Skip to main content

Plasma Application for Hygienic Purposes in Medicine, Industry, and Biotechnology: Update 2017

  • Chapter
  • First Online:
Comprehensive Clinical Plasma Medicine

Abstract

Cold atmospheric plasma (CAP) operates at temperatures between 36 and 52°C. It is a highly efficient tool in a number of hygiene and biomedical applications. CAP is effective against microorganisms and viruses. Development of microbial resistance has not been observed yet and is not expected. As opposed to some chemical disinfectants and sterilization processes, cold plasmas are suitable for treatment of temperature-sensitive materials without leaving toxic residues. CAP has been used in combination with hydrogen peroxide vapor for sterilization in health care services and industry since 1993. New developments for sterilization are emerging with peracetic acid, N2 or Ar-N2 plasma, microwave-excited plasma, and steam plasma-flow autoclave techniques. Technical solutions for disinfection of medical devices are still being developed.

CAP is promising in surgery, especially for pre-operative skin and wound antisepsis. It surpasses chemical antiseptics in terms of the ability to penetrate the excretory ducts of sebaceous glands and hair follicles. In implantology, CAP alters the surface of alloplastic implants, giving the body’s cells a growth advantage over bacterial colonization.

The food industry uses CAP to decontaminate raw produce, spices, and food, as well as surfaces and packaging used in food production, and to inactivate allergens and toxins. CAP stimulates the growth of cells and tissue, which not only increases the yield of crop plants, but also their nutritional value.

Contaminated water of all kinds can be decontaminated and chemically degraded using CAP to produce antimicrobial agents (so-called plasma pharmacy). Soil bioremediation and fertility are improved after CAP treatment. CAP-induced changes in microbial metabolism can be used for biological degradation processes.

In air purification, CAP inactivates noxae as well as odors, allergens, and microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kramer A, Bekeschus S, Matthes R, Bender C, Stope MB, Napp M, Lademann O, Lademann J, Weltmann KD, Schauer F. Cold physical plasmas in the field of hygiene—relevance, significance, and future applications. Plasma Process Polym. 2015;12:1410–22.

    Article  CAS  Google Scholar 

  2. Kramer A, Matthes R, Bekeschus S, Bender C, Napp M, Lademann O, Weltmann KD. Aktueller und perspektivischer Einsatz kalter Plasmen aus hygienischer Sicht. In: Metelmann HR, von Woedtke T, Weltmann KD, editors. Plasmamedizin—Kaltplasma in der medizinischen Anwendung. Berlin: Springer; 2016. p. 137–55.

    Google Scholar 

  3. Daeschlein G, Napp M, Lutze S, Arnold A, von Podewils S, Gümbel D, Jünger M. Skin and wound decontamination of multidrug-resistant bacteria by cold atmospheric plasma coagulation. J Dtsch Dermatol Ges. 2015;13:143–50.

    PubMed  Google Scholar 

  4. Daeschlein G, Napp M, Majumdar A, Richter E, Rüsch-Gerdes S, Aly F, von Podewils S, Sicher C, Haase H, Niggemeier M, Weltmann KD, Jünger M. In vitro killing of mycobacteria by low temperature atmospheric pressure plasma and dielectric barrier discharge plasma for treatment of tuberculosis. Clin Plasma Med. 2017;5-6:1–7.

    Article  Google Scholar 

  5. Daeschlein G, Scholz S, Arnold A, von Podewils S, Haase H, Emmert S, von Woedtke T, Weltmann KD, Jünger M. In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Proc Polym. 2014;11:175–83.

    Article  CAS  Google Scholar 

  6. Daeschlein G, von Woedtke T, Kindel E, Brandenburg R, Weltmann KD, Jünger M. Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in-vitro on a simulated wound environment. Plasma Process Polym. 2010;7(3–4):224–30.

    Article  CAS  Google Scholar 

  7. Kulaga EM, Jacofsky DJ, McDonnell C, Jacofsky MC. The use of an atmospheric pressure plasma jet to inhibit common wound-related pathogenic strains of bacteria. Plasma Med. 2016;6(1):1–12.

    Article  Google Scholar 

  8. Lührmann A, Matthes R, Kramer A. Impact of cold atmospheric pressure argon plasma on antibiotic sensitivity of methicillin-resistant Staphylococcus aureus strains in vitro. GMS Hyg Inf Contr. 2016;11:Doc17.

    Google Scholar 

  9. Maisch T, Shimizu T, Isbary G, Heinlin J, Karrer S, Klämpfl TG, Li YF, Morfill G, Zimmermann JL. Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma. Appl Environ Microbiol. 2012;78(12):4242–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matthes R, Lührman A, Holtfreter S, Kolata J, Radke D, Hübner NO, Assadian O, Kramer A. Antibacterial activity of cold atmospheric pressure argon plasma against 78 genetically different (mecA, luk-P, agr or capsular polysaccharide type) Staphylococcus aureus strains. Skin Pharmacol Physiol. 2016;29(2):83–91.

    Article  CAS  PubMed  Google Scholar 

  11. Misra NN, Tiwari BK, Raghavarao KSMS, Cullen PJ. Nonthermal plasma inactivation of food-borne pathogens. Food Eng Rev. 2011;3(3–4):159–70.

    Article  Google Scholar 

  12. Napp M, Daeschlein G, von Podewils S, Hinz P, Emmert S, Haase H, Spitzmueller R, Gümbel D, Kasch R, Jünger M. In vitro susceptibility of methicillin-resistant and methicillin-susceptible strains of Staphylococcus aureus to two different cold atmospheric plasma sources. Infection. 2016;44(4):531–7.

    Article  CAS  PubMed  Google Scholar 

  13. Vukušić T, Stulić V, Jambrak AR, Milošević S, Stanzer D, Herceg Z. Effect of treatment by non-thermal plasma jet on the growth of various food spoilage bacteria in superfluous. Croat J Food Sci Technol. 2016;8(1):20–9.

    Article  Google Scholar 

  14. Ke Z, Thopan P, Fridman G, Miller V, Yu L, Fridman A, Huang Q. Effect of N2/O2 composition on inactivation efficiency of Escherichia coli by discharge plasma at the gas-solution interface. Clin Plasma Med. 2017;7-8:1–8.

    Article  Google Scholar 

  15. Claro T, Cahill OJ, O’Connor N, Daniels S, Humphreys H. Cold-air atmospheric plasma against Clostridium difficile spores: a potential alternative for the decontamination of hospital inanimate surfaces. Infect Control Hosp Epidemiol. 2015;36:742–4.

    Article  PubMed  Google Scholar 

  16. Connor M, Flynn PB, Fairley DJ, Marks N, Manesiotis P, Graham WG, Gilmore BF, McGrath JW. Evolutionary clade affects resistance of Clostridium difficile spores to cold atmospheric plasma. Sci Rep. 2017;7:41814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Doona CJ, Feeherry FE, Kustin K, Olinger GG, Setlow P, Malkin AJ, Leighton T. Fighting Ebola with novel spore decontaminating technologies for the military. Front Microbiol. 2015;6:663.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hertwig C, Steins V, Reineke K, Rademacher A, Klocke M, Rauh C, Schlueter O. Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment. Front Microbiol. 2015;6:774.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Raguse M, Fiebrandt M, Stapelmann K, Madela K, Laue M, Lackmann JW, Thwaite JE, Setlow P, Awakowicz P, Moeller R. Improvement of biological indicators by uniformly distributing Bacillus subtilis spores in monolayers to evaluate enhanced spore decontamination technologies. Appl Environ Microbiol. 2016;8:2031–8.

    Article  CAS  Google Scholar 

  20. Wang SW, Doona CJ, Setlow P, Li YQ. Use of Raman spectroscopy and phase-contrast microscopy to characterize cold atmospheric plasma inactivation of individual bacterial spores. Appl Environ Microbiol. 2016;82:5775–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klämpfl TG, Isbary G, Shimizu T, Li YF, Zimmermann JL, Stolz W, Schlegel J, Morfill GE, Schmidt HU. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol. 2012;78(15):5077–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Daeschlein G, Scholz S, von Woedtke T, Niggemeier M, Kindel E, Brandenburg R, Weltmann KD, Jünger M. In-vitro killing of clinical fungal strains by low temperature atmospheric pressure plasma (APPJ). IEEE Trans Plasma Sci. 2011;39(11):815–21.

    Article  Google Scholar 

  23. Heinlin J, Maisch T, Zimmermann JL, Shimizu T, Holzmann T, Simon M, Heider J, Landthaler M, Morfill G, Karrer S. Contact-free inactivation of Trichophyton rubrum and Microsporum canis by cold atmospheric plasma treatment. Fut Microbiol. 2013;8(9):1097–106.

    Article  CAS  Google Scholar 

  24. Itooka K, Takahashi K, Izawa S. Fluorescence microscopic analysis of antifungal effects of cold atmospheric pressure plasma in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2016;100:9295–304.

    Article  CAS  PubMed  Google Scholar 

  25. Jambrak AR, Vukusic T, Stulic V, Mrvcic J, Milosevic S, Simunek M, Herceg Z. The effect of high power ultrasound and cold gas-phase plasma treatments on selected yeast in pure culture. Food Bioproc Technol. 2015;8:791–800.

    Article  Google Scholar 

  26. Park SY, Ha SD. Application of cold oxygen plasma for the reduction of Cladosporium cladosporioides and Penicillium citrinum on the surface of dried filefish (Stephanolepis cirrhifer) fillets. Int J Food Sci Technol. 2015;50:966–73.

    Article  CAS  Google Scholar 

  27. Brelles-Mariño G. Challenges in biofilm inactivation: the use of cold plasma as a new approach. J Bioproc Biotech. 2012;2:e107.

    Google Scholar 

  28. Delben JA, Zago CE, Tyhovych N, Duarte S, Vergani CE. Effect of atmospheric-pressure cold plasma on pathogenic oral biofilms and in vitro reconstituted oral epithelium. PLoS One. 2016;11:e0155427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ermolaeva SA, Varfolomeev AF, Chernukha MY, Yurov DS, Vasiliev MM, Kaminskaya AA, Moisenovich MM, Romanova JM, Murashev AN, Selezneva II, Shimizu T, Sysolyatina EV, Shaginyan IA, Petrov OF, Mayevsky EI, Fortov VE, Morfill GE, Naroditsky BS, Gintsburg AL. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol. 2011;60(Pt 1):75–83.

    Article  CAS  PubMed  Google Scholar 

  30. Flynn PB, Busetti A, Wielogorska E, Chevallier OP, Elliott CT, Laverty G, Gorman SP, Graham WG, Gilmore BF. Non-thermal plasma exposure rapidly attenuates bacterial AHL-dependent quorum sensing and virulence. Sci Rep. 2016;6:26320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matthes R, Jablonowski L, Koban I, Quade A, Huebner NO, Schlueter R, Weltmann KD, von Woedtke T, Kramer A, Kocher T. In vitro treatment of Candida albicans biofilms on denture base material with volume dielectric barrier discharge plasma (VDBD) compared with common chemical antiseptics. Clin Oral Investig. 2015;19:2319–26.

    Article  PubMed  Google Scholar 

  32. Matthes R, Koban I, Bender C, Masur K, Kindel E, Weltmann KD, Kocher T, Kramer A, Hübner NO. Antimicrobial efficacy of an atmospheric pressure plasma jet against biofilms of pseudomonas aeruginosa and staphylococcus epidermidis. Plasma Process Polym. 2012;10(2):161–6.

    Article  CAS  Google Scholar 

  33. Modic M, McLeod NP, Sutton JM, Walsh JL. Cold atmospheric pressure plasma elimination of clinically important single- and mixed-species biofilms. Int J Antimicrob Agents. 2017;49(3):375–8.

    Article  CAS  PubMed  Google Scholar 

  34. Rupf S, Idlibi AN, Umanskaya N, Hannig M, Nothdurft F, Lehmann A, Schindler A, von Müller L, Spitzer W. Disinfection and removal of biofilms on microstructured titanium by cold atmospheric plasma. J Dent Implant. 2012;28(2):126–37.

    Google Scholar 

  35. Ziuzina D, Boehm D, Patil S, Cullen PJ, Bourke P. Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS One. 2015;10(9):e0138209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ziuzina D, Han L, Cullen PJ, Bourke P. Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar typhimurium, Listeria monocytogenes and Escherichia coli. Int J Food Microbiol. 2015;210:53–61.

    Article  PubMed  Google Scholar 

  37. Borges AC, Nishime TMC, Kostov KG, Lima GMG, Gontijo AVL, Carvalho de JNMM, Honda RY, Koga-Ito CY. Cold atmospheric pressure plasma jet modulates Candida albicans virulence traits. Clin Plasma Med. 2017;7-8:9–15.

    Article  Google Scholar 

  38. Patange A, Boehm D, Bueno-Ferrer C, Cullen PJ, Bourke P. Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma. Food Microbiol. 2017;66:48–54.

    Article  CAS  PubMed  Google Scholar 

  39. Pandit S, Mokkapati VRSS, Helgadóttir SH, Westerlundan F, Mijakovic I. Combination of cold atmospheric plasma and vitamin C effectively disrupts bacterial biofilms. Clin Microbiol. 2017;6(283).

    Google Scholar 

  40. Pradeep P, Chulkyoon M. Non-thermal plasmas (NTPs) for inactivation of viruses in abiotic environment. Res J Biotechnol. 2016;11:91–6.

    Article  CAS  Google Scholar 

  41. Weiss M, Daeschlein G, Kramer A, Burchardt M, Brucker S, Wallwiener D, Stope MB. Virucide properties of cold atmospheric plasma for future clinical applications. J Med Virol. 2017;89:952–9.

    Article  CAS  PubMed  Google Scholar 

  42. Bayliss DL, Walsh JL, Shama G, Iza F, Kong MG. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet. New J Phys. 2009;11:115024.

    Article  CAS  Google Scholar 

  43. Aboubakr HA, Gangal U, Youssef MM, Goyal SM, Bruggeman PJ. Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways. J Phys D Appl Phys. 2016;49:204001.

    Article  CAS  Google Scholar 

  44. Aboubakr HA, Williams P, Gangal U, Youssef MM, El-Sohaimy SAA, Bruggeman PJ, Goyal SM. Virucidal effect of cold atmospheric gaseous plasma on feline calcivirus, a surrogate for human norovirus. Appl Environ Microbiol. 2015;81:3612–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Elaragi G. Inactivation of hepatitis C virus cells using gliding arc discharge. Plasma Med. 2015;5(1):49–55.

    Article  Google Scholar 

  46. Puligundla P, Mok C. Non-thermal plasmas (NTPs) for inactivation of viruses in abiotic environment. Res J Biotechnol. 2016;11(6):91–6.

    Google Scholar 

  47. Wu Y, Liang YD, Wei K, Li W, Yao MS, Zhang J, Grinshpun SA. MS2 virus inactivation by atmospheric-pressure cold plasma using different gas carriers and power levels. Appl Environ Microbiol. 2015;81:996–1002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yasuda H, Miura T, Kurita H, Takashima K, Mizuno A. Biological evaluation of DANN damage in bacteriophages inactivated by atmospheric pressure cold plasma. Plasma Process Polym. 2010;7:301–8.

    Article  CAS  Google Scholar 

  49. Wang GM, Zhu RH, Yang LC, Wang KL, Zhang Q, Su X, Yang B, Zhang J, Fang J. Non-thermal plasma for inactivated vaccine preparation. Vaccine. 2016;34:1126–32.

    Article  CAS  PubMed  Google Scholar 

  50. Guo J, Huang K, Wang J. Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: a review. Food Control. 2015;50:482–90.

    Article  CAS  Google Scholar 

  51. Mendis DA, Rosenberg M, Azam F. A note on the possible electrostatic disruption of bacteria. IEEE Trans Plasma Sci. 2000;28:1304–6.

    Article  Google Scholar 

  52. Bekeschus S, Iséni S, Reuter S, Masur K, Weltmann KD. Nitrogen shielding of a plasma jet and its effects on human immune cells. IEEE Trans Plasma Sci. 2015;43(3):776–81.

    Article  CAS  Google Scholar 

  53. Bekeschus S, Kolata J, Winterbourn C, Kramer A, Turner R, Weltmann KD, Bröker B, Masur K. Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells. Free Rad Res. 2014;48:542–9.

    Article  CAS  Google Scholar 

  54. Fridman A. Plasma chemistry. New York: Cambridge University Press; 2008.

    Book  Google Scholar 

  55. Kalghatgi S, Kelly CM, Cerchar E, Torabi B, Alekseev O, Fridman A, Friedman G, Azizkhan-Clifford J. Effects of non-thermal plasma on mammalian cells. PLoS One. 2011;6(1):e16270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Laroussi M. Nonthermal decontamination of biological media by atmospheric pressure plasmas: review, analysis, and prospects. IEEE Trans Plasma Sci. 2002;30:1409–15.

    Article  CAS  Google Scholar 

  57. Laroussi M. Low temperature plasma-based sterilization: overview and state of the art. Plasma Process Polym. 2005;2:391–400.

    Article  CAS  Google Scholar 

  58. Reuter S, Winter J, Iseni S, Peters S, Schmidt-Bleker A, Dünnbier M, Schäfer J, Foest R, Weltmann KD. Detection of ozone in a MHz argon plasma bullet jet. Plasma Sources Sci Technol. 2012;21(3):034015.

    Article  CAS  Google Scholar 

  59. Sakudo A, Misawa T, Shimizu N, Imanishi Y. N2 gas plasma inactivates influenza virus mediated by oxidative stress. Front Biosci. 2014;6:69–79.

    Article  Google Scholar 

  60. Weltmann KD, von Woedtke T. Plasma medicine—current state of research and medical application. Plasma Phys Control Fusion. 2016;59(1):014031.

    Article  CAS  Google Scholar 

  61. Boudam MK, Moisan M, Saoudi B, Popovici C, Gherardi N, Massines F. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J Phys D Appl Phys. 2006;39:3494–507.

    Article  CAS  Google Scholar 

  62. Morent R, De Geyter N. Inactivation of bacteria by non-thermal plasmas. In: Fazel-Rezai R, editor. Biomedical engineering—frontiers and challenges. InTech; 2011. p. 25–54.

    Google Scholar 

  63. Dezest M, Bulteau AL, Quinton D, Chavatte L, Le Bechec M, Cambus JP, Arbault S, Nègre-Salvayre A, Clément F, Cousty S. Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure. PLoS One. 2017;12(3):e0173618.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Winterbourn CC, Hampton MB, Livesey JH, Kettle ASJ. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome. Implications for microbial killing. J Biol Chem. 2006;281:39860–9.

    Article  CAS  PubMed  Google Scholar 

  65. Heyworth PG, Cross AR, Curnutte JT. Chronic granulomatous disease. Curr Opin Immunol. 2003;15(5):578–84.

    Article  CAS  PubMed  Google Scholar 

  66. Müller G, Benkhai H, Matthes R, Finke B, Friedrichs W, Geist N, Langel W, Kramer A. Poly(hexamethylene biguanide) adsorption on hydrogen peroxide treated Ti-Al-V alloys and effects on wettability, antimicrobial efficacy, and cytotoxicity. Biomaterials. 2014;35(20):5261–77.

    Article  PubMed  CAS  Google Scholar 

  67. von Woedtke T, Kramer A. The limits of sterility assurance. GMS Krankenhaushyg Interdiszip. 2008;3(3):Doc19.

    Google Scholar 

  68. Gebel J, Werner HP, Kirsch-Altena A, Bansemir K. Standardmethoden der DGHM zur Prüfung chemischer Desinfektionsverfahren. Wiesbaden: Mhp; 2001.

    Google Scholar 

  69. Schwebke I, Blümel J, Eggers M, Glebe D, Rapp I, von Rheinbaben F, Sauerbrei A, Steinmann E, Steinmann J, Willkommen H, Wutzler P, Rabenau HF. Mitteilung der Deutschen Vereinigung zur Bekämpfung der Viruskrankheiten e. V. (DVV) und des Robert Koch-Instituts (RKI) zur Veröffentlichung der aktualisierten Fassung der Leitlinie zur Prüfung von chemischen Desinfektionsmitteln auf Wirksamkeit gegen Viren in der Humanmedizin (Suspensionstest)—Fassung 1. 12. 2014. Bgbl Gesundheitsforsch Gesundheitssch. 2015; 58(4):491–2.

    Google Scholar 

  70. Desinfektionsmittelkommission im VAH. Anforderungen und Methoden zur VAH-Zertifizierung chemischer Desinfektionscverfahren. Wiesbaden: Mhp; 2015.

    Google Scholar 

  71. Kramer A, Briesch H, Christiansen B, Löffler H, Perlitz C, Reichardt C. Empfehlungen zur Händehygiene. Mitteilung der Kommission für Krankenhaushygiene und Infektionsprävention am Robert Koch-Institut. BGBL. 2016;59:1189–220.

    Google Scholar 

  72. Robert Koch-Institut, Deutsche Vereinigung zur Bekämpfung der Viruskrankheiten e. V. Deutsche Gesellschaft für Hygiene und Mikrobiologie. Prüfung und Deklaration der Wirksamkeit von Desinfektionsmitteln gegen Viren—Stellungnahme des Arbeitskreises Viruzidie beim Robert Koch-Institut (RKI) sowie des Fachausschusses “Virusdesinfektion” der Deutschen Vereinigung zur Bekämpfung der Viruskrankheiten (DVV) und der Desinfektionsmittelkommission der Deutschen Gesellschaft für Hygiene und Mikrobiologie (DGHM). BGBL. 2004;47(1):62–6.

    Google Scholar 

  73. Schwebke I, Arvand M, Eggers M, Gebel J, Geisel B, Rapp I, Steinmann J, Rabenau HF. Empfehlung zur Auswahl viruzider Desinfektionsmittel—eine neue Stellungnahme des Arbeitskreises Viruzidie beim RKI. http://www.krankenhaushygiene.de/referate/d13b4982da4e67a8f40f1d8c674171ed.pdf .

  74. Pitten FA, Werner HP, Kramer A. A standardized test to assess the impact of different organic challenges on the antimicrobial activity of antiseptics. J Hosp Infect. 2003;55:108–15.

    Article  PubMed  Google Scholar 

  75. Schedler K, Assadian O, Brautferger U, Müller G, Koburger T, Classen S, Kramer A. Proposed phase 2/ step 2 in-vitro test on basis of EN 14561 for standardised testing of the wound antiseptics PVP-iodine, chlorhexidine digluconate, polihexanide and octenidine dihydrochloride. BMC Infect Dis. 2017;17(1):143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH. Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm. 2001;226:1–21.

    Article  CAS  PubMed  Google Scholar 

  77. Kohnen W, Fleischhack R, Kaiser U, Kühne T, Salzbrunn R, Getreuer H, Wegner WD, Jatzwauk L. Grundlagen der Sterilisation. In: Kramer A, Assadian O, Exner M, Hübner N-O, Simon A, editors. Krankenhaus- und Praxishygiene—Hygienemanagement und Infektionsprävention in medizinischen und sozialen Einrichtungen. München. 3. Aufl.: Urban Fischer; 2016. p. 64–95.

    Google Scholar 

  78. DIN EN 14885. Chemical disinfectants and antiseptics - application of European standards for chemical disinfectants and antiseptics. Hamburg: Beuth; 2015–11.

    Google Scholar 

  79. Okpara-Hofmann J, Knoll M, Dürr M, Schmitt B, Borneff-Lipp M. Comparison of low-temperature hydrogen peroxide gas plasma sterilization for endoscopes using various Sterrad models. J Hosp Infect. 2005;59(4):280–5.

    Article  CAS  PubMed  Google Scholar 

  80. Singh MK, Nagatsu M. Large-volume plasma device with internally mounted face-type planar microwave launchers for low-temperature sterilization. Plasma Med. 2015;5(2–4):159–75.

    Article  Google Scholar 

  81. Sato T, Furui T. Generation process and sterilization effect of oh radical in a steam plasma flow at atmospheric pressure for a plasma autoclave. Plasma Med. 2015;5(2–4):299–314.

    Article  Google Scholar 

  82. Boyce JM. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob Resist Infect Control. 2016;5:10.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mirmoghtadaie L, Aliabadi SS, Hosseini SM. Recent approaches in physical modification of protein functionality. Food Chem. 2016;199:619–27.

    Article  CAS  PubMed  Google Scholar 

  84. Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J. Nonthermal plasma—a tool for decontamination and disinfection. Biotechnol Adv. 2015;33:1108–19.

    Article  CAS  PubMed  Google Scholar 

  85. Claro T, Fay R, Murphy C, O’Connor N, Daniels S, Humphreys H. Cold plasma technology and reducing surface bacterial counts: a pilot study. Infect Control Hosp Epidemiol. 2017;38:494–6.

    Article  PubMed  Google Scholar 

  86. Froehling A, Schlueter O. Flow cytometric evaluation of physico-chemical impact on gram-positive and gram-negative bacteria. Front Microbiol. 2015;6:939.

    Google Scholar 

  87. Cahill OJ, Claro T, O’Connor N, Cafolla AA, Steven NT, Daniels S, Humphreys H. Cold air plasma to decontaminate inanimate surfaces of the hospital environment. Appl Environ Microbiol. 2014;80(6):2004–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Golkowski M, Leszczynski J, Plimpton SR, McCollister B, Golkowski C. In vitro and in vivo analysis of hydrogen peroxide-enhanced plasma-induced effluent for infection and contamination mitigation at research and medical facilities. Plasma Med. 2015;5(2–4):109–23.

    Article  Google Scholar 

  89. Li YF, Shimizu T, Zimmermann JL, Morfill GE. Cold atmospheric plasma for surface disinfection. Shimizu Plasma Proc Polym. 2012;9(6):585–9.

    Article  CAS  Google Scholar 

  90. Morrison KA, Asanbe O, Dong X, Weinstein AL, Toyoda Y, Guevara D, Kirkels E, Landford W, Golkowski C, Golkowski M, Spector JA. Rapid sterilization of cell phones using a novel portable non-thermal plasma device. Plasma Med. 2015;5(1):57–70.

    Article  Google Scholar 

  91. Müller M, Semenov I, Binder S, Zimmermann JL, Shimizu T, Morfill GE, Rettberg P, Thoma MH, Thomas HM. Cold atmospheric plasma technology for decontamination of space equipment. 6th Int Conf Plasma Medicine (ICPM-6), 2016, Bratislava, Slovakia. http://elib.dlr.de/106092/1/ME-SBA-2016-Mueller-Rettberg-icpm6.pdf.

  92. Duske K, Jablonowski L, Koban I, Matthes R, Holtfreter B, Sckell A, Nebe JB, von Woedtke T, Weltmann KD, Kocher T. Cold atmospheric plasma in combination with mechanical treatment improves osteoblast growth on biofilm covered titanium discs. Biomaterials. 2015;52:327–34.

    Article  CAS  PubMed  Google Scholar 

  93. Krcma F, Klimova E, Mazankova V, Dostal L, Obradovic B, Nikiforov A, Vanraes P. Novel plasma source based on pin-hole discharge configuration. Plasma Med. 2016;6(1):21–31.

    Article  Google Scholar 

  94. Kramer A, Pittet D, Klasinc R, Krebs S, Koburger T, Fusch C, Assadian O. Shortening the application time of alcohol-based hand rubs to 15 s may improve frequency of hand antisepsis. ICHE. In rev.

    Google Scholar 

  95. Kramer A, Rudolph P, Kampf G, Pittet D. Limited efficacy of alcohol-based hand gels. Lancet. 2002;359(9316):1489–90.

    Article  CAS  PubMed  Google Scholar 

  96. Paula H, Krebs U, Becker R, Assadian O, Heidecke CD, Kramer A. Wettability of hands during 15s and 30s contact intervals: a prospective, randomized cross-over study. J Hosp Inf. In rev.

    Google Scholar 

  97. Pires D, Soule H, Bellissimo-Rodrigues F, Pittet D. Hand hygiene with alcohol-based hand rub: how long is long enough? Infect Control Hosp Epidemiol. 2017;6:65.

    Google Scholar 

  98. Gessner S, Below E, Diedrich S, Wegner C, Gessner W, Kohlmann T, Heidecke CD, Bockholdt B, Kramer A, Assadian O, Below H. Ethanol and ethyl glucuronide urine concentrations after ethanol-based hand antisepsis with and without permitted alcohol consumption. Am J Infect Control. 2016;44(9):999–1003.

    Article  CAS  PubMed  Google Scholar 

  99. Kramer A, Harnoss JC, Walger P, Heidecke CD, Schreiber A, Maier S, Pochhammer J. Hygiene in der Allgemein- und Viszeralchirurgie—Fachspezifische Maßnahmen zur Prävention von Surgical Site Infections (SSI). Zbl Chir. 2016;141(06):591–6.

    PubMed  Google Scholar 

  100. Kampf G, Kramer A. Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. Clin Microbiol Rev. 2004;17(4):863–93.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Osman I, Ponukumati A, Vargas M, Bhakta D, Ozoglu B, Bailey C. Plasma-activated vapor for sanitization of hands. Plasma Med. 2016;6(3–4):235–45.

    Article  Google Scholar 

  102. Ulmer M, Lademann J, Patzelt A, Knorr F, Kramer A, Koburger T, Assadian O, Daeschlein G, Lange-Asschenfeldt B. New strategies for preoperative skin antisepsis. Skin Pharmacol Physiol. 2014;27(6):283–92.

    Article  CAS  PubMed  Google Scholar 

  103. Lange-Asschenfeldt B, Marenbach D, Lang C, Patzelt A, Ulrich M, Maltusch A, Terhorst D, Stockfleth E, Sterry W, Lademann J. Distribution of bacteria in the epidermal layers and hair follicles of the human skin. Skin Pharmacol Physiol. 2011;24:305–11.

    Article  CAS  PubMed  Google Scholar 

  104. Kamel C, McGahan L, Polisena J, Mierzwinski-Urban M, Embil JM. Preoperative skin antiseptic preparations for preventing surgical site infections: a systematic review. Infect Control Hosp Epidemiol. 2012;33(6):608–17.

    Article  PubMed  Google Scholar 

  105. Ouf SA, El-Adly AA, Mohamed AAH. Inhibitory effect of silver nanoparticles mediated by atmospheric pressure air cold plasma jet against dermatophyte fungi. J Med Microbiol. 2015;64:1151–61.

    Article  CAS  PubMed  Google Scholar 

  106. Shapourzadeh A, Rahimi-Verki N, Atyabi SM, Shams-Ghahfarokhi M, Jahanshiri Z, Irani S, Razzaghi-Abyaneh M. Inhibitory effects of cold atmospheric plasma on the growth, ergosterol biosynthesis, and keratinase activity in Trichophyton rubrum. Arch Biochem Biophys. 2016;608:27–33.

    Article  CAS  PubMed  Google Scholar 

  107. Rahimi-Verki N, Shapoorzadeh A, Razzaghi-Abyaneh M, Atyabi SM, Shams-Ghahfarokhi M, Jahanshiri Z, Gholami-Shabani M. Cold atmospheric plasma inhibits the growth of Candida albicans by affecting ergosterol biosynthesis and suppresses the fungal virulence factors in vitro. Photodiagn Photodyn Ther. 2016;13:66–72.

    Article  CAS  Google Scholar 

  108. Xiong ZL, Roe J, Grammer TC, Graves DB. Plasma treatment of onychomycosis. Plasma Process Polym. 2016;13:588–97.

    Article  CAS  Google Scholar 

  109. Habib M, Hottel TL, Hong L. Antimicrobial effects of non-thermal atmospheric plasma as a novel root canal disinfectant. Clin Plasma Med. 2014;2:17–21.

    Article  Google Scholar 

  110. Li YL, Sun K, Ye GP, Liang YD, Pan H, Wang GM, Zhao YJ, Pan J, Zhang J, Fang J. Evaluation of cold plasma treatment and safety in disinfecting 3-week root canal enterococcus faecalis biofilm in vitro. J Endod. 2015;41:1325–30.

    Article  PubMed  Google Scholar 

  111. Pignata C, DÁngelo D, Fea E, Gilli G. A review on microbiological decontamination of fresh produce with nonthermal plasma. J Appl Microbiol. 2017;122:1438–55.

    Article  CAS  PubMed  Google Scholar 

  112. Pierdzioch P, Hartwig S, Herbst SR, Raguse JD, Dommisch H, Abu-Sirhan S, Wirtz HC, Hertel M, Paris S, Preissner S. Cold plasma: a novel approach to treat infected dentin—a combined ex vivo and in vitro study. Clin Oral Investig. 2016;20:2429–35.

    Article  PubMed  Google Scholar 

  113. Wang GM, Sun PP, Pan H, Ye GP, Sun K, Zhang J, Pan J, Fang J. Inactivation of Candida albicans on polymethyl methacrylate and enhancement of the drug susceptibility by cold Ar/O2 plasma jet. Plasma Chem Plasma Process. 2016;36:383–96.

    Article  CAS  Google Scholar 

  114. Preissner S, Wirtz HC, Tietz AK, Abu-Sirhan S, Herbst SR, Hartwig S, Pierdzioch P, Schmidt-Westhausen AM, Dommisch H, Hertel M. Bactericidal efficacy of tissue tolerable plasma microrough titanium dental implantats: an in-vitro-study. J Biophotonics. 2016;9:637–44.

    Article  CAS  PubMed  Google Scholar 

  115. Maisch T, Shimizu T, Li YF, Heinlin J, Karrer S, Morfill G, Zimmermann JL. Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS One. 2012;7(4):e34610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Köck R, Becker K, Cookson B, van Gemert-Pijnen JE, Harbarth S, Kluytmans J, Mielke M, Peters G, Skov RL, Struelens MJ, Tacconelli E, Witte W, Friedrich AW. Systematic literature analysis and review of targeted preventive measures to limit healthcare-associated infections by meticillin-resistant Staphylococcus aureus. Euro Surveill. 2014;19(29):20860.

    Article  PubMed  Google Scholar 

  117. Li X, Farid M. A review on recent development in non-conventional food sterilization technologies. J Food Engin. 2016;182:33–45.

    Article  Google Scholar 

  118. Mok C, Lee T, Puligundla P. Afterglow corona discharge air plasma (ACDAP) for inactivation of common food-borne pathogens. Food Res Int. 2015;69:418–23.

    Article  CAS  Google Scholar 

  119. Shaw A, Shama G, Iza F. Emerging applications of low temperature gas plasmas in the food industry. Biointerphases. 2015;10:029402.

    Article  PubMed  CAS  Google Scholar 

  120. Surowky B, Schlueter O, Knorr D. Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: a review. Food Eng Rev. 2015;7:82–108.

    Article  CAS  Google Scholar 

  121. Abdi S, Dorranian D, Mohammadi K. Effect of oxygen on decontamination of cumin seeds by atmospheric pressure dielectric barrier discharge plasma. Plasma Med. 2016;6(3–4):339–47.

    Article  Google Scholar 

  122. Afshari R, Hosseini H. Non-thermal plasma as a new food preservation method, its present and future prospect. Winter. 2014;5(1):116–20.

    Google Scholar 

  123. Al-Bukhaiti WQ, Noman A, Mahdi A. Characteristics and applications of cold atmospheric plasma—review. Int J Agricult Innov Res. 2016;5(2):257–61.

    Google Scholar 

  124. Amini M, Ghoranneviss M. Black and green tea decontamination by cold plasma. Res J Microbiol. 2016;11:42–6.

    Article  CAS  Google Scholar 

  125. Dey A, Rasane P, Choudhury A, Singh J, Maisnam D, Rasane P. Cold plasma processing: a review. J Chem Pharmac Sci. 2016;9(4):2980–4.

    CAS  Google Scholar 

  126. Georgescu N, Apostol L, Gherendi F. Inactivation of Salmonella enterica serovar typhimurium on egg surface, by direct and indirect treatments with cold atmospheric plasma. Food Control. 2017;76:52–61.

    Article  CAS  Google Scholar 

  127. Grabowski M, Strzelczak A, Dąbrowski W. Low pressure cold plasma as an alternative method for black pepper sterilization. J Life Sci. 2014;8:931–9.

    CAS  Google Scholar 

  128. Gurol C, Ekinci FY, Aslan N, Korachi M. Low temperature plasma for decontamination of E. coli in milk. Int J Food Microbiol. 2012;157(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  129. Han L, Ziuzina D, Heslin CM, Boehm D, Patange A, Millan-Sango D, Valdramidis V, Cullen P, Bourke P. Controlling microbial safety challenges of meat using high voltage atmospheric cold plasma. Front Microbiol. 2016;7:977.

    PubMed  PubMed Central  Google Scholar 

  130. Hertwig C, Reineke K, Ehlbeck J, Knorr D, Schlüter O. Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control. 2015;55:221–9.

    Article  CAS  Google Scholar 

  131. Korachi M, Aslan N. Low temperature atmospheric plasma for microbial decontamination. Microbial pathogens and strategies for combating them. J Sci Educ Technol. 2013;1:453–9.

    Google Scholar 

  132. Korachi M, Ozen F, Asian N, Vannini L, Guerzoni ME, Gottardi D, Ekinci FY. Biochemical changes to milk following treatment by a novel, cold atmospheric plasma system. Int Dairy J. 2015;42:64–9.

    Article  CAS  Google Scholar 

  133. Misra NN, Segat A, Cullen PJ. Atmospheric-pressure non-thermal plasma decontamination of foods. In: Rai VR, editor. Advances in food biotechnology. Wiley-Blackwell; 2015.

    Chapter  Google Scholar 

  134. Moritz M, Wiacek C, Koethe M, Braun PG. Atmospheric pressure plasma jet treatment of salmonella enteritidis inoculated eggshells. Int J Food Microbiol. 2017;245:22–8.

    Article  CAS  PubMed  Google Scholar 

  135. Niemira BA. Cold plasma decontamination of foods. Annu Rev Food Sci Technol. 2012;3:125–42.

    Article  CAS  PubMed  Google Scholar 

  136. Noriega E, Shama G, Laca A, Díaz M, Kong MG. Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiol. 2011;28(7):1293–300.

    Article  CAS  PubMed  Google Scholar 

  137. Pasquali F, Stratakos AC, Koidis A, Berardinelli A, Cevoli C, Ragni L, Mancusi R, Manfreda G, Trevisani M. Atmospheric cold plasma process for vegetible leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control. 2016;60:552–9.

    Article  CAS  Google Scholar 

  138. Perni S, Liu DW, Shama G, Kong MG. Cold atmospheric plasma decontamination of the pericarps of fruit. J Food Prot. 2008;71(2):302–8.

    Article  CAS  PubMed  Google Scholar 

  139. Perni S, Shama G, Kong MG. Cold atmospheric plasma disinfection of cut fruit surfaces contaminated with migrating microorganisms. J Food Prot. 2008;71(8):1619–25.

    Article  PubMed  Google Scholar 

  140. Puligundla P, Lee T, Mok C. Inactivation effect of dielectric barrier discharge plasma against foodborne pathogens on the surfaces of different packaging materials. Innovative Food Sci Emerg Technol. 2016;36:221–7.

    Article  CAS  Google Scholar 

  141. Schnabel U, Niquet R, Andrasch M, Jakobs M, Schlüter O, Katroschan KU, Weltmann KD, Ehlbeck J. Broccoli: Antimicrobial efficacy and influences to sensory and storage properties by microwave plasma-processed air treatment. Plasma Med. 2016;6(3–4):375–88.

    Article  Google Scholar 

  142. Smet C, Noriega E, Rosier F, Walsh J, Valdramidis V, Impe van J. Influence of food intrinsic factors on the inactivation efficacy of cold atmospheric plasma: impact of osmotic stress, suboptimal pH and food structure. Innovative Food Sci Emerg Technol 2016 38B: 393–406.

    Article  CAS  Google Scholar 

  143. Smet C, Noriega E, Rosier F, Walsh J, Valdramidis V, van Impe J. Impact of food model (micro)structure on the microbial inactivation efficacy of cold atmospheric plasma. Int J Food Microbiol. 2017;240:47–56.

    Article  CAS  PubMed  Google Scholar 

  144. Song AY, YA O, Roh SH, Kim JH, Min SC. Cold oxygen plasma treatment for the improvement of the physicochemical and biodegradable properties of polylactic acid films for food packing. J Food Sci. 2016;81:E86–96.

    Article  CAS  PubMed  Google Scholar 

  145. Stoica M, Alexe P, Mihalcea L. Atmospheric cold plasma as new strategy for foods processing - an overview. Innov Rom Food Biotechnol. 2014;15:1–8.

    Google Scholar 

  146. Ulbin-Figlewicz N, Brychcy E, Jarmoluk A. Effect of low-pressure cold plasma on surface microflora of meat and quality attributes. J Food Sci Technol. 2015;52:1228–32.

    Article  PubMed  Google Scholar 

  147. Ulbin-Figlewicz N, Jarmoluk A, Marycz K. Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Ann Microbiol. 2015;65:1537–46.

    Article  CAS  PubMed  Google Scholar 

  148. Wan ZF, Chen Y, Pankaj SK, Keener KM. High voltage atmospheric cold plasma treatment of refrigerated chicken eggs for control of Salmonella Enteritidis contamination on egg shell. LTW Food Sci Technol. 2017;76:124–30.

    CAS  Google Scholar 

  149. Ziuzina D, Misra NN, Cullen PJ, Keener K, Mosnier JP, Vilaró I, Gaston E, Bourke P. Demonstrating the potential of industrial scale in-package atmospheric cold plasma for decontamination of cherry tomatoes. Plasma Med. 2016;6(3–4):387–412.

    Google Scholar 

  150. Ziuzina D, Patil S, Cullen PJ, Keener KM, Bourke P. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol. 2014;42:109–16.

    Article  CAS  PubMed  Google Scholar 

  151. Ziuzina D. Patil., Cullen PJ, Keener KM, Bourke P. Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J Appl Microbiol. 2013;114:778–87.

    Article  CAS  PubMed  Google Scholar 

  152. Ouf SA, Mohamed AAH, El-Sayed WS. Fungal decontamination of fleshy fruit washes by double atmospheric pressure cold plasma. Clean Soil Air Water. 2015;44:134–42.

    Article  CAS  Google Scholar 

  153. Jahid IK, Han N, Zhang CY, Ha SD. Mixed culture biofilms of Salmonella typhimurium and cultivable indigenous microorganisms on lettuce show enhanced resistance of their sessile cells to cold oxygen plasma. Food Microbiol. 2015;46:383–94.

    Article  CAS  PubMed  Google Scholar 

  154. Lee H, Kim JE, Chung MS, Min SC. Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiol. 2015;51:74–80.

    Article  CAS  PubMed  Google Scholar 

  155. Min SC, Roh SH, Boyd G, Sites JE, Uknalis J, Fan XT, Niemira BA. Inactivation of Escherichia coli O157:H7 and aerobic microorganisms in Romaine lettuce packaged in a commercial polyethylene terephthalate container using atmospheric cold plasma. J Food Prot. 2017;80:35–43.

    Article  PubMed  CAS  Google Scholar 

  156. Min SC, Roh SH, Niemira BA, Sites JE, Boyd G, Lacombe A. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. Int J Food Microbiol. 2016;237:114–20.

    Article  CAS  PubMed  Google Scholar 

  157. Song AY, YJ O, Kim JE, Bin Song K, DH O, Min SC. Cold plasma treatment for microbial safety and preservation of fresh lettuce. Food Sci Biotechnol. 2015;24:1717–24.

    Article  CAS  Google Scholar 

  158. Cui HY, Ma CX, Li CZ, Lin L. Enhancing the antibacterial activity of thyme oil against Salmonella on eggshell by plasma-assisted process. Food Control. 2016;70:183–90.

    Article  CAS  Google Scholar 

  159. Cui HY, Ma CX, Lin L. Synergistic antibacterial efficacy of cold nitrogen plasma and clove oil against Escherichia coli O157:H7 biofilms on lettuce. Food Control. 2016;66:8–16.

    Article  CAS  Google Scholar 

  160. Cui HY, Wu J, Li CZ, Lin L. Promoting anti-listeria activity of lemongrass oil on pork loin by cold nitrogen plasma assist. J Food Saf. 2017;37:e12316.

    Article  CAS  Google Scholar 

  161. Segat A, Misra NN, Cullen PJ, Innocente N. Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food Bioprod Process. 2016;98:181–8.

    Article  CAS  Google Scholar 

  162. Amini M, Ghoranneviss M. Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT Food Science and Technology. 2016;73:178–84.

    Article  CAS  Google Scholar 

  163. Bosch ten L, Pfohl K, Avramidis G, Wieneke S, Viöl W, Karlovsky P. Plasma-based degradation of mycotoxins produced by fusarium, aspergillus and alternaria species. Toxins. 2017;9:97.

    Article  CAS  Google Scholar 

  164. Dasan BG, Boyaci IH, Mutlu M. Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control. 2016;70:1–8.

    Article  CAS  Google Scholar 

  165. Devi Y, Thirumdas R, Sarangapani C, Deshmukh RR, Annapure US. Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control. 2017;77:187–91.

    Article  CAS  Google Scholar 

  166. Kim JE, YJ O, Won MY, Lee KS, Min SC. Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Food Microbiol. 2017;62:112–23.

    Article  CAS  PubMed  Google Scholar 

  167. Ouf SA, Basher AH, Mohamed AAH. Inhibitory effect of double atmospheric argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J Sci Food Agric. 2015;95:3204–10.

    Article  CAS  PubMed  Google Scholar 

  168. Sohbatzadeh F, Mirzanejhad S, Shokri H, Nikpour M. Inactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers. J Theor Appl Phys. 2016;10:99–106.

    Article  Google Scholar 

  169. Won MY, Lee SJ, Min SC. Mandarin preservation by microwave-powered plasma treatment. Innovative Food Sci Emerg Technol. 2017;39:25–32.

    Article  CAS  Google Scholar 

  170. Yong HI, Lee H, Park S, Park J, Choe W, Jung S, Jo C. Flexible thin-layer plasma inactivation of bacteria and mold survival in beef jerky packaging and its effects on the meat’s physicochemical properties. Meat Sci. 2017;123:151–8.

    Article  CAS  PubMed  Google Scholar 

  171. Hojnik N, Cvelbar U, Tavčar-Kalcher G, Walsh JL, Križaj I. Mycotoxin decontamination of food: Cold atmospheric pressure plasma versus “classic” decontamination. Toxins. 2017;9(5):151.

    Article  PubMed Central  Google Scholar 

  172. Karlovsky P, Suman M, Berthiller F, Meester JD, Eisenbrand G, Perrin I, Oswald IP, Speijers G, Chiodini A, Recker T, Dussort P. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016;32(4):179–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Park BJ, Takatori K, Sugita-Konishi Y, Kim IH, Lee MH, Han DW, Chung KH, Hyun SO, Park JC. Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure. Surf Coat Technol. 2007;201:5733–7.

    Article  CAS  Google Scholar 

  174. Shi H, Ileleji K, Stroshine RL, Keener K, Jensen JL. Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food Bioprocess Technol. 2017;10:1042–52.

    Article  CAS  Google Scholar 

  175. Siciliano I, Spadaro D, Prelle A, Vallauri D, Cavallero MC, Garibaldi A, Gullino ML. Use of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins (Basel). 2016;8(5):125.

    Article  CAS  Google Scholar 

  176. Puligundla P, Mok C. Potential applications of nonthermal plasmas against biofilm-associated micro-organisms in vitro. J Appl Microbiol. 2017;122:1134–48.

    Article  CAS  PubMed  Google Scholar 

  177. Bauer A, Ni Y, Bauer S, Paulsen P, Modic M, Walsh JL, Smulders FJM. The effects of atmospheric pressure cold plasma treatment on microbiological, physical-chemical and sensory characteristics of vacuum packaged beef loin. Meat Sci. 2017;128:77–87.

    Article  CAS  PubMed  Google Scholar 

  178. Han L, Boehm D, Amias E, Milosavljevic V, Cullen PJ, Bourke P. Atmospheric cold plasma interactions with modified atmosphere packaging inducer gases for safe food preservation. Innov Food Sci Emerg Technol. 2016;38:384–92.

    Article  CAS  Google Scholar 

  179. Han SH, Suh HJ, Hong KB, Kim SY, Min SC. Oral toxicity of cold plasma-treated edible films for food coating. J Food Sci. 2016;81:T3052–7.

    Article  CAS  PubMed  Google Scholar 

  180. Rothrock MJ, Zhuang H, Lawrence KC, Bowker BC, Gamble GR, Hiett KL. In-package inactivation of pathogenic and spoilage bacteria associated with poultry using dielectric barrier discharge cold plasma treatments. Curr Microbiol. 2017;74:149–58.

    Article  CAS  PubMed  Google Scholar 

  181. Wang JM, Zhuang H, Hinton A, Zhang JH. Influence of in-package cold plasma treatment on microbiological shelf life and appearance of fresh chicken breast fillets. Food Microbiol. 2016;60:142–6.

    Article  CAS  PubMed  Google Scholar 

  182. Wang JM, Zhuang H, Zhang JH. Inactivation of spoilage bacteria in package by dielectric barrier discharge atmospheric cold plasma-treatment time effects. Food Bioprocess Technol. 2016;9:1648–52.

    Article  CAS  Google Scholar 

  183. Calvo T, Alvarez-Ordonez A, Prieto M, Gonzalez-Raurich M, Lopez M. Influence of processing parameters and stress adaptation on the inactivation of listeria monocytogenes by non-thermal atmospheric plasma (NTAP). Food Res Int. 2016;89:631–7.

    Article  CAS  PubMed  Google Scholar 

  184. Misra NN, Pankaj SK, Segat A, Ishikawa K. Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci Technol. 2016;55:39–47.

    Article  CAS  Google Scholar 

  185. Thirumdas R, Sarangapani C, Annapure US. Cold plasma: a novel non-thermal technology for food processing. Food Biophys. 2015;10:1–11.

    Article  Google Scholar 

  186. Bussler S, Ehlbeck J, Schlueter O. Pre-drying treatment of plant related tissues using plasma processed air: Impact on enzyme activity and quality attributes of cut apple and potato. Innov Food Sci Emerg Technol. 2017;40:78–86.

    Article  CAS  Google Scholar 

  187. Shaer ME, Mobasher M, Abdelghany A. Effect of gliding arc plasma on plant nutrient content and enzyme activity. Plasma Med. 2016;6(3–4):209–18.

    Article  Google Scholar 

  188. Khani MR, Shokri B, Khajeh K. Studying the performance of dielectric barrier discharge and gliding arc plasma reactors in tomato peroxidise inactivation. J Food Eng. 2017;197:107–12.

    Article  CAS  Google Scholar 

  189. Thirumdas R, Kadam D, Annapure US. Cold plasma: an alternative technology for the starch modification. Food Biophys. 2017;12:129–39.

    Article  Google Scholar 

  190. Pankaj SK, Bueno-Ferrer C, Misra NN, O’Neill L, Tiwari BK, Bourke P, Cullen PJ. Dielectric barrier discharge atmospheric air plasma treatment of high amylase corn starch films. LWT Food Sci Technol. 2015;63:1076–83.

    Article  CAS  Google Scholar 

  191. Thirumdas R, Deshmukh RR, Annapure US. Effect of low temperature plasma on the functional properties of basmati rice flour. J Food Sci Technol. 2016;53(6):2742–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Thirumdas R, Trimukhe A, Deshmukh RR, Annapure US. Functional and rheological properties of cold plasma treated rice starch. Carbohydr Polym. 2017;157:1723–31.

    Article  CAS  PubMed  Google Scholar 

  193. Sarangapani C, Devi Y, Thirumdas R, Annapure US, Deshmukh RR. Effect of low-pressure plasma on physico-chemical properties of paraboiled rice. LWT Food Sci Technol. 2015;63:452–60.

    Article  CAS  Google Scholar 

  194. Bahrami N, Bayliss D, Chope G, Penson S, Perehinec T, Fisk ID. Cold plasma: A new technology to modify wheat flour functionality. Food Chem. 2016;202:247–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Segat A, Misra NN, Cullen PJ, Innocente N. Atmospheric pressure cold plasma (ACP) treatment of whey protein isolate model solution. Innovative Food Sci Emerg Technol. 2015;29:247–54.

    Article  CAS  Google Scholar 

  196. Sahin O, Kaya M, Saka C. Plasma-surface modification on bentonite clay to improve the performance of adsorption of methylene blue. Appl Clay Sci. 2015;116:46–53.

    Article  CAS  Google Scholar 

  197. Moghaddam MS, Heydari G, Tuominen M, Fielden M, Haapanen J, Makela JM, Walinder MEP, Claesson PM, Swerin A. Hydrophobisation of wood surfaces by combining liquid flame spray (LFS) and plasma treatment: dynamic wetting properties. Holzforschung. 2016;70:527–37.

    Article  CAS  Google Scholar 

  198. Huynh A, Li T, Kovalenko M, Robinson RD, Fridman AA, Rabinovich A, Fridman G. Nonequilibrium plasma decontamination of corn steep liquor for ethanol production: SO2 removal and disinfection. Plasma Med. 2016;6(3–4):219–34.

    Article  Google Scholar 

  199. Buonopane GJ, Antonacci C, Lopez JL. Effect of cold plasma processing on botanicals and their essential oils. Plasma Med. 2016;6(3–4):315–24.

    Article  Google Scholar 

  200. Gholami A, Safa NN, Khoram M, Hadian J, Ghomi H. Effect of low-pressure radio frequency plasma on ajwain seed germination. Plasma Med. 2016;6(3–4):389–96.

    Article  Google Scholar 

  201. Holc M, Junkar I, Primc G, Iskra J, Titan P, Mlakar SG, Kovac J, Mozetic M. Improved sprout emergence of garlic cloves by plasma treatment. Plasma Med. 2016;6(3–4):325–38.

    Article  Google Scholar 

  202. Hayashi N, Ono R, Nakano R, Shiratani M, Tashiro K, Kuhara S, Yasuda K, Hagiwara H. DNA microarray analysis of plant seeds irradiated by active oxygen species in oxygen plasma. Plasma Med. 2016;6(3–4):459–71.

    Article  Google Scholar 

  203. Brar J, Jiang J, Oubarri A, Ranieri P, Fridman AA, Fridman G, Miller V, Peethambaran B. Non-thermal plasma treatment of flowing water: a solution to reduce water usage and soil treatment cost without compromising yield. Plasma Med. 2016;6(3–4):413–27.

    Article  Google Scholar 

  204. Peethambaran B, Han J, Kermalli K, Jiaxing J, Fridman G, Balsamo R, Fridman AA, Miller V. Nonthermal plasma reduces water consumption while accelerating arabidopsis thaliana growth and fecundity. Plasma Med. 2015;5(2–4):87–98.

    Article  Google Scholar 

  205. Haertel B, Backer C, Lindner K, Musebeck D, Schulze C, Wurster M, von Woedtke T, Lindequist U. Effects of physical plasma on biotechnological processes in mycelia of the cultivated lingzhi or reishi medicinal mushroom Ganoderma lucidum (Agaricomycetes). Int J Med Mushrooms. 2016;18(6):521–31.

    Article  Google Scholar 

  206. Leclaire C, Lecoq E, Orial G, Clement F, Bousta F. Fungal decontamination by cold plasma: an innovating process for wood treatment. Braga: COST Action IE0601 / ESWM—Int Conf; 2008; 5–7. https://www.researchgate.net/publication/264845493_Fungal_decontamination_by_cold_plasma_an_innovating_process_for_wood_treatment .

  207. Zahoranova A, Henselova M, Hudecova D, Kalinakova B, Kovacik D, Medvecka V, Cernak M. Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seed surface. Plasma Chem Plasma Process. 2016;36:397–414.

    Article  CAS  Google Scholar 

  208. Kordas L, Pusz W, Czapka T, Kacprzyk R. The effect of low-temperature plasma on fungus colonization of winter wheat grain and seed quality. Pol J Environ Stud. 2015;24:433–8.

    CAS  Google Scholar 

  209. Stepczynska M. Surface modification by low temperature plasma: sterilization of biodegradable materials. Plasma Process Polym. 2016;13:1080–8.

    Article  CAS  Google Scholar 

  210. Li L, Li JG, Shen MC, Zhang CL, Dong YH. Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep. 2015;5:13033.

    Article  CAS  Google Scholar 

  211. Mohamed AAH, Al Shariff SM, Ouf SA, Benghanem M. Atmospheric pressure plasma jet for bacterial decontamination and property improvement of fruit and vegetable processing wastewater. J Phys D Appl Phys. 2016;49:195401.

    Article  CAS  Google Scholar 

  212. Benidris E, Ghezzar MR, Ma A, Ouddane B, Addou A. Water purification by a new hybrid plasma-sensitization-coagulation process. Sep Purif Technol. 2017;178:253–60.

    Article  CAS  Google Scholar 

  213. Ikawa S, Tani A, Nakashima Y, Kitano K. Physicochemical properties of bactericidal plasma-treated water. J Phys D Appl Phys. 2016;49:425401.

    Article  CAS  Google Scholar 

  214. Rashmei Z, Bornasi H, Ghoranneviss M. Evaluation of treatment and disinfection of water using cold atmospheric plasma. J Water Health. 2016;14(4):609–16.

    Article  PubMed  Google Scholar 

  215. Tian Y, Ma RN, Zhang Q, Feng HQ, Liang YD, Zhang J, Fang J. Assessment of the physicochemical properties and biological effects of water activated by non-thermal plasma above beneath the water surface. Plasma Process Polym. 2015;12:439–49.

    Article  CAS  Google Scholar 

  216. Zhou RW, Zhou RS, Zhuang JX, Zong ZC, Zhang XH, Liu DP, Bazaka K, Ostrikov K. Interaction of atmospheric-pressure air microplasmas with amino acids as fundamental processes in aqueous solution. PLoS One. 2016;11:e0155584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Brisset JL, Fanmoe J, Hnatiuc E. Degradation of surfactant by cold plasma treatment. J Environml Chem Eng. 2016;4:385–7.

    Article  CAS  Google Scholar 

  218. Malik MA, Ghaffar A, Malik SA. Water purification by electrical discharges. Plasma Sources Sci Technol. 2001;10:82–91.

    Article  CAS  Google Scholar 

  219. Okumura T, Saito Y, Takano K, Takahashi K, Takaki K, Satta N, Fujio T. Inactivation of bacteria using discharge plasma under liquid fertilizer in a hydroponic culture system. Plasma Med. 2016;6(3–4):247–54.

    Article  Google Scholar 

  220. El-Sayed WS, Ouf SA, Mohamed AAH. Deterioration to extinction of wastewater bacteria by non-thermal atmospheric pressure air plasma as assessed by 16S rDNA-DGGE fingerprinting. Front Microbiol. 2015;6:1098.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Arnó J, Bevan JW. Detoxification of trichloroethylene in a low-pressure surface wave plasma reactor. Environ Sci Technol. 1996;30(8):2427–31.

    Article  Google Scholar 

  222. Attri P, Yusupov M, Park JH, Lingamdinne LP, Koduru JR, Shiratani M, Choi EH, Bogaerts A. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes. Sci Rep. 2016;6:34419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Vanraes P, Ghodbane H, Davister D, Wardenier N, Nikiforov A, Verheust YP, Van Hulle SWH, Hamdaoui O, Vandamme J, Dume JV, Surmont P. Removal of several pesticides in a falling water film DBD reactor with activated carbon textile: energy efficiency. Water Res. 2017;116:1–12.

    Article  CAS  PubMed  Google Scholar 

  224. Lai ACK, Cheung ACT, Wong MML, Li WS. Evaluation of cold plasma inactivation efficacy against different airborne bacteria in ventilation duct flow. Build Environ. 2016;98:39–46.

    Article  Google Scholar 

  225. Zhou P, Yang Y, Lai ACK, Huang GS. Inactivation of airborne bacteria by cold plasma in air duct flow. Build Environ. 2016;106:120–30.

    Article  Google Scholar 

  226. Alva E, Pacheco M, Colin A, Sanchez V, Pacheco J, Valdivia R, Soria G. Nitrogen oxides and methane treatment by non-thermal plasma. J Phys Conf Ser. 2015;591(1):012052.

    Article  CAS  Google Scholar 

  227. Karatrum O, Deshusses MA. A comparative study of dilute VOCs treatment in a non-thermal plasma reactor. Chem Eng J. 2016;294:308–15.

    Article  CAS  Google Scholar 

  228. Machado MM, Machado MM, Dutra ARD, Moecke EHS, Cubas ALV. Construction of a corona discharge plasma reactor for elimination of volatile organic compounds. Quim Nova. 2015;38:128–31.

    CAS  Google Scholar 

  229. Veerapandian SKP, Leys C, De Geyter N Morent R. Abatement of VOCs using packed bed non-thermal plasma reactors: a review. Catalysts. 2017;7:113.

    Article  CAS  Google Scholar 

  230. Ye SY, Liang JL, Song XL, Luo SC, Liang JY. Modelling intrinsic kinetics in a rector of corona discharge coupled with TiO2-activated carbon fibre for ethylene degradation and ozone regulation. Biosyst Eng. 2016;150:123–30.

    Article  Google Scholar 

  231. Assadi AA, Bouzaza A, Wolbert D. Comparative study between laboratory and large pilot scales for VOC’s removal from gas streams in continuous flow surface discharge plasma. Chem Eng Res Design. 2016;106:308–14.

    Article  CAS  Google Scholar 

  232. Blumberg A, Blumberg D, Pubule J, Romagnoli F. Cost-benefit analysis of plasma-based technologies. Energy Pro. 2015;72:170–4.

    Article  Google Scholar 

  233. Dam TN, Dung DV. Treatment exhaust gas from engine by plasma at atmospheric pressure. Proc 3rd Int Conf on green technology and Sustainable Development 2016; 228–31.

    Google Scholar 

  234. Harling AM, Demidyuk V, Fischer SJ, Whitehead JC. Plasma-catalysis destruction of aromatics for environmental clean-up: effect of temperature and configuration. Appl Catal B Environ. 2008;82:180–9.

    Article  CAS  Google Scholar 

  235. Huang JY, Dang XQ, Qin CH, Shu Y, Wang HC, Zhang F. Toluene decomposition using adsorption combined with plasma-driven catalysis with gas circulation. Environ Prog Sustain Energy. 2016;35:386–94.

    Article  CAS  Google Scholar 

  236. Jiang LY, Li H, Chen JM, Zhang D, Cao SL, Ye JX. Combination of non-thermal plasma and biotricking filter for chlorobenzene removal. J Chem Technol Biotechnol. 2016;91:3079–87.

    Article  CAS  Google Scholar 

  237. Nguyen DB, Lee WG. Effects of ambient gas on cold atmospheric plasma discharge in the decomposition of trifluoromethane. RSC Adv. 2016;6:26505–13.

    Article  CAS  Google Scholar 

  238. Schiavon M, Schiorlin M, Torretta V, Brandenburg R, Ragazzi M. Non-thermal plasma assisting the biofiltration of volatile organic compounds. J Clean Prod. 2017;148:498–508.

    Article  CAS  Google Scholar 

  239. Stasiulaitiene I, Martuzevicius D, Abromaitis V, Tichonovas M, Baltrusaitis J, Brandenburg R, Pawelec A, Schwock A. Comparative life cycle assessment of plasma-based and traditional exhaust gas treatment technologies. J Clean Prod. 2016;112:1804–12.

    Article  Google Scholar 

  240. Bussler S, Steins V, Ehlbeck J, Schlueter O. Impact of thermal treatment versus cold atmospheric plasma processing on the techno-functional protein properties from Pisum Sativum “Salamanca”. J Food Eng. 2015;167:166–74.

    Article  CAS  Google Scholar 

  241. Park JH, Kim M, Shiratani M, Cho AE, Choi EH, Attri P. Variation in structure of proteins by adjusting reactive oxygen and nitrogen species generated from dielectric barrier discharge jet. Sci Rep. 2016;6:35883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Choi S, Attri P, Lee I, Oh J, Yun JH, Park JH, Choi EH, Lee W. Structural and functional analysis of lysozyme after treatment with dielectric barrier discharge plasma and atmospheric pressure plasma jet. Sci Rep. 2017;7(1):1027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Kousal J, Shelemin A, Kylioan O, Slavinska D, Biederman H. In-situ monitoring of etching of bovine serum albumin using low-temperature atmospheric plasma jet. Appl Surf Sci. 2017;392:1049–54.

    Article  CAS  Google Scholar 

  244. Recek N, Primc G, Vesel A, Mozetic M, Avila J, Razado-Colambo I, Asensio MC. Degradation of albumin on plasma-treated polystyrene by soft X-ray exposure. Polymers. 2016;8:244.

    Article  CAS  PubMed Central  Google Scholar 

  245. Zhang H, ZM X, Shen J, Li X, Ding LL, Ma J, Lan Y, Xia WD, Cheng C, Sun Q, Zhang Z, Chu PK. Effects and mechanism of atmospheric-pressure dielectric barrier discharge cold plasma on lactate dehydrogenase (LDH) enzyme. Sci Rep. 2015;5:10031.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Arfaoui M, Behary N, Mutel B, Perwuelz A, Belhacene K, Dhulster P, Mamede AS, Froidevaux R. Activity of enzymes immobilized on plasma treated polyester. J Mol Catal B Enzym. 2016;134:261–72.

    Article  CAS  Google Scholar 

  247. Liu CJ, Li MY, Wang JQ, Zhou XT, Guo QT, Yan JM, Li YZ. Plasma methods for preparing green catalysts: Current status and perspective. Chin J Catal. 2016;37:340–8.

    Article  CAS  Google Scholar 

  248. Pan YX, Cong HP, Men YL, Xin S, Sun ZQ, Liu CJ, Yu SH. Peptide self-assembled biofilm with unique electron transfer flexibility for highly efficient visible-light-driven photocatalysis. ACS Nano. 2015;9:11258–65.

    Article  CAS  PubMed  Google Scholar 

  249. Bussler S, Herppich WB, Neugart S, Schreiner M, Ehlbeck J, Rohn S, Schlueter O. Impact of cold atmospheric pressure plasma on physiology and flavonol glycoside profile of peas (Pisum sativum “Salamanca”). Food Res Int. 2015;76:132–41.

    Article  CAS  Google Scholar 

  250. Zhang JJ, Jo JO, Huynh DL, Mongre RK, Ghosh M, Singh AK, Lee SB, Mok YS, Hyuk P, Jeong DK. Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes. Sci Rep. 2017;7:41917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Yan DY, Xiao HJ, Zhu W, Nourmohammadi N, Zhang LG, Bian K, Keidar M. The role of aquaporins in the anti-glioblastoma capacity of the cold plasma-stimulated medium. J Phys D Appl Phys. 2017;50:055401.

    Article  CAS  Google Scholar 

  252. Bartis EAJ, Luan PS, Knoll AJ, Graves DB, Seong J, Oehrlein GS. A comparative study of biomolecule and polymer surface modifications by a surface microdischarge. Eur Phys J D. 2016;70(25):1–19.

    CAS  Google Scholar 

  253. Stoleru E, Dumitriu RP, Munteanu BS, Zaharescu T, Tanase EE, Mitelut A, Ailiesei GL, Vasile C. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization. Appl Surf Sci. 2016;367:407–17.

    Article  CAS  Google Scholar 

  254. Bastekova K, Guselnikova O, Postnikov P, Elashnikov R, Kunes M, Kolska Z, Svorcik V, Lyutakov O. Spatially selective modification of PLA surface: from hydrophobic to hydrophilic or to repellent. Appl Surf Sci. 2017;397:226–34.

    Article  CAS  Google Scholar 

  255. Stoleru E, Zaharaescu T, Hitruc EG, Vese A, Ioanid EG, Coroaba A, Safrany A, Pricope G, Lungu M, Schick C, Vasile C. Lactoferrin-immobilized surfaces onto functionalized PLA assisted by the gamma-rays and nitrogen plasma to create materials with multifunctional properties. ACS Appl Mater Interfaces. 2016;8:31902–15.

    Article  CAS  PubMed  Google Scholar 

  256. Pankaj SK, Bueno-Ferrer C, O’Neill L, Tiwari BK, Bourke P, Cullen PJ. Characterization of dielectric barrier discharge atmospheric air plasma treated chitosan films. J Food Process Preserv. 2017;41:e12889.

    Article  CAS  Google Scholar 

  257. Irimia A, Ioanid GE, Zaharescu T, Coroaba A, Doroftei F, Safrany A, Vasile C. Comparative study on gamma irradiation and cold plasma pretreatment for a cellulosic substrate modification with phenolic compounds. Radiat Phys Chem. 2017;130:52–61.

    Article  CAS  Google Scholar 

  258. Memon H, Kumari N. Study of multifunctional nanocoated cold plasma treated polyester cotton blended curtains. Surf Rev Lett. 2016;23:1650036.

    Article  CAS  Google Scholar 

  259. Primc G, Tomasic B, Vesel A, Mozetic M, Razic SE, Gorjanc M. Biodegradability of oxygen-plasma treated cellulose textile functionalized with ZnO nanoparticles as antibacterial treatment. J Phys D Appl Phys. 2016;49:324002.

    Article  CAS  Google Scholar 

  260. Sousa S, Gaiolas C, Costa AP, Baptista C, Amaral ME. Cold plasma treatment of cotton and viscose fabrics impregnated with essential oils of Lavandula angustifolia and Melaleuca alternifolia. Cellul Chem Technol. 2016;50:711–9.

    CAS  Google Scholar 

  261. Karam L, Casetta M, Chihib NE, Bentiss F, Maschke U, Jama C. Optimization of cold nitrogen plasma surface modification process for setting up antimicrobial low density polyethylene films. J Taiwan Inst Chem Eng. 2016;64:299–305.

    Article  CAS  Google Scholar 

  262. Pan H, Wang GM, Pan J, Ye GP, Sun K, Zhang J, Wang J. Cold plasma-induced surface modification of heat-polymerized acrylic resin and prevention of early adherence of Candida albicans. Dent Mater J. 2015;34:529–36.

    Article  CAS  PubMed  Google Scholar 

  263. Qian K, Pan H, Li YL, Wang GM, Zhang J, Pan J. Time-related surface modification of denture base acrylic resin treated by atmospheric pressure cold plasma. Dent Mater J. 2016;35:97–103.

    Article  CAS  PubMed  Google Scholar 

  264. Kredl J, Kolb JF, Schnabel U, Polak M, Weltmann KD, Fricke K. Deposition of antimicrobial copper-rich coatings on polymers by atmospheric pressure jet plasmas. Materials (Basel). 2016;9:274.

    Article  CAS  Google Scholar 

  265. Ibis F, Oflaz H, Ercan UK. Biofilm inactivation and prevention on common implant material surfaces by nonthermal dbd plasma treatment. Plasma Med. 2016;6(1):33–45.

    Article  Google Scholar 

  266. Guastaldi FPS, Yoo D, Marin C, Jimbo R, Tovar N, Zanetta-Barbosa D, Coelho PG. Plasma treatment maintains surface energy of the implant surface and enhances osseointegration. Int J Biomaterials. 2013:354125.

    Google Scholar 

  267. Rezaei F, Shokri B, Sharifian M. Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: a study on cell growth/proliferation and antibacterial properties. Appl Surf Sci. 2016;360:641–51.

    Article  CAS  Google Scholar 

  268. Joslin JM, McCall JR, Bzdek JP, Johnson DC, Hybertson BM. Aqueous plasma pharmacy: preparation methods, chemistry, and therapeutic applications. Plasma Med. 2016;6(2):135–77.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Treshchalov A, Tsarenko S, Avarmaa T, Saar R, Lohmus A, Vanetsev A, Ilmo Sildos I. He/H2 pulsed-discharge plasma as a tool for synthesis of surfactant-free colloidal silver nanoparticles in water. Plasma Med. 2016;6(1):85–100.

    Article  Google Scholar 

  270. Ingels R, Graves DB. Improving the efficiency of organic fertilizer and nitrogen use via air plasma and distributed renewable energy. Plasma Med. 2015;5(2–4):257–70.

    Article  Google Scholar 

  271. Pierdzioch P, Hartwig S, Herbst SR, Raguse JD, Dommisch H, Abu-Sirhan S, Wirtz HC, Hertel M, Paris S, Preissner S. Cold plasma: a novel approach to treat infected dentin—a combined ex vivo and in vitro study. Clin Oral Investig. 2016;20:2429–35.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Kramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kramer, A., Schauer, F., Papke, R., Bekeschus, S. (2018). Plasma Application for Hygienic Purposes in Medicine, Industry, and Biotechnology: Update 2017. In: Metelmann, HR., von Woedtke, T., Weltmann, KD. (eds) Comprehensive Clinical Plasma Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-67627-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67627-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67626-5

  • Online ISBN: 978-3-319-67627-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics