Advertisement

Multiple Iterative Seeding of Surface Plasmon Enhanced Cobalt-Iron Oxide Nanokernels for Cancer Theranostics

  • Ravichandran Manisekaran
Chapter
  • 326 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Cancer is the second leading disease which causes major mortality and morbidity worldwide [1]. In cancer therapy, it is crucial to increase the drug specificity and drug efficacy to minimize or completely eradicate significant side effects on patients [2]. Cancer nanotherapeutics overcome many serious drawbacks of chemotherapy such as nonspecific targeting, lower efficacy, insolubility of drug moieties in water, and oral bioavailability [3]. Accordingly, Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are exploited as an important nanomaterial for cancer detection as well as therapeutics [4]. Such magnetic nanoparticles (NPs) gained its momentum because of their single-domain ordering along with their large surface-to-volume ratio (providing large surface area for attachment of biological entities). Hence, this property makes them a suitable candidate as a contrast agent, drug-carrying cargo, and hyperthermal agent [5]. The doping of SPIONs with cobalt ions further enhances their magnetic property, thus forming CoFe2O4 nanokernels (Nks). These spinel ferrite Nks possess ca. 20–30 times higher magneto-crystalline anisotropy as compared to SPIONs; this increases the performance of materials for biomedical applications [6–8]. Specifically, these Nks are mostly used in biomedicine than any other spinel structure because of their enhanced magnetic property and large anisotropy [9]. The increased superparamagnetism makes them an efficient system for theranostics [10–12].

Keywords

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) Hyperthermic Agent Important Nanomaterials HEp-2 Cells Gold Iterations 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jemal, A., Bray, F. & Ferlay, J. Global Cancer Statistics: 2011. CA Cancer J Clin 49, 1,33–64 (1999).CrossRefGoogle Scholar
  2. 2.
    Lévy, M. et al. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles. J. Phys. Condens. Matter 20, 204133 (2008).CrossRefGoogle Scholar
  3. 3.
    Cho, K., Wang, X., Nie, S., Chen, Z. G. & Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310–6 (2008).CrossRefGoogle Scholar
  4. 4.
    Shah, J. et al. Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J. Biomed. Opt. 13, 34024 (2008).CrossRefGoogle Scholar
  5. 5.
    Zhang, L., Dong, W.F. & Sun, H.B. Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale 5, 7664–84 (2013).CrossRefGoogle Scholar
  6. 6.
    Beji, Z. et al. Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on endothelial cells. Chem. Mater. 22, 5420–5429 (2010).CrossRefGoogle Scholar
  7. 7.
    Yang, H. et al. Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31, 3667–3673 (2010).CrossRefGoogle Scholar
  8. 8.
    Giri, J. et al. Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1-xBxFe2O4, B=Mn,Co(x=0-1)] for biomedical applications. J. Magn. Magn. Mater. 320, 724–730 (2008).CrossRefGoogle Scholar
  9. 9.
    Tung, L. D. et al. Magnetic properties of ultrafine cobalt ferrite particles. J. Appl. Phys. 93, 7486–7488 (2003).CrossRefGoogle Scholar
  10. 10.
    Ekreem, N. B., Olabi, A. G., Prescott, T., Rafferty, A. & Hashmi, M. S. J. An overview of magnetostriction, its use and methods to measure these properties. J. Mater. Process. Technol. 191, 96–101 (2007).CrossRefGoogle Scholar
  11. 11.
    Baldi, G. et al. Synthesis and Coating of Cobalt Ferrite Nanoparticles: A First Step toward the Obtainment of New Magnetic Nanocarriers. Langmuir 23, 4026–4028 (2007).CrossRefGoogle Scholar
  12. 12.
    Pita, M. et al. Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor. J. Colloid Interface Sci. 321, 484–492 (2008).CrossRefGoogle Scholar
  13. 13.
    Goon, I. Y. et al. Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: Systematic control using polyethyleneimine. Chem. Mater. 21, 673–681 (2009).CrossRefGoogle Scholar
  14. 14.
    Zhang, Y. et al. Facile one-step synthesis of plasmonic/magnetic core/shell nanostructures and their multifunctionality. J. Mater. Chem. 22, 10779 (2012).CrossRefGoogle Scholar
  15. 15.
    Wang, L. et al. Monodispersed Core-shell Fe3O4@Au Nanoparticles. 21593–21601 (2005).Google Scholar
  16. 16.
    Daniel, M. C. M. & Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size Related Properties and Applications toward Biology, Catalysis and Nanotechnology,. Chem. Rev. 104, 293–346 (2004).CrossRefGoogle Scholar
  17. 17.
    Xia, Y., Gates, B., Yin, Y. & Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 12, 693–713 (2000).CrossRefGoogle Scholar
  18. 18.
    Wang, L. et al. Iron oxide-gold core-shell nanoparticles and thin film assembly. J. Mater. Chem. 15, 1821–1832 (2005).CrossRefGoogle Scholar
  19. 19.
    Hormes, J., Modrow, H., Bönnemann, H. & Kumar, C. S. S. R. The influence of various coatings on the electronic, magnetic, and geometric properties of cobalt nanoparticles (invited). J. Appl. Phys. 97, (2005).Google Scholar
  20. 20.
    Alonso-Cristobal, P., Laurenti, M., Lopez-Cabarcos, E. & Rubio-Retama, J. Efficient synthesis of core@shell Fe3O4@Au nanoparticles. Mater. Res. Express 2, 75002 (2015).CrossRefGoogle Scholar
  21. 21.
    Gallo, J., García, I., Padro, D., Arnáiz, B. & Penadés, S. Water-soluble magnetic glyconanoparticles based on metal-doped ferrites coated with gold: Synthesis and characterization. J. Mater. Chem. 20, 10010 (2010).CrossRefGoogle Scholar
  22. 22.
    Lyon, J. L., Fleming, D. A., Stone, M. B., Schiffer, P. & Williams, M. E. Synthesis of Fe oxide Core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett. 4, 719–723 (2004).CrossRefGoogle Scholar
  23. 23.
    Zhang, Q. et al. Tailored synthesis of superparamagnetic gold nanoshells with tunable optical properties. Adv. Mater. 22, 1905–1909 (2010).CrossRefGoogle Scholar
  24. 24.
    Caruntu, D., Cushing, B. L., Caruntu, G. & O’Connor, C. J. Attachment of gold nanograins onto colloidal magnetite nanocrystals. Chem. Mater. 17, 3398–3402 (2005).CrossRefGoogle Scholar
  25. 25.
    Oliva, B. L., Pradhan, A., Caruntu, D., O’Connor, C. J. & Tarr, M. a. Formation of gold-coated magnetic nanoparticles using TiO2 as a bridging material. J. Mater. Res. 21, 1312–1316 (2006).CrossRefGoogle Scholar
  26. 26.
    Banchelli, M. et al. Magnetic nanoparticle clusters as actuators of ssDNA release. Phys. Chem. Chem. Phys. 16, 10023 (2014).CrossRefGoogle Scholar
  27. 27.
    Kang, Y. M. et al. In vivo efficacy of an intratumorally injected in situ-forming doxorubicin/poly(ethylene glycol)-b-polycaprolactone diblock copolymer. Biomaterials 32, 4556–4564 (2011).CrossRefGoogle Scholar
  28. 28.
    Octavia, Y. et al. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J. Mol. Cell. Cardiol. 52, 1213–1225 (2012).CrossRefGoogle Scholar
  29. 29.
    Molyneux, G. et al. Haemotoxicity of busulphan, doxorubicin, cisplatin and cyclophosphamide in the female BALB/c mouse using a brief regimen of drug administration. Cell Biol. Toxicol. 27, 13–40 (2011).CrossRefGoogle Scholar
  30. 30.
    Zwicke, G. L., Mansoori, G. A. & Jeffery, C. J. Targeting of Cancer Nanotherapeutics. Nano Rev. 1, 1–11 (2012).Google Scholar
  31. 31.
    Torchilin, V. P. Nanoparticulate pharmaceutical drug delivery systems (NDDSs) are widely used in pharmaceutical research and in clinical settings to enhance the effectiveness of diagnostic agents and drugs, including anticancer, antimicrobial and antiviral drugs. Nat. Publ. Gr. 13, (2014).Google Scholar
  32. 32.
    Dobson, J. Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55–60 (2006).CrossRefGoogle Scholar
  33. 33.
    Issels, R. D. Hyperthermia adds to chemotherapy. (2008). doi:https://doi.org/10.1016/j.ejca.2008.07.038Google Scholar
  34. 34.
    Bohara, R. a., Thorat, N. D., Yadav, H. M. & Pawar, S. H. One-step synthesis of uniform and biocompatible amine functionalized cobalt ferrite nanoparticles: a potential carrier for biomedical applications. New J. Chem. 38, 2979 (2014).CrossRefGoogle Scholar
  35. 35.
    Ma, L. L. et al. Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance. Nanotechnology 24, 25606 (2013).CrossRefGoogle Scholar
  36. 36.
    Jain, P. K., Xiao, Y., Walsworth, R. & Cohen, A. E. Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals. Nano Lett. 9, 1644–1650 (2009).CrossRefGoogle Scholar
  37. 37.
    Carlà, F. et al. Electrochemical characterization of core@shell CoFe2O4/Au composite. J. Nanoparticle Res. 15, 1813 (2013).CrossRefGoogle Scholar
  38. 38.
    Kong, S. D. et al. Magnetically Vectored Nanocapsules for Tumor Penetration and Remotely Switchable On-Demand Drug Release. Nano Lett. 10, 5088–5092 (2010).CrossRefGoogle Scholar
  39. 39.
    Li, P., Jiang, E. Y. & Bai, H. L. Fabrication of ultrathin epitaxial γ-Fe2O3 films by reactive sputtering. J. Phys. D. Appl. Phys. 44, 75003 (2011).CrossRefGoogle Scholar
  40. 40.
    Barbieri, A., Weiss, W., Van Hove, M. A. & Somorjai, G. A. Magnetite Fe3O4(111): surface structure by LEED crystallography and energetics. Surf. Sci. 302, 259–279 (1994).CrossRefGoogle Scholar
  41. 41.
    Mosivand, S. & Kazeminezhad, I. Synthesis of electrocrystallized cobalt ferrite nanopowders by tuning the cobalt salt concentration. RSC Adv. 5, 14796–14803 (2015).CrossRefGoogle Scholar
  42. 42.
    Shi, Y. et al. Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Sci. Rep. 3, 1839 (2013).CrossRefGoogle Scholar
  43. 43.
    Liu, B. et al. Synthesis of patterned nanogold and mesoporous CoFe2O4 nanoparticle assemblies and their application in clinical immunoassays. Nanoscale 3, 2220–2226 (2011).CrossRefGoogle Scholar
  44. 44.
    Xu, Z., Hou, Y. & Sun, S. Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties. J. Am. Chem. Soc 129, 8698–8699 (2007).CrossRefGoogle Scholar
  45. 45.
    Shi, X., Thomas, T. P., Myc, L. A, Kotlyar, A. & Baker, J. R. Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys. Chem. Chem. Phys. 9, 5712–5720 (2007).CrossRefGoogle Scholar
  46. 46.
    Baruah, B. & Kiambuthi, M. Facile synthesis of silver and bimetallic silver–gold nanoparticles and their applications in surface-enhanced Raman scattering. RSC Adv. 4, 64860–64870 (2014).CrossRefGoogle Scholar
  47. 47.
    Pandey, S. et al. Folic acid mediated synaphic delivery of doxorubicin using biogenic gold nanoparticles anchored to biological linkers. J. Mater. Chem. B 1, 1361 (2013).CrossRefGoogle Scholar
  48. 48.
    Gordel, M. et al. Post-synthesis reshaping of gold nanorods using a femtosecond laser. Phys. Chem. Chem. Phys. 16, 71–8 (2014).CrossRefGoogle Scholar
  49. 49.
    Rai, A., Prabhune, A. & Perry, C. C. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J. Mater. Chem. 20, 6789 (2010).CrossRefGoogle Scholar
  50. 50.
    Wortmann, L. et al. Bioconjugated iron oxide nanocubes: synthesis, functionalization, and vectorization. ACS Appl. Mater. Interfaces 6, 16631–16642 (2014).CrossRefGoogle Scholar
  51. 51.
    Mewada, A., Pandey, S., Thakur, M., Jadhav, D. & Sharon, M. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. J. Mater. Chem. B 2, 698–705 (2014).CrossRefGoogle Scholar
  52. 52.
    Mellman, I. Endocytosis and Molecular Sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996).CrossRefGoogle Scholar
  53. 53.
    Chen, H. et al. Drug loaded multilayered gold nanorods for combined photothermal and chemotherapy. Biomater. Sci. 2, 996 (2014).CrossRefGoogle Scholar
  54. 54.
    Wang, X. et al. Folate receptor-targeted aggregation-enhanced near-IR emitting silica nanoprobe for one-photon in vivo and two-photon ex vivo fluorescence bioimaging. Bioconjug. Chem. 22, 1438–1450 (2011).CrossRefGoogle Scholar
  55. 55.
    Sharon, M. Surface Orchestration of Gold Nanoparticles Using Cysteamine as Linker and Folate as Navigating Molecule for Synaphic Delivery of Doxorubicin. J. Nanomedicine Res. 1, (2014).Google Scholar
  56. 56.
    Sandhu, K. K., McIntosh, C. M., Simard, J. M., Smith, S. W. & Rotello, V. M. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug. Chem. 13, 3–6 (2002).CrossRefGoogle Scholar
  57. 57.
    Chompoosor, A., Han, G. & Rotello, V. M. Charge dependence of ligand release and monolayer stability of gold nanoparticles by biogenic thiols. Bioconjug. Chem. 19, 1342–1345 (2008).CrossRefGoogle Scholar
  58. 58.
    Rosi, N. L. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 312, 1027–1030 (2006).CrossRefGoogle Scholar
  59. 59.
    Denard, B., Lee, C. & Ye, J. Doxorubicin blocks proliferation of cancer cells through proteolytic activation of CREB3L1. Elife 2012, 1–14 (2012).Google Scholar
  60. 60.
    Xie, M. et al. Expression of folate receptors in nasopharyngeal and laryngeal carcinoma and folate receptor-mediated endocytosis by molecular targeted nanomedicine. Int. J. Nanomedicine 8, 2443–2451 (2013).CrossRefGoogle Scholar
  61. 61.
    Yoo, H. S., Lee, K. H., Oh, J. E. & Park, T. G. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J. Control. Release 68, 419–431 (2000).CrossRefGoogle Scholar
  62. 62.
    Estrella, V. et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73, 1524–1535 (2013).CrossRefGoogle Scholar
  63. 63.
    Som, A., Bloch, S., Ippolito, J. E. & Achilefu, S. Acidic extracellular pH of tumors induces octamer-binding transcription factor 4 expression in murine fibroblasts in vitro and in vivo. Sci. Rep. 6, 27803 (2016).CrossRefGoogle Scholar
  64. 64.
    Gurav, D. D., Kulkarni, A. S., Khan, A. & Shinde, V. S. pH-responsive targeted and controlled doxorubicin delivery using hyaluronic acid nanocarriers. Colloids Surfaces B Biointerfaces 143, 352–358 (2016).CrossRefGoogle Scholar
  65. 65.
    Rohrer, M., Bauer, H., Mintorovitch, J., Requardt, M. & Weinmann, H.J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 40, 715–724 (2005).CrossRefGoogle Scholar
  66. 66.
    Reimer, P. & Balzer, T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. European Radiology 13, (2003).Google Scholar
  67. 67.
    Malyutin, A. G. et al. Virus like Nanoparticles with Maghemite Cores Allow for Enhanced MRI Contrast Agents. Chem. Mater. 27, 327–335 (2015).CrossRefGoogle Scholar
  68. 68.
    Kodiha, M. et al. Gold nanoparticles induce nuclear damage in breast cancer cells, which is further amplified by hyperthermia. Cell. Mol. Life Sci. 71, 4259–73 (2014).CrossRefGoogle Scholar
  69. 69.
    Cho, E. C., Xie, J., Wurm, P. A. & Xia, Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 9, 1080–1084 (2009).CrossRefGoogle Scholar
  70. 70.
    Trujillo-Romero, C. J., Garcia-Jimeno, S., Vera, A., Leija, L. & Estelrich, J. Using Nanoparticles for Enhancing the Focusing Heating Effect of an External Waveguide Applicator for Oncology Hyper-Thermia: Evaluation in Muscle and Tumor Phantoms. Prog. Electromagn. Res. 121, 343–363 (2011).CrossRefGoogle Scholar
  71. 71.
    Kim, D. K. et al. Energy absorption of superparamagnetic iron oxide nanoparticles by microwave irradiation. J. Appl. Phys. 97, 10J510–10J510-3 (2005).Google Scholar
  72. 72.
    Mohammad, F., Balaji, G., Weber, A., Uppu, R. M. & Kumar, C. S. S. R. Influence of Gold Nanoshell on Hyperthermia of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs). J. Phys. Chem. C. Nanomater. Interfaces 114, 19194–19201 (2010).Google Scholar
  73. 73.
    Holzwarth, A., Lou, J., Hatton, T. A. & Laibinis, P. E. Enhanced Microwave Heating of Nonpolar Solvents by Dispersed Magnetic Nanoparticles. Ind. Eng. Chem. Res. 37, 2701–2706 (1998).CrossRefGoogle Scholar
  74. 74.
    Pearce, J. A., Cook, J. R. & Emelianov, S. Y. Ferrimagnetic nanoparticles enhance microwave heating for tumor hyperthermia therapy. 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC’10 2751–2754 (2010). doi:https://doi.org/10.1109/IEMBS.2010.5626583
  75. 75.
    Urano, M., Kuroda, M. & Nishimura, Y. For the clinical application of thermochemotherapy given at mild temperatures. Int. J. Hyperth. 15, 79–107 (1999).CrossRefGoogle Scholar
  76. 76.
    Ramachandra Kurup Sasikala, A. et al. Multifunctional Nanocarpets for Cancer Theranostics: Remotely Controlled Graphene Nanoheaters for Thermo-Chemosensitisation and Magnetic Resonance Imaging. Sci. Rep. 6, 20543 (2016).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ravichandran Manisekaran
    • 1
  1. 1.Center for Research and Advanced Studies of the National Polytechnic InstituteMexico CityMexico

Personalised recommendations