Introduction to Plasma Medicine

  • Thomas von Woedtke
  • Anke Schmidt
  • Sander Bekeschus
  • Kristian Wende
Chapter

Abstract

With a supply of energy, physical plasma is formed by the ionization of atoms or molecules of a gas. Plasmas applicable in medicine are generated in an atmospheric environment. Biological plasma effects that are potentially useful for medical applications are mainly mediated via changes to the liquid cell and tissue environment by reactive (redox-active) oxygen and nitrogen species. Because many of the plasma-generated reactive species are part of regular physiological and biochemical processes in mammalian cells, organisms have effective systems to respond to exogenous challenges from reactive species. Low plasma treatment intensities (short treatment times) give rise to an activation of cells that is the main basis for plasma-supported wound healing. Frequently, an increase in signaling protein production as well as changes in cell motility and metabolism, or changes in cell contact and anchorage proteins are observed. Higher plasma treatment intensities (longer treatment times) result in cell inactivation by induction of apoptosis, which may open new avenues in cancer treatment.

Keywords

Plasma medicine Cold atmospheric plasma Biological plasma effects Redox biology 

References

  1. 1.
    d’Agostino R, Favia P, Oehr C, Wertheimer MR. Low-temperature plasma processing of materials: past, present, and future. Plasma Process Polym. 2005;2:7–15.CrossRefGoogle Scholar
  2. 2.
    Daeschlein G, Scholz S, Emmert S, von Podewils S, Haase H, von Woedtke T, Jünger M. Plasma medicine in dermatology: basic antimicrobial efficacy testing as prerequisite to clinical plasma therapy. Plasma Med. 2012;2:33–69.CrossRefGoogle Scholar
  3. 3.
    Daeschlein G, Napp M, von Podewils S, Lutze S, Emmert S, Lange A, Klare I, Haase H, Gümbel D, von Woedtke T, Jünger M. In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym. 2014;11:175–83.CrossRefGoogle Scholar
  4. 4.
    Moreau M, Orange N, Feuilloley MGJ. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv. 2008;26:610–7.CrossRefGoogle Scholar
  5. 5.
    Bauer A, Faulhaber J, Kober P. Der Hochfrequenzstrahlapparat, sein Wesen und seine Anwendung. Verlag Dr. H. Stock; cited in: Weltmann K-D, Polak M, Masur K, von Woedtke T, Winter J, Reuter S (2012) Plasma Processes and Plasma Sources in Medicine. Contrib Plasma Physics 1928;52:644–54.Google Scholar
  6. 6.
    Weltmann KD, Polak M, Masur K, von Woedtke T, Winter J, Reuter S. Plasma processes and plasma sources in medicine. Contrib Plasma Physics. 2012;52:644–54.CrossRefGoogle Scholar
  7. 7.
    Burger H. The doctor, the quack and the appetite of the public for magic in medicine. P Roy Soc Med. 1933;27:171–6.Google Scholar
  8. 8.
    Raiser J, Zenker M. Argon plasma coagulation for open surgical and endoscopic applications: state of the art. J Phys D Appl Phys. 2006;39:3520–3.CrossRefGoogle Scholar
  9. 9.
    Bentkover SH. Plasma skin resurfacing: personal experience and long-term results. Facial Plast Surg Clin North Am. 2012;20:145–62.CrossRefGoogle Scholar
  10. 10.
    Foster KW, Moy RL, Fincher EF. Advances in plasma skin regeneration. J Cosmet Dermatol. 2008;7:169–79.CrossRefGoogle Scholar
  11. 11.
    Stoffels E, Kieft IE, Sladek REJ. Superficial treatment of mammalian cells using plasma needle. J Phys D Appl Phys. 2003;36:2908–13.CrossRefGoogle Scholar
  12. 12.
    Stoffels E. “Tissue Processing” with atmospheric plasmas. Contrib Plasma Physics. 2007;47:40–8.CrossRefGoogle Scholar
  13. 13.
    Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A. Applied plasma medicine. Plasma Process Polym. 2008;5:503–33.CrossRefGoogle Scholar
  14. 14.
    Weltmann KD, von Woedtke T. Campus PlasmaMed—from basic research to clinical proof. IEEE Trans Plasma Sci. 2011;39:1015–25.CrossRefGoogle Scholar
  15. 15.
    Park GY, Park SJ, Choi MY, Koo IG, Byun JH, Hong JW, Sim JY, Collins GJ, Lee JK. Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci Technol. 2012;21:043001.CrossRefGoogle Scholar
  16. 16.
    Weltmann KD, von Woedtke T. Basic requirements for plasma sources in medicine. The. Eur Phys J Appl Phys. 2011;55:13807.CrossRefGoogle Scholar
  17. 17.
    Weltmann KD, Kindel E, von Woedtke T, Hähnel M, Stieber M, Brandenburg R. Atmospheric-pressure plasma sources: prospective tools for plasma medicine. Pure Appl Chem. 2010;82:1223–37.CrossRefGoogle Scholar
  18. 18.
    von Woedtke T, Reuter S, Masur K, Weltmann K-D. Plasmas for medicine. Phys Rep. 2013;530:291–320.CrossRefGoogle Scholar
  19. 19.
    von Woedtke T, Metelmann HR, Weltmann KD. Clinical plasma medicine: state and perspectives of in vivo application of cold atmospheric plasma. Contrib Plasma Physics. 2014;54:104–17.CrossRefGoogle Scholar
  20. 20.
    Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol. 2004;2:820–32.CrossRefGoogle Scholar
  21. 21.
    Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys. 2012;45:263001.CrossRefGoogle Scholar
  22. 22.
    Graves DB. Oxy-nitroso shielding burst model of cold atmospheric plasma therapeutics. Clin Plasma Med. 2014;2:38–49.CrossRefGoogle Scholar
  23. 23.
    Wende K, Reuter S, von Woedtke T, Weltmann KD, Masur K. Redox-based assay for assessment of biological impact of plasma treatment. Plasma Process Polym. 2014;11:655–63.CrossRefGoogle Scholar
  24. 24.
    Bekeschus S, von Woedtke T, Kramer A, Weltmann K-D, Masur K. Cold physical plasma treatment alters redox balance in human immune cells. Plasma Med. 2013;3:267–78.CrossRefGoogle Scholar
  25. 25.
    Bekeschus S, Kolata J, Winterbourn C, Kramer A, Turner R, Weltmann K-D, Bröker B, Masur K. Hydrogen peroxide: a central player in physical plasma-induced oxidative stress in human blood cells. Free Radic Res. 2014;48:542–9.CrossRefGoogle Scholar
  26. 26.
    Bekeschus S, Iséni S, Reuter S, Masur K, Weltmann K-D. Nitrogen shielding of argon plasma jet and its effects on human immune cells. IEEE Trans Plasma Sci. 2015;43:776–81.CrossRefGoogle Scholar
  27. 27.
    Schmidt A, Wende K, Bekeschus S, Bundscherer L, Barton A, Ottmüller K, Weltmann K-D, Masur K. Non-thermal plasma treatment is associated with changes in transcriptome of human epithelial skin cells. Free Radic Res. 2013;47:577–92.CrossRefGoogle Scholar
  28. 28.
    Schmidt A, Dietrich S, Steuer A, Weltmann KD, von Woedtke T, Masur K, Wende K. Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase II pathways. J Biol Chem. 2015;290:6731–50.CrossRefGoogle Scholar
  29. 29.
    Ristow M, Schmeisser K. Mitohormesis: promoting health and lifespan by increased levels of rective oxygen species (ROS). Dose Response. 2014;12:288–341.CrossRefGoogle Scholar
  30. 30.
    Calabrese EJ, Baldwin LA. Hormesis: the dose-response revolution. Annu Rev Pharmacol Toxicol. 2003;43:175–97.CrossRefGoogle Scholar
  31. 31.
    Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol. 2013;85:705–17.CrossRefGoogle Scholar
  32. 32.
    Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–26.CrossRefGoogle Scholar
  33. 33.
    Lendeckel D, Eymann C, Emicke P, Daeschlein G, Darm K, O’Neil S, Beule AG, von Woedtke T, Völker U, Weltmann K-D, Jünger M, Hosemann W, Scharf C. Proteomic changes of tissue-tolerable plasma treated airway epithelial cells and their relation to wound healing. BioMed Res Int. 2015;2015:06059.CrossRefGoogle Scholar
  34. 34.
    Hasse S, Tran T, Hahn O, Kindler S, Metelmann HR, von Woedtke T, Masur K. Induction of proliferation of basal epidermal keratinocytes by cold atmospheric pressure plasma. Clin Exp Dermatol. 2015;41:202–9.CrossRefGoogle Scholar
  35. 35.
    Schmidt A, Bekeschus S, Wende K, Vollmar B, von Woedtke T. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp Dermatol. 2017;26:156–62.CrossRefGoogle Scholar
  36. 36.
    Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.CrossRefGoogle Scholar
  37. 37.
    Boxhammer V, Li YF, Köritzer J, Shimizu T, Maisch T, Thomas HM, Schlegel J, Morfill GE, Zimmermann JL. Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages. Mutat Res Gen Tox En. 2013;753:23–8.CrossRefGoogle Scholar
  38. 38.
    Kluge S, Bekeschus S, Bender C, Benkhai H, Sckell A, Below H, Stope MB, Kramer A. Investigating the mutagenicity of a cold argon-plasma jet in an HET-MN model. PLoS One. 2016;11:e0160667.CrossRefGoogle Scholar
  39. 39.
    Wende K, Bekeschus S, Schmidt A, Jatsch L, Hasse S, Weltmann KD, Masur K, von Woedtke T. Risk assessment of a cold argon plasma jet in respect to its mutagenicity. Mutat Res-Gen Tox En. 2016;798:48–54.CrossRefGoogle Scholar
  40. 40.
    Schmidt A, von Woedtke T, Stenzel J, Lindner T, Polei S, Vollmar B, Bekeschus S. One year follow up risk assessment in SKH-1 mice and wounds treated with an argon plasma jet. Int J Mol Sci. 2017;18:868.CrossRefGoogle Scholar
  41. 41.
    Hasse S, Hahn O, Kindler S, von Woedtke T, Metelmann HR, Masur K. Atmospheric pressure plasma jet application on human oral mucosa modulates tissue regeneration. Plasma Med. 2014;4:117–1129.CrossRefGoogle Scholar
  42. 42.
    Heinlin J, Isbary G, Stolz W, Morfill G, Landthaler M, Shimizu T, Steffes B, Nosenko T, Zimmermann JL, Karrer S. Plasma applications in medicine with a special focus on dermatology. J Eur Acad Dermatol. 2011;25:1–11.CrossRefGoogle Scholar
  43. 43.
    Metelmann HR, TT V, Do HT, Le TNB, Hoang THA, Phi TTT, Luong TML, Doan VT, Nguyen TTH, Nguyen THM, Le DQ, Le TKX, von Woedtke T, Bussiahn R, Weltmann KD, Khalili R, Podmelle F. Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: a clinical long term observation. Clin Plasma Med. 2013;1:30–5.CrossRefGoogle Scholar
  44. 44.
    Kramer A, Hübner NO, Weltmann KD, Lademann J, Ekkernkamp A, Hinz P, Assadian O. Polypragmasia in the therapy of infected wounds—conclusions drawn from the perspectives of low temperature plasma technology for plasma wound therapy. GMS Krankenhaushyg Interdiszip. 2008;3:Doc13.Google Scholar
  45. 45.
    Lloyd G, Friedman G, Jafri S, Schultz G, Fridman A, Harding K. Gas plasma. Medical uses and developments in wound care. Plasma Process Polym. 2010;7:194–211.CrossRefGoogle Scholar
  46. 46.
    Plasmatis Initiative Group. Declaration of the 1st International Workshop on Plasma Tissue Interactions. GMS Krankenhaushyg Interdiszip. 2008;3:Doc01.Google Scholar
  47. 47.
    Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M. Epithelialization in wound healing: a comprehensive review. Adv Wound Care. 2014;3:445–64.CrossRefGoogle Scholar
  48. 48.
    Portou MJ, Baker D, Abraham D, Tsui J. The innate immune system, toll-like receptors and dermal wound healing: a review. Vasc Pharmacol. 2015;71:31–6.CrossRefGoogle Scholar
  49. 49.
    Giorgio M. Oxidative stress and the unfulfilled promises of antioxidant agents. Ecancermedicalscience. 2015;9:556.CrossRefGoogle Scholar
  50. 50.
    Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biol Med. 2010;48:749–62.CrossRefGoogle Scholar
  51. 51.
    Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24:981–90.CrossRefGoogle Scholar
  52. 52.
    Sen CK, Roy S. Redox signals in wound healing. Biochim Biophys Acta. 2008;1780:1348–61.CrossRefGoogle Scholar
  53. 53.
    Sen CK. Wound healing essentials: let there be oxygen. Wound Repair Regen. 2009;17:1–18.CrossRefGoogle Scholar
  54. 54.
    Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–70.CrossRefGoogle Scholar
  55. 55.
    Barton A, Wende K, Bundscherer L, Hasse S, Schmidt A, Bekeschus S, Weltmann K-D, Lindequist U, Masur K. Nonthermal plasma increases expression of wound healing related genes in a keratinocyte cell line. Plasma Med. 2013;3:125–36.CrossRefGoogle Scholar
  56. 56.
    Schmidt A, von Woedtke T, Weltmann KD, Masur K. Identification of the molecular basis of non-thermal plasma-induced changes in human keratinocytes. Plasma Med. 2013;3:15–25.CrossRefGoogle Scholar
  57. 57.
    Schmidt A, Bekeschus S, Jablonowski H, Barton A, Weltmann K-D, Wende K. Role of ambient gas composition on cold physical plasma-elicited cell signaling in keratinocytes. Biophys J. 2017;112:2397–407.CrossRefGoogle Scholar
  58. 58.
    Bundscherer L, Bekeschus S, Tresp H, Hasse S, Reuter S, Weltmann KD, Lindequist U, Masur K. Viability of human blood leukocytes compared with their respective cell lines after plasma treatment. Plasma Med. 2013;3:71–80.CrossRefGoogle Scholar
  59. 59.
    Bundscherer L, Wende K, Ottmüller K, Barton A, Schmidt A, Bekeschus S, Hasse S, Weltmann KD, Masur K, Lindequist U. Impact of non-thermal plasma treatment on MAPK signaling pathways of human immune cell lines. Immunobiology. 2013;218:1248–55.CrossRefGoogle Scholar
  60. 60.
    Kalghatgi S, Friedman G, Fridman A, Morss Clyne A. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth Factor-2 release. Ann Biomed Eng. 2010;38:748–57.CrossRefGoogle Scholar
  61. 61.
    Mast BA, Schultz GS. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 1996;4:411–20.CrossRefGoogle Scholar
  62. 62.
    Bekeschus S. Effects of cold physical plasma on human leukocytes, PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät der Ernst-Moritz-Arndt Universität Greifswald, 2015.Google Scholar
  63. 63.
    Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Rep Regen. 2008;16:585–601.CrossRefGoogle Scholar
  64. 64.
    Brandner JM, Houdek P, Hüsing B, Kaiser C, Moll I. Connexins 26, 30, and 43: differences among spontaneous, chronic, and accelerated human wound healing. J Invest Dermatol. 2004;122:1310–20.CrossRefGoogle Scholar
  65. 65.
    Haertel B, Hähnel M, Blackert S, Wende K, von Woedtke T, Lindequist U. Surface molecules on HaCaT keratinocytes after interaction with non-thermal atmospheric pressure plasma. Cell Biol Int. 2012;36:1217–22.CrossRefGoogle Scholar
  66. 66.
    Haertel B, von Woedtke T, Weltmann KD, Lindequist U. Physical plasma—possible application in wound healing. Biomol Ther. 2014;22:477–90.CrossRefGoogle Scholar
  67. 67.
    Schmidt A, Bekeschus S, von Woedtke T, Hasse S. Cell migration and adhesion of a human melanoma cell line is decreased by cold plasma treatment. Clin Plasma Med. 2015;3:24–31.CrossRefGoogle Scholar
  68. 68.
    Jameson JM, Sharp LL, Witherden DA, Havran WL. Regulation of skin cell homeostasis by gamma delta T cells. Front Biosci. 2004;9:2640–51.CrossRefGoogle Scholar
  69. 69.
    Bekeschus S, Masur K, Kolata J, Wende K, Schmidt A, Bundscherer L, Barton A, Kramer A, Bröker B, Weltmann K-D. Human mononuclear cell survival and proliferation is modulated by cold atmospheric plasma jet. Plasma Process Polym. 2013;10:706–13.CrossRefGoogle Scholar
  70. 70.
    Emmert S, Isbary G, Klutschke F, Lademann J, Westermann U, Podmelle F, Metelmann H-R, Daeschlein G, Masur K, von Woedtke T, Weltmann K-D. Clinical plasma medicine—position and perspectives. Clin Plasma Med. 2013;1:3–4.CrossRefGoogle Scholar
  71. 71.
    Ratovitski EA, Cheng X, Yan D, Sherman JH, Canady J, Trink B, Keidar M. Anti-cancer therapies of 21st century: novel approach to treat human cancers using cold atmospheric plasma. Plasma Process Polym. 2014;11:1128–37.CrossRefGoogle Scholar
  72. 72.
    Schlegel J, Köritzer J, Boxhammer V. Plasma in cancer treatment. Clin Plasma Med. 2013;1(2):2–7.CrossRefGoogle Scholar
  73. 73.
    Graves DB. Reactive species from cold atmospheric plasma: implications for cancer therapy. Plasma Process Polym. 2014;11:1120–7.CrossRefGoogle Scholar
  74. 74.
    Partecke LI, Evert K, Haugk J, Doering F, Normann L, Diedrich S, Weiss FU, Evert M, Hübner NO, Guenther C, Heidecke CD, Kramer A, Bussiahn R, Weltmann KD, Pati O, Bender C, von Bernstorff W. Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer. 2012;12:473.CrossRefGoogle Scholar
  75. 75.
    Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, Ravi R, Guerrero-Preston R, Trink B. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer. 2011;105:1295–301.CrossRefGoogle Scholar
  76. 76.
    Vandamme M, Robert E, Lerondel S, Sarron V, Ries D, Dozias S, Sobilo J, Gosset D, Kieda C, Legrain B, Pouvesle JM, Le Pape A. ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer. 2012;130:2185–94.CrossRefGoogle Scholar
  77. 77.
    von Woedtke T, Metelmann H-R. Editorial. Clin Plasma Med. 2014;2:37.CrossRefGoogle Scholar
  78. 78.
    Julák J, Scholtz V, Kotúčová S, Janoušková O. The persistent microbicidal effect in water exposed to the corona discharge. Phys Med. 2012;28:230–9.CrossRefGoogle Scholar
  79. 79.
    Naïtali M, Kamgang-Youbi G, Herry J-M, Bellon-Fontaine M-N, Brisset J-L. Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Appl Environ Microbiol. 2010;76:7662–4.CrossRefGoogle Scholar
  80. 80.
    Oehmigen K, Winter J, Hähnel M, Wilke C, Brandenburg R, Weltmann KD, von Woedtke T. Estimation of possible mechanisms of Escherichia coli inactivation by plasma treated sodium chloride solution. Plasma Process Polym. 2011;8:904–13.CrossRefGoogle Scholar
  81. 81.
    Tanaka H, Mizuno M, Ishikawa K, Kondo H, Takeda K, Hashizume H, Nakamura K, Utsumi F, Kajiyama H, Kano H, Okazaki Y, Toyokuni S, Akiyama S, Maruyama S, Yamada S, Kodera Y, Kaneko H, Terasaki H, Hara H, Adachi T, Iida M, Yajima I, Kato M, Kikkawa F, Hori M. Plasma with high electron density and plasma-activated medium for cancer treatment. Clin Plasma Med. 2015;3:72–6.CrossRefGoogle Scholar
  82. 82.
    Utsumi F, Kajiyama H, Nakamura K, Tanaka H, Mizuno M, Ishikawa K, Kondo H, Kano H, Hori M, Kikkawa F. Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One. 2013;8:e81576.CrossRefGoogle Scholar
  83. 83.
    Joslin JM, McCall JR, Bzdek JP, Johnson DC, Hybertson BM. Aqueous plasma pharmacy: preparation methods, chemistry, and therapeutic applications. Plasma Med. 2016;6:135–77.CrossRefGoogle Scholar
  84. 84.
    von Woedtke T, Haertel B, Weltmann KD, Lindequist U. Plasma pharmacy—physical plasma in pharmaceutical applications. Pharmazie. 2013;68:492–8.Google Scholar
  85. 85.
    Cha S, Park Y-S. Plasma in dentistry. Clin Plasma Med. 2014;2:4–10.CrossRefGoogle Scholar
  86. 86.
    Alekseev O, Donovan K, Limonnik V, Azizkhan-Clifford J. Nonthermal dielectric barrier discharge (DBD) plasma suppresses herpes simplex virus type 1 (HSV-1) replication in corneal epithelium. Trans Vis Sci Tech. 2014;3:2.CrossRefGoogle Scholar
  87. 87.
    Hammann A, Huebner N-O, Bender C, Ekkernkamp A, Hartmann B, Hinz P, Kindel E, Koban I, Koch S, Kohlmann T, Lademann J, Matthes R, Müller G, Titze R, Weltmann K-D, Kramer A. Antiseptic efficacy and tolerance of tissue-tolerable plasma compared with two wound antiseptics on artificially bacterially contaminated eyes from commercially slaughtered pigs. Skin Pharmacol Physiol. 2010;23:328–32.CrossRefGoogle Scholar
  88. 88.
    Martines E, Brun P, Brun P, Cavazzana R, Deligianni V, Leonardi A, Tarricone E, Zuin M. Towards a plasma treatment of corneal infections. Clin Plasma Med. 2013;1(2):17–24.CrossRefGoogle Scholar
  89. 89.
    Manner H, May A, Faerber M, Rabenstein T, Ell C. Safety and efficacy of a new high power argon plasma coagulation system (hp-APC) in lesions of the upper gastrointestinal tract. Digest Liver Dis. 2006;38:471–8.CrossRefGoogle Scholar
  90. 90.
    Polak M, Winter J, Schnabel U, Ehlbeck J, Weltmann K-D. Innovative plasma generation in flexible biopsy channels for inner-tube decontamination and medical applications. Plasma Process Polym. 2012;9:67–76.CrossRefGoogle Scholar
  91. 91.
    Weltmann K-D, von Woedtke T. Plasma medicine—current state of research and medical application. Plasma Phys Control Fusion. 2017;59:014031.CrossRefGoogle Scholar
  92. 92.
    Robert E, Vandamme M, Brullé L, Lerondel S, Le Pape A, Sarron V, Riès D, Darny T, Dozias S, Collet G, Kieda C, Pouvesle JM. Perspectives of endoscopic plasma applications. Clin Plasma Med. 2013;1(2):8–61.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thomas von Woedtke
    • 1
  • Anke Schmidt
    • 2
  • Sander Bekeschus
    • 3
  • Kristian Wende
    • 3
  1. 1.Leibniz Institute for Plasma Science and Technology (INP Greifswald) and University Medicine Greifswald, Institute for Hygiene and Environmental MedicineGreifswaldGermany
  2. 2.Leibniz Institute for Plasma Science and Technology (INP Greifswald)GreifswaldGermany
  3. 3.Center for Innovation Competence (ZIK) “plasmatis—plasma plus cell”, Leibniz Institute for Plasma Science and Technology (INP Greifswald)GreifswaldGermany

Personalised recommendations