuvant antifungal therapy using tissue tolerable plasma on oral mucosa and removable dentures in oral candidiasis patients: a randomised double-blinded split-mouth pilot study. Mycoses. 2016;59:467–75.CrossRefGoogle Scholar
  43. 43.
    Bender C, Matthes R, Kindel E, Kramer A, Lademann J, Weltmann KD, Eisenbeiß W, Hübner NH. The irritation potential of nonthermal atmospheric pressure plasma in the HET-CAM. Plasma Proc Polym. 2010;7(3–4):318–26.CrossRefGoogle Scholar
  44. 44.
    Bender C, Partecke LI, Kindel E, Döring F, Lademann J, Heidecke CD, Kramer A, Hübner NO. The modified HET-CAM as a model for the assessment of the inflammatory response to tissue tolerable plasma. Toxicol In Vitro. 2011;25:530–7.CrossRefGoogle Scholar
  45. 45.
    Kramer A, Behrens-Baumann W. Prophylactic use of topical anti-infectives in ophthalmology. Ophthalmologica. 1997;211(Suppl 1):68–76.CrossRefGoogle Scholar
  46. 46.
    Arndt S, Landthaler M, Zimmermann JL, Unger P, Wacker E, Shimizu T, Li YF, Morfill GE, Bosserhoff AK, Karrer S. Effects of cold atmospheric plasma (cap) on ß-defensins, inflammatory cytokines, and apoptosis-related molecules in keratinocytes in vitro and in vivo. PLoS One. 2015;10(3):e0120041.CrossRefGoogle Scholar
  47. 47.
    Arndt S, Unger P, Wacker E, Shimizu T, Heinlin J, Li YF, Thomas HM, Morfill GE, Zimmermann JL, Bosserhoff AK, Karrer S. Cold atmospheric plasma (cap) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS One. 2013;8(11):e79325.CrossRefGoogle Scholar
  48. 48.
    Arndt S, Wacker E, Li YF, Shimizu T, Thomas HM, Morfill GE, Karrer S, Zimmermann JL, Bosserhoff AK. Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp Dermatol. 2013;22:284–9.CrossRefGoogle Scholar
  49. 49.
    Choi JY, Joh HM, Park J-M, Kim MJ, Chung TH, Kang TH. Non-thermal plasma-induced apoptosis is modulated by ATR- and PARP1-mediated DNA damage responses and circadian clock. Oncotarget. 2016;7:32980.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Kim SJ, Chung TH. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells. Sci Rep. 2016;6:20332.CrossRefGoogle Scholar
  51. 51.
    Xu D, Luo X, Xu Y, Cui Q, Yang Y, Liu D, Chen H, Kong MG. The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma. Biochem Biophys Res Commun. 2016;473(4):1125–32.CrossRefGoogle Scholar
  52. 52.
    Chang JW, Kang SU, Shin YS, Kim KI, Seo SJ, Yang SS, Lee JS, Moon E, Baek SJ, Lee K, Kim CH. Non-thermal atmospheric pressure plasma induces apoptosis in oral cavity squamous cell carcinoma: involvement of DNA-damage-triggering sub-G1 arrest via the ATM/p53 pathway. Arch Biochem Biophys. 2014;545:133–40.CrossRefGoogle Scholar
  53. 53.
    Weiss M, Gümbel D, Hanschmann EM, Mandelkow R, Gelbrich N, Zimmermann U, Walther R, Ekkernkamp A, Sckell A, Kramer A, Burchardt M, Lillig CH, Stope MB. Cold atmospheric plasma treatment induces anti-proliferative effects in prostate cancer cells by redox and apoptotic signaling pathways. PLoS One. 2015;10:e0130350.CrossRefGoogle Scholar
  54. 54.
    Lademann J, Richter H, Alborova A, Humme D, Patzelt A, Kramer A, Weltmann KD, Hartmann B, Ottomann C, Fluhr JW, Hinz P, Hübner G, Lademann O. Risk assessment of the application of a plasma-jet in dermatology. J Biomed Opt. 2009;14(5):054025.CrossRefGoogle Scholar
  55. 55.
    Lademann O, Richter H, Patzelt A, Alborova A, Humme D, Weltmann KD, Hartmann B, Hinz P, Kramer A, Koch S. Application of a plasma-jet for skin antisepsis: analysis of the thermal action of the plasma by laser scanning microscopy. Laser Phys Lett. 2010;7(6):458–62.CrossRefGoogle Scholar
  56. 56.
    Barton A, Wende K, Lena Bundscherer L, Hasse S, Schmidt A, Bekeschus S, Weltmann KD, Lindequist U, Masur K. Nonthermal plasma increases expression of wound healing related genes in a keratinocyte cell line. Plasma Med. 2013;3(1–2):125–36.CrossRefGoogle Scholar
  57. 57.
    Chakravarthy K, Dobrynin D, Fridman G, Friedman G, Murthy S, Fridman A. Cold spark discharge plasma treatment of in flammatory bowel disease in an animal model of ulcerative colitis. Plasma Med. 2001;1(1):3–19.CrossRefGoogle Scholar
  58. 58.
    Dobrynin D, Wu A, Kalghatgi S, Park S, Shainsky N, Wasko K, Dumani E, Ownbey R, Joshi S, Sensenig R, Brooks AD. Live pig skin tissue and wound toxicity of cold plasma treatment. Plasma Med. 2011;1(1):93–108.CrossRefGoogle Scholar
  59. 59.
    Ermolaeva SA, Varfolomeev AF, Chernukha MY, Yurov DS, Vasiliev MM, Kaminskaya AA, Moisenovich MM, Romanova JM, Murashev AN, Selezneva II, Shimizu T, Sysolyatina EV, Shaginyan IA, Petrov OF, Mayevsky EI, Fortov VE, Morfill GE, Naroditsky BS, Gintsburg AL. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol. 2011;60(1):75–83.CrossRefGoogle Scholar
  60. 60.
    Yu Y, Tan M, Chen H, Wu Z, Xu L, Li J, Cao J, Yang Y, Xiao X, Lian X, Lu X, Tu Y. Non-thermal plasma suppresses bacterial colonization on skin wound and promotes wound healing in mice. J Huazhong Univ Sci Technol Med Sci. 2011;31(3):390–4.CrossRefGoogle Scholar
  61. 61.
    Fluhr JW, Sassning S, Lademann O, Darvin ME, Schanzer S, Kramer A, Richter H, Sterry W, Lademann J. In vivo skin treatment with tissue tolerable plasma influences skin physiology and antioxidant profile in human stratum corneum. Exp Dermatol. 2012;21(2):130–4.CrossRefGoogle Scholar
  62. 62.
    van der Linde J, Liedtke KR, Matthes R, Kramer A, Heidecke CD, Partecke LI. Repeated cold atmospheric plasma application to intact skin causes no sensitization in a standardized murine model. Plasma Med.  https://doi.org/10.1615/PlasmaMed.2017019167.
  63. 63.
    Boxhammer V, Li YF, Köritzer J, Shimizu T, Maisch T, Thomas HM, Schlegel J, Morfill GE, Zimmermann JL. Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages. Mut Res Genet Toxicol Environ. 2013;753:23–8.CrossRefGoogle Scholar
  64. 64.
    Kluge S, Bekeschus S, Bender C, Benkhai H, Sckell A, Below H, Stope MB, Kramer A. Investigating the mutagenicity of a cold argon-plasma jet in an HET-MN model. PLoS One. 2016;11(9):e0160667.CrossRefGoogle Scholar
  65. 65.
    Heinlin J, Maisch T, Zimmermann JL, Shimizu T, Holzmann T, Simon M, Heider J, Landthaler M, Morfill G, Karrer S. Contact-free inactivation of Trichophyton rubrum and Microsporum canis by cold atmospheric plasma treatment. Future Microbiol. 2013;8:1097–106.CrossRefGoogle Scholar
  66. 66.
    Heinlin J, Zimmermann JL, Zeman F, Bunk W, Isbary G, Landthaler M, Maisch T, Monetti R, Morfill G, Shimizu T, Steinbauer J, Stolz W, Karrer S. Randomized placebo-controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites. Wound Repair Regen. 2013;21:800–7.CrossRefGoogle Scholar
  67. 67.
    Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K, Heinlin J, Karrer S, Landthaler M, Shimizu T, Steffes B, Bunk W, Monetti R, Zimmermann JL, Pompl R, Stolz W. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163:78–82.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Isbary G, Shimizu T, Zimmermann JL, Thomas HM, Morfill GE, Stolz W. Cold atmospheric plasma for local infection control and subsequent pain reduction in a patient with chronic post-operative ear infection. New Microbes New Infect. 2013;1:41–3.CrossRefGoogle Scholar
  69. 69.
    Kisch T, Schleusser S, Helmke A, Mauss KL, Wenzel ET, Hasemann B, Mailaender P, Kraemer R. The repetitive use of non-thermal dielectric barrier discharge plasma boosts cutaneous microcirculatory effects. Microvasc Res. 2016;106:8–13.CrossRefGoogle Scholar
  70. 70.
    Bender C, Kramer A. Therapy of wound healing disorders in pets with atmospheric pressure plasma. Tierärztl Umschau. 2016;71:262–8.Google Scholar
  71. 71.
    Bender C, Kramer A. Options of antiseptic wound treatment in veterinary practice with special consideration of tissue compatibility. Kleintierpraxis. 2017;62(6):372–94.Google Scholar
  72. 72.
    Müller G, Koburger T, Kramer A. Interaction of polyhexamethylene biguanide hydrochloride (PHMB) with phosphatidylcholine containing o/w emulsion and consequences for microbicidal efficacy and cytotoxicity. Chem Biol Interact. 2013;201:58–64.CrossRefGoogle Scholar
  73. 73.
    Müller G, Kramer A, Schmitt J, Harden D, Koburger T. Reduced cytotoxicity of polyhexamethylene biguanide hydrochloride (PHMB) by egg phosphatidylcholine while maintaining antimicobial efficacy. Chem Biol Interact. 2011;190:171–8.CrossRefGoogle Scholar
  74. 74.
    Nastuta AV, Topala I, Grigoras C, Pohoata V, Popa G. Stimulation of wound healing by helium atmospheric pressure plasma treatment. J Phys D Appl Phys. 2011;44:105204.CrossRefGoogle Scholar
  75. 75.
    Raiser J, Zenker M. Argon plasma coagulation for open surgical and endoscopic applications: state of the art. J Phys D Appl Phys. 2006;39:3520–3.CrossRefGoogle Scholar
  76. 76.
    Lademann O, Kramer A, Richter H, Patzelt A, Meinke M, Roewert-Huber J, Czaika V, Weltmann KD, Hartmann B, Koch S. Antisepsis of the follicular reservoir by treatment with tissue-tolerable plasma (TTP). Laser Phys Lett. 2011;8:313.CrossRefGoogle Scholar
  77. 77.
    Lange-Asschenfeldt B, Marenbach D, Lang C, Patzelt A, Ulrich M, Maltusch A, Terhorst D, Stockfleth E, Sterry W, Lademann J. Distribution of bacteria in the epidermal layers and hair follicles of the human skin. Skin Pharmacol Physiol. 2011;24:305–11.CrossRefGoogle Scholar
  78. 78.
    Horstmann C. Localisation and typing of multiresistant staphylcocci in dogs and their owners. Tierärztl Fakultät: Diss Ludwig-Maximilians-Univ München; 2012.Google Scholar
  79. 79.
    Weiss M, Daeschlein G, Kramer A, Burchardt M, Brucker S, Wallwiener D, Stope MB. Virucide properties of cold atmospheric plasma for future clinical applications. J Med Virol. 2017;89:952–9.CrossRefGoogle Scholar
  80. 80.
    Puligundla P, Mok C. Non-thermal plasmas (NTPs) for inactivation of viruses in abiotic environment. Res J Biotechnol. 2016;11(6):91–6.Google Scholar
  81. 81.
    Volotskova O, Dubrovsky L, Keidar M, Bukrinsky M. Cold atmospheric plasma inhibits HIV-1 replication in macrophages by targeting both the virus and the cells. PLoS One. 2016;11(10):e0165322.CrossRefGoogle Scholar
  82. 82.
    Wang XQ, Wang FP, Chen W, Huang J, Bazaka K, Ostrikov K. Non-equilibrium plasma prevention of Schistosoma japonicum transmission. Sci Rep. 2016;6:35353.CrossRefGoogle Scholar
  83. 83.
    Aboubakr HA, Williams P, Gangal U, Youssef MM, El-Sohaimy SA, Bruggeman PJ, Goyal SM. Virucidal effect of cold atmospheric gaseous plasma on feline calicivirus, a surrogate for human norovirus. Appl Environ Microbiol. 2015;81(11):3612–22.CrossRefGoogle Scholar
  84. 84.
    Lommer MJ, Verstraete FJM. Concurrent oral shedding of feline calicivirus and feline herpesvirus 1 in cats with chronic gingivostomatitis. Oral Microbiol Immunol. 2003;18:131–4.CrossRefGoogle Scholar
  85. 85.
    Bender C, Kramer A. Efficacy of tissue tolerable plasma (TTP) against Ixodes ricinus. GMS Hyg Infect Control. 2014;9(1):Doc04.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Daeschlein G, Scholz S, Arnold A, von Woedtke T, Kindel E, Niggemeier M, Weltmann KD, Jünger M. In-vitro activity of atmospheric pressure plasma jet (APPJ) against clinical isolates of Demodex folliculorum. IEEE Trans Plasma Sci. 2010;38(10):2969–73.CrossRefGoogle Scholar
  87. 87.
    Pournaseh Y, Irani S, Amin M. Cold atmospheric plasma jet against Leishmania major in vitro study. Bas Res J Med Clin Sci. 2015;4(3):90–4.Google Scholar
  88. 88.
    Tipa RS, Kroesen GMW. Plasma-stimulated wound healing. IEEE Trans Plasma Sci. 2011;39:2978–9.CrossRefGoogle Scholar
  89. 89.
    Bender C, Pavlovic D, Wegner A, Hinz P, Ekkernkamp A, Kramer A, Sckell A. Intravital fluorescence microscopy for the assessment of microcirculation and leucoyte-endothel interaction after application of tissue tolerable plasma in the HET-CAM. In: Mikikian M, Rabat H, Robert E, Pouvesle JM (eds) Book of Abstracts 4th Int Conf Plasma Medicine, Orleans, 2012; p. 86.Google Scholar
  90. 90.
    Rajnicek AM, Foubister LE, McCaig CD. Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry. J Cell Sci. 2006;119:1736–45.CrossRefGoogle Scholar
  91. 91.
    Assadian O, Ousey K, Daeschlein G, Kramer A, Parker C, Tanner J, Leaper D. Effects of atmospheric low temperature plasma on bacterial reduction in chronic wounds and wound size reduction. Br J Dermatol. (In rev).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Claudia Bender
    • 1
  • Axel Kramer
    • 2
  • Matthias B. Stope
    • 3
  1. 1.Tierarztpraxen Dr. Claudia Bender in Karrin and LubminKröslinGermany
  2. 2.Institute for Hygiene and Environmental MedicineUniversity Medicine GreifswaldGreifswaldGermany
  3. 3.Department of UrologyUniversity Medicine GreifswaldGreifswaldGermany

Personalised recommendations