Skip to main content

Introduction to Plasma Medicine

  • Chapter
  • First Online:
Book cover Comprehensive Clinical Plasma Medicine

Abstract

With a supply of energy, physical plasma is formed by the ionization of atoms or molecules of a gas. Plasmas applicable in medicine are generated in an atmospheric environment. Biological plasma effects that are potentially useful for medical applications are mainly mediated via changes to the liquid cell and tissue environment by reactive (redox-active) oxygen and nitrogen species. Because many of the plasma-generated reactive species are part of regular physiological and biochemical processes in mammalian cells, organisms have effective systems to respond to exogenous challenges from reactive species. Low plasma treatment intensities (short treatment times) give rise to an activation of cells that is the main basis for plasma-supported wound healing. Frequently, an increase in signaling protein production as well as changes in cell motility and metabolism, or changes in cell contact and anchorage proteins are observed. Higher plasma treatment intensities (longer treatment times) result in cell inactivation by induction of apoptosis, which may open new avenues in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. d’Agostino R, Favia P, Oehr C, Wertheimer MR. Low-temperature plasma processing of materials: past, present, and future. Plasma Process Polym. 2005;2:7–15.

    Article  Google Scholar 

  2. Daeschlein G, Scholz S, Emmert S, von Podewils S, Haase H, von Woedtke T, Jünger M. Plasma medicine in dermatology: basic antimicrobial efficacy testing as prerequisite to clinical plasma therapy. Plasma Med. 2012;2:33–69.

    Article  Google Scholar 

  3. Daeschlein G, Napp M, von Podewils S, Lutze S, Emmert S, Lange A, Klare I, Haase H, Gümbel D, von Woedtke T, Jünger M. In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym. 2014;11:175–83.

    Article  CAS  Google Scholar 

  4. Moreau M, Orange N, Feuilloley MGJ. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv. 2008;26:610–7.

    Article  CAS  Google Scholar 

  5. Bauer A, Faulhaber J, Kober P. Der Hochfrequenzstrahlapparat, sein Wesen und seine Anwendung. Verlag Dr. H. Stock; cited in: Weltmann K-D, Polak M, Masur K, von Woedtke T, Winter J, Reuter S (2012) Plasma Processes and Plasma Sources in Medicine. Contrib Plasma Physics 1928;52:644–54.

    Google Scholar 

  6. Weltmann KD, Polak M, Masur K, von Woedtke T, Winter J, Reuter S. Plasma processes and plasma sources in medicine. Contrib Plasma Physics. 2012;52:644–54.

    Article  Google Scholar 

  7. Burger H. The doctor, the quack and the appetite of the public for magic in medicine. P Roy Soc Med. 1933;27:171–6.

    CAS  Google Scholar 

  8. Raiser J, Zenker M. Argon plasma coagulation for open surgical and endoscopic applications: state of the art. J Phys D Appl Phys. 2006;39:3520–3.

    Article  CAS  Google Scholar 

  9. Bentkover SH. Plasma skin resurfacing: personal experience and long-term results. Facial Plast Surg Clin North Am. 2012;20:145–62.

    Article  Google Scholar 

  10. Foster KW, Moy RL, Fincher EF. Advances in plasma skin regeneration. J Cosmet Dermatol. 2008;7:169–79.

    Article  Google Scholar 

  11. Stoffels E, Kieft IE, Sladek REJ. Superficial treatment of mammalian cells using plasma needle. J Phys D Appl Phys. 2003;36:2908–13.

    Article  CAS  Google Scholar 

  12. Stoffels E. “Tissue Processing” with atmospheric plasmas. Contrib Plasma Physics. 2007;47:40–8.

    Article  CAS  Google Scholar 

  13. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A. Applied plasma medicine. Plasma Process Polym. 2008;5:503–33.

    Article  CAS  Google Scholar 

  14. Weltmann KD, von Woedtke T. Campus PlasmaMed—from basic research to clinical proof. IEEE Trans Plasma Sci. 2011;39:1015–25.

    Article  Google Scholar 

  15. Park GY, Park SJ, Choi MY, Koo IG, Byun JH, Hong JW, Sim JY, Collins GJ, Lee JK. Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci Technol. 2012;21:043001.

    Article  Google Scholar 

  16. Weltmann KD, von Woedtke T. Basic requirements for plasma sources in medicine. The. Eur Phys J Appl Phys. 2011;55:13807.

    Article  Google Scholar 

  17. Weltmann KD, Kindel E, von Woedtke T, Hähnel M, Stieber M, Brandenburg R. Atmospheric-pressure plasma sources: prospective tools for plasma medicine. Pure Appl Chem. 2010;82:1223–37.

    Article  CAS  Google Scholar 

  18. von Woedtke T, Reuter S, Masur K, Weltmann K-D. Plasmas for medicine. Phys Rep. 2013;530:291–320.

    Article  Google Scholar 

  19. von Woedtke T, Metelmann HR, Weltmann KD. Clinical plasma medicine: state and perspectives of in vivo application of cold atmospheric plasma. Contrib Plasma Physics. 2014;54:104–17.

    Article  Google Scholar 

  20. Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol. 2004;2:820–32.

    Article  CAS  Google Scholar 

  21. Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys. 2012;45:263001.

    Article  Google Scholar 

  22. Graves DB. Oxy-nitroso shielding burst model of cold atmospheric plasma therapeutics. Clin Plasma Med. 2014;2:38–49.

    Article  Google Scholar 

  23. Wende K, Reuter S, von Woedtke T, Weltmann KD, Masur K. Redox-based assay for assessment of biological impact of plasma treatment. Plasma Process Polym. 2014;11:655–63.

    Article  CAS  Google Scholar 

  24. Bekeschus S, von Woedtke T, Kramer A, Weltmann K-D, Masur K. Cold physical plasma treatment alters redox balance in human immune cells. Plasma Med. 2013;3:267–78.

    Article  Google Scholar 

  25. Bekeschus S, Kolata J, Winterbourn C, Kramer A, Turner R, Weltmann K-D, Bröker B, Masur K. Hydrogen peroxide: a central player in physical plasma-induced oxidative stress in human blood cells. Free Radic Res. 2014;48:542–9.

    Article  CAS  Google Scholar 

  26. Bekeschus S, Iséni S, Reuter S, Masur K, Weltmann K-D. Nitrogen shielding of argon plasma jet and its effects on human immune cells. IEEE Trans Plasma Sci. 2015;43:776–81.

    Article  CAS  Google Scholar 

  27. Schmidt A, Wende K, Bekeschus S, Bundscherer L, Barton A, Ottmüller K, Weltmann K-D, Masur K. Non-thermal plasma treatment is associated with changes in transcriptome of human epithelial skin cells. Free Radic Res. 2013;47:577–92.

    Article  CAS  Google Scholar 

  28. Schmidt A, Dietrich S, Steuer A, Weltmann KD, von Woedtke T, Masur K, Wende K. Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase II pathways. J Biol Chem. 2015;290:6731–50.

    Article  CAS  Google Scholar 

  29. Ristow M, Schmeisser K. Mitohormesis: promoting health and lifespan by increased levels of rective oxygen species (ROS). Dose Response. 2014;12:288–341.

    Article  CAS  Google Scholar 

  30. Calabrese EJ, Baldwin LA. Hormesis: the dose-response revolution. Annu Rev Pharmacol Toxicol. 2003;43:175–97.

    Article  CAS  Google Scholar 

  31. Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol. 2013;85:705–17.

    Article  CAS  Google Scholar 

  32. Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–26.

    Article  CAS  Google Scholar 

  33. Lendeckel D, Eymann C, Emicke P, Daeschlein G, Darm K, O’Neil S, Beule AG, von Woedtke T, Völker U, Weltmann K-D, Jünger M, Hosemann W, Scharf C. Proteomic changes of tissue-tolerable plasma treated airway epithelial cells and their relation to wound healing. BioMed Res Int. 2015;2015:06059.

    Article  Google Scholar 

  34. Hasse S, Tran T, Hahn O, Kindler S, Metelmann HR, von Woedtke T, Masur K. Induction of proliferation of basal epidermal keratinocytes by cold atmospheric pressure plasma. Clin Exp Dermatol. 2015;41:202–9.

    Article  Google Scholar 

  35. Schmidt A, Bekeschus S, Wende K, Vollmar B, von Woedtke T. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp Dermatol. 2017;26:156–62.

    Article  CAS  Google Scholar 

  36. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    Article  Google Scholar 

  37. Boxhammer V, Li YF, Köritzer J, Shimizu T, Maisch T, Thomas HM, Schlegel J, Morfill GE, Zimmermann JL. Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages. Mutat Res Gen Tox En. 2013;753:23–8.

    Article  CAS  Google Scholar 

  38. Kluge S, Bekeschus S, Bender C, Benkhai H, Sckell A, Below H, Stope MB, Kramer A. Investigating the mutagenicity of a cold argon-plasma jet in an HET-MN model. PLoS One. 2016;11:e0160667.

    Article  Google Scholar 

  39. Wende K, Bekeschus S, Schmidt A, Jatsch L, Hasse S, Weltmann KD, Masur K, von Woedtke T. Risk assessment of a cold argon plasma jet in respect to its mutagenicity. Mutat Res-Gen Tox En. 2016;798:48–54.

    Article  Google Scholar 

  40. Schmidt A, von Woedtke T, Stenzel J, Lindner T, Polei S, Vollmar B, Bekeschus S. One year follow up risk assessment in SKH-1 mice and wounds treated with an argon plasma jet. Int J Mol Sci. 2017;18:868.

    Article  Google Scholar 

  41. Hasse S, Hahn O, Kindler S, von Woedtke T, Metelmann HR, Masur K. Atmospheric pressure plasma jet application on human oral mucosa modulates tissue regeneration. Plasma Med. 2014;4:117–1129.

    Article  Google Scholar 

  42. Heinlin J, Isbary G, Stolz W, Morfill G, Landthaler M, Shimizu T, Steffes B, Nosenko T, Zimmermann JL, Karrer S. Plasma applications in medicine with a special focus on dermatology. J Eur Acad Dermatol. 2011;25:1–11.

    Article  CAS  Google Scholar 

  43. Metelmann HR, TT V, Do HT, Le TNB, Hoang THA, Phi TTT, Luong TML, Doan VT, Nguyen TTH, Nguyen THM, Le DQ, Le TKX, von Woedtke T, Bussiahn R, Weltmann KD, Khalili R, Podmelle F. Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: a clinical long term observation. Clin Plasma Med. 2013;1:30–5.

    Article  Google Scholar 

  44. Kramer A, Hübner NO, Weltmann KD, Lademann J, Ekkernkamp A, Hinz P, Assadian O. Polypragmasia in the therapy of infected wounds—conclusions drawn from the perspectives of low temperature plasma technology for plasma wound therapy. GMS Krankenhaushyg Interdiszip. 2008;3:Doc13.

    Google Scholar 

  45. Lloyd G, Friedman G, Jafri S, Schultz G, Fridman A, Harding K. Gas plasma. Medical uses and developments in wound care. Plasma Process Polym. 2010;7:194–211.

    Article  CAS  Google Scholar 

  46. Plasmatis Initiative Group. Declaration of the 1st International Workshop on Plasma Tissue Interactions. GMS Krankenhaushyg Interdiszip. 2008;3:Doc01.

    Google Scholar 

  47. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M. Epithelialization in wound healing: a comprehensive review. Adv Wound Care. 2014;3:445–64.

    Article  Google Scholar 

  48. Portou MJ, Baker D, Abraham D, Tsui J. The innate immune system, toll-like receptors and dermal wound healing: a review. Vasc Pharmacol. 2015;71:31–6.

    Article  CAS  Google Scholar 

  49. Giorgio M. Oxidative stress and the unfulfilled promises of antioxidant agents. Ecancermedicalscience. 2015;9:556.

    Article  Google Scholar 

  50. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biol Med. 2010;48:749–62.

    Article  CAS  Google Scholar 

  51. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24:981–90.

    Article  CAS  Google Scholar 

  52. Sen CK, Roy S. Redox signals in wound healing. Biochim Biophys Acta. 2008;1780:1348–61.

    Article  CAS  Google Scholar 

  53. Sen CK. Wound healing essentials: let there be oxygen. Wound Repair Regen. 2009;17:1–18.

    Article  Google Scholar 

  54. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–70.

    Article  CAS  Google Scholar 

  55. Barton A, Wende K, Bundscherer L, Hasse S, Schmidt A, Bekeschus S, Weltmann K-D, Lindequist U, Masur K. Nonthermal plasma increases expression of wound healing related genes in a keratinocyte cell line. Plasma Med. 2013;3:125–36.

    Article  Google Scholar 

  56. Schmidt A, von Woedtke T, Weltmann KD, Masur K. Identification of the molecular basis of non-thermal plasma-induced changes in human keratinocytes. Plasma Med. 2013;3:15–25.

    Article  Google Scholar 

  57. Schmidt A, Bekeschus S, Jablonowski H, Barton A, Weltmann K-D, Wende K. Role of ambient gas composition on cold physical plasma-elicited cell signaling in keratinocytes. Biophys J. 2017;112:2397–407.

    Article  CAS  Google Scholar 

  58. Bundscherer L, Bekeschus S, Tresp H, Hasse S, Reuter S, Weltmann KD, Lindequist U, Masur K. Viability of human blood leukocytes compared with their respective cell lines after plasma treatment. Plasma Med. 2013;3:71–80.

    Article  Google Scholar 

  59. Bundscherer L, Wende K, Ottmüller K, Barton A, Schmidt A, Bekeschus S, Hasse S, Weltmann KD, Masur K, Lindequist U. Impact of non-thermal plasma treatment on MAPK signaling pathways of human immune cell lines. Immunobiology. 2013;218:1248–55.

    Article  CAS  Google Scholar 

  60. Kalghatgi S, Friedman G, Fridman A, Morss Clyne A. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth Factor-2 release. Ann Biomed Eng. 2010;38:748–57.

    Article  Google Scholar 

  61. Mast BA, Schultz GS. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 1996;4:411–20.

    Article  CAS  Google Scholar 

  62. Bekeschus S. Effects of cold physical plasma on human leukocytes, PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät der Ernst-Moritz-Arndt Universität Greifswald, 2015.

    Google Scholar 

  63. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Rep Regen. 2008;16:585–601.

    Article  Google Scholar 

  64. Brandner JM, Houdek P, Hüsing B, Kaiser C, Moll I. Connexins 26, 30, and 43: differences among spontaneous, chronic, and accelerated human wound healing. J Invest Dermatol. 2004;122:1310–20.

    Article  CAS  Google Scholar 

  65. Haertel B, Hähnel M, Blackert S, Wende K, von Woedtke T, Lindequist U. Surface molecules on HaCaT keratinocytes after interaction with non-thermal atmospheric pressure plasma. Cell Biol Int. 2012;36:1217–22.

    Article  CAS  Google Scholar 

  66. Haertel B, von Woedtke T, Weltmann KD, Lindequist U. Physical plasma—possible application in wound healing. Biomol Ther. 2014;22:477–90.

    Article  CAS  Google Scholar 

  67. Schmidt A, Bekeschus S, von Woedtke T, Hasse S. Cell migration and adhesion of a human melanoma cell line is decreased by cold plasma treatment. Clin Plasma Med. 2015;3:24–31.

    Article  Google Scholar 

  68. Jameson JM, Sharp LL, Witherden DA, Havran WL. Regulation of skin cell homeostasis by gamma delta T cells. Front Biosci. 2004;9:2640–51.

    Article  CAS  Google Scholar 

  69. Bekeschus S, Masur K, Kolata J, Wende K, Schmidt A, Bundscherer L, Barton A, Kramer A, Bröker B, Weltmann K-D. Human mononuclear cell survival and proliferation is modulated by cold atmospheric plasma jet. Plasma Process Polym. 2013;10:706–13.

    Article  CAS  Google Scholar 

  70. Emmert S, Isbary G, Klutschke F, Lademann J, Westermann U, Podmelle F, Metelmann H-R, Daeschlein G, Masur K, von Woedtke T, Weltmann K-D. Clinical plasma medicine—position and perspectives. Clin Plasma Med. 2013;1:3–4.

    Article  Google Scholar 

  71. Ratovitski EA, Cheng X, Yan D, Sherman JH, Canady J, Trink B, Keidar M. Anti-cancer therapies of 21st century: novel approach to treat human cancers using cold atmospheric plasma. Plasma Process Polym. 2014;11:1128–37.

    Article  CAS  Google Scholar 

  72. Schlegel J, Köritzer J, Boxhammer V. Plasma in cancer treatment. Clin Plasma Med. 2013;1(2):2–7.

    Article  Google Scholar 

  73. Graves DB. Reactive species from cold atmospheric plasma: implications for cancer therapy. Plasma Process Polym. 2014;11:1120–7.

    Article  CAS  Google Scholar 

  74. Partecke LI, Evert K, Haugk J, Doering F, Normann L, Diedrich S, Weiss FU, Evert M, Hübner NO, Guenther C, Heidecke CD, Kramer A, Bussiahn R, Weltmann KD, Pati O, Bender C, von Bernstorff W. Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer. 2012;12:473.

    Article  CAS  Google Scholar 

  75. Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, Ravi R, Guerrero-Preston R, Trink B. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer. 2011;105:1295–301.

    Article  CAS  Google Scholar 

  76. Vandamme M, Robert E, Lerondel S, Sarron V, Ries D, Dozias S, Sobilo J, Gosset D, Kieda C, Legrain B, Pouvesle JM, Le Pape A. ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer. 2012;130:2185–94.

    Article  CAS  Google Scholar 

  77. von Woedtke T, Metelmann H-R. Editorial. Clin Plasma Med. 2014;2:37.

    Article  Google Scholar 

  78. Julák J, Scholtz V, Kotúčová S, Janoušková O. The persistent microbicidal effect in water exposed to the corona discharge. Phys Med. 2012;28:230–9.

    Article  Google Scholar 

  79. Naïtali M, Kamgang-Youbi G, Herry J-M, Bellon-Fontaine M-N, Brisset J-L. Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Appl Environ Microbiol. 2010;76:7662–4.

    Article  Google Scholar 

  80. Oehmigen K, Winter J, Hähnel M, Wilke C, Brandenburg R, Weltmann KD, von Woedtke T. Estimation of possible mechanisms of Escherichia coli inactivation by plasma treated sodium chloride solution. Plasma Process Polym. 2011;8:904–13.

    Article  CAS  Google Scholar 

  81. Tanaka H, Mizuno M, Ishikawa K, Kondo H, Takeda K, Hashizume H, Nakamura K, Utsumi F, Kajiyama H, Kano H, Okazaki Y, Toyokuni S, Akiyama S, Maruyama S, Yamada S, Kodera Y, Kaneko H, Terasaki H, Hara H, Adachi T, Iida M, Yajima I, Kato M, Kikkawa F, Hori M. Plasma with high electron density and plasma-activated medium for cancer treatment. Clin Plasma Med. 2015;3:72–6.

    Article  Google Scholar 

  82. Utsumi F, Kajiyama H, Nakamura K, Tanaka H, Mizuno M, Ishikawa K, Kondo H, Kano H, Hori M, Kikkawa F. Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One. 2013;8:e81576.

    Article  Google Scholar 

  83. Joslin JM, McCall JR, Bzdek JP, Johnson DC, Hybertson BM. Aqueous plasma pharmacy: preparation methods, chemistry, and therapeutic applications. Plasma Med. 2016;6:135–77.

    Article  Google Scholar 

  84. von Woedtke T, Haertel B, Weltmann KD, Lindequist U. Plasma pharmacy—physical plasma in pharmaceutical applications. Pharmazie. 2013;68:492–8.

    Google Scholar 

  85. Cha S, Park Y-S. Plasma in dentistry. Clin Plasma Med. 2014;2:4–10.

    Article  Google Scholar 

  86. Alekseev O, Donovan K, Limonnik V, Azizkhan-Clifford J. Nonthermal dielectric barrier discharge (DBD) plasma suppresses herpes simplex virus type 1 (HSV-1) replication in corneal epithelium. Trans Vis Sci Tech. 2014;3:2.

    Article  Google Scholar 

  87. Hammann A, Huebner N-O, Bender C, Ekkernkamp A, Hartmann B, Hinz P, Kindel E, Koban I, Koch S, Kohlmann T, Lademann J, Matthes R, Müller G, Titze R, Weltmann K-D, Kramer A. Antiseptic efficacy and tolerance of tissue-tolerable plasma compared with two wound antiseptics on artificially bacterially contaminated eyes from commercially slaughtered pigs. Skin Pharmacol Physiol. 2010;23:328–32.

    Article  CAS  Google Scholar 

  88. Martines E, Brun P, Brun P, Cavazzana R, Deligianni V, Leonardi A, Tarricone E, Zuin M. Towards a plasma treatment of corneal infections. Clin Plasma Med. 2013;1(2):17–24.

    Article  Google Scholar 

  89. Manner H, May A, Faerber M, Rabenstein T, Ell C. Safety and efficacy of a new high power argon plasma coagulation system (hp-APC) in lesions of the upper gastrointestinal tract. Digest Liver Dis. 2006;38:471–8.

    Article  CAS  Google Scholar 

  90. Polak M, Winter J, Schnabel U, Ehlbeck J, Weltmann K-D. Innovative plasma generation in flexible biopsy channels for inner-tube decontamination and medical applications. Plasma Process Polym. 2012;9:67–76.

    Article  CAS  Google Scholar 

  91. Weltmann K-D, von Woedtke T. Plasma medicine—current state of research and medical application. Plasma Phys Control Fusion. 2017;59:014031.

    Article  Google Scholar 

  92. Robert E, Vandamme M, Brullé L, Lerondel S, Le Pape A, Sarron V, Riès D, Darny T, Dozias S, Collet G, Kieda C, Pouvesle JM. Perspectives of endoscopic plasma applications. Clin Plasma Med. 2013;1(2):8–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas von Woedtke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

von Woedtke, T., Schmidt, A., Bekeschus, S., Wende, K. (2018). Introduction to Plasma Medicine. In: Metelmann, HR., von Woedtke, T., Weltmann, KD. (eds) Comprehensive Clinical Plasma Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-67627-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67627-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67626-5

  • Online ISBN: 978-3-319-67627-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics