Design and Evaluation of Plasmonic/Magnetic Au-MFe2O4 (M-Fe/Co/Mn) Core-Shell Nanoparticles Functionalized with Doxorubicin for Cancer Therapeutics pp 91-113 | Cite as
Designing a Nanocargo with Fe3O4@Au: A Tri-pronged Mechanism for MR Imaging, Synaphic Drug-Delivery, and Apoptosis Induction in Cancer Cells
- 328 Downloads
Abstract
Cancer, considered as a hallmark of diseases, is responsible for second most mortality and morbidity rates. The greatest discovery in the fundamental cancer biology has not been transformed into clinical therapeutics. There is a vast incongruity existing due to lack of translational medicine targeting towards the cancerous cells both temporally and spatially. Moreover, the drugs available possess a plethora of side effects and are incapable of circumventing the biophysical barriers posed by tumor microphysiology. The two nano-vectors, viz., drug-delivery and imaging have come to the rescue in such a debilitating condition of cancer therapeutics.
References
- 1.Wilhelm, C., Lavialle, F., Péchoux, C., Tatischeff, I. & Gazeau, F. Intracellular trafficking of magnetic nanoparticles to design multifunctional biovesicles. Small 4, 577–582 (2008).CrossRefGoogle Scholar
- 2.Cheng, F. Y. et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26, 729–738 (2005).CrossRefGoogle Scholar
- 3.Hergt, R. & Dutz, S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 311, 187–192 (2007).CrossRefGoogle Scholar
- 4.Habib, A. H., Ondeck, C. L., Chaudhary, P., Bockstaller, M. R. & McHenry, M. E. Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J. Appl. Phys. 103, 07A307 (2008).CrossRefGoogle Scholar
- 5.Lübbe, A. S. et al. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56, 4686–4693 (1996).Google Scholar
- 6.Alexiou, C. et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60, 6641–6648 (2000).Google Scholar
- 7.Widder, K. J., Senyei, A. E. & Scarpelli, D. G. Magnetic Microspheres: A Model System for Site Specific Drug Delivery in Vivo. Exp. Biol. Med. 158, 141–146 (1978).CrossRefGoogle Scholar
- 8.Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 65, 271–284 (2000).CrossRefGoogle Scholar
- 9.Wang, S. & Low, P. S. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J. Control. Release 53, 39–48 (1998).CrossRefGoogle Scholar
- 10.Wang, Y., Wei, X., Zhang, C., Zhang, F. & Liang, W. Nanoparticle delivery strategies to target doxorubicin to tumor cells and reduce side effects. Ther Deliv 1, 273–287 (2010).CrossRefGoogle Scholar
- 11.Tang, X. & Pan, C. Y. Double hydrophilic block copolymers PEO-b-PGA: Synthesis, application as potential drug carrier and drug release via pH-sensitive linkage. J. Biomed. Mater. Res. - Part A 86, 428–438 (2008).CrossRefGoogle Scholar
- 12.Rejinold, N. S., Chennazhi, K. P., Nair, S. V., Tamura, H. & Jayakumar, R. Biodegradable and thermo-sensitive chitosan-g-poly(N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier. Carbohydr. Polym. 83, 776–786 (2011).CrossRefGoogle Scholar
- 13.Glangchai, L. C., Caldorera-Moore, M., Shi, L. & Roy, K. Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J. Control. Release 125, 263–272 (2008).CrossRefGoogle Scholar
- 14.Low, P. S. & Antony, A. C. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv. Drug Deliv. Rev. 56, 1055–1058 (2004).CrossRefGoogle Scholar
- 15.Guo, M. et al. Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Biomaterials 32, 185–194 (2011).CrossRefGoogle Scholar
- 16.Sonvico, F. et al. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: Synthesis, physicochemical characterization, and in vitro experiments. Bioconjug. Chem. 16, 1181–1188 (2005).CrossRefGoogle Scholar
- 17.Wang, Y., Wang, Y., Xiang, J. & Yao, K. Target-specific cellular uptake of taxol-loaded heparin-PEG-folate nanoparticles. Biomacromolecules 11, 3531–3538 (2010).CrossRefGoogle Scholar
- 18.Sun, C., Sze, R. & Zhang, M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J. Biomed. Mater. Res. - Part A 78, 550–557 (2006).CrossRefGoogle Scholar
- 19.Cirstoiu-Hapca, A., Bossy-Nobs, L., Buchegger, F., Gurny, R. & Delie, F. Differential tumor cell targeting of anti-HER2 (Herceptin®) and anti-CD20 (Mabthera®) coupled nanoparticles. Int. J. Pharm. 331, 190–196 (2007).CrossRefGoogle Scholar
- 20.Leuschner, C. et al. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res. Treat. 99, 163–176 (2006).CrossRefGoogle Scholar
- 21.Veiseh, O. et al. Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small 5, 256–264 (2009).CrossRefGoogle Scholar
- 22.Yigit, M. V., Mazumdar, D. & Lu, Y. MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug. Chem. 19, 412–417 (2008).CrossRefGoogle Scholar
- 23.Peterson, A. W., Wolf, L. K. & Georgiadis, R. M. Hybridization of mismatched or partially matched DNA at surfaces. J. Am. Chem. Soc. 124, 14601–14607 (2002).CrossRefGoogle Scholar
- 24.Vijayendran, R. A. & Leckband, D. E. A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal. Chem. 73, 471–480 (2001).CrossRefGoogle Scholar
- 25.Van Dijk, M. A. et al. Absorption and scattering microscopy of single metal nanoparticles. Phys. Chem. Chem. Phys. 8, 3486–95 (2006).CrossRefGoogle Scholar
- 26.Robinson, I., Tung, L. D., Maenosono, S., Wälti, C. & Thanh, N. T. K. Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale 2, 2624–2630 (2010).CrossRefGoogle Scholar
- 27.Karaagac, O., Kockar, H., Beyaz, S. & Tanrisever, T. A simple way to synthesize superparamagnetic iron oxide nanoparticles in air atmosphere: Iron ion concentration effect. IEEE Trans. Magn. 46, 3978–3983 (2010).CrossRefGoogle Scholar
- 28.Yu, F., Yao, D. & Knoll, W. Oligonucleotide hybridization studied by a surface plasmon diffraction sensor (SPDS). Nucleic Acids Res. 32, e75 (2004).CrossRefGoogle Scholar
- 29.Okahata, Y. et al. Kinetic Measurements of DNA Hybridization on an Oligonucleotide-Immobilized 27-MHz Quartz Crystal Microbalance. Anal. Chem. 70, 1288–1296 (1998).CrossRefGoogle Scholar
- 30.Fan, A., Lau, C. & Lu, J. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Anal. Chem. 77, 3238–3242 (2005).CrossRefGoogle Scholar
- 31.Schroder, L., Lowery, T. J., Hilty, C., Wemmer, D. E. & Pines, A. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science . 314, 446 (2006).CrossRefGoogle Scholar
- 32.Xu, Z., Hou, Y. & Sun, S. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 129, 8698–8699 (2007).CrossRefGoogle Scholar
- 33.Thaxton, C. S., Mirkin, C. A. & Nam, J. Nanoparticle-Based Bio – Bar Codes for the Ultrasensitive Detection of Proteins. Science. 301, 1884–1886 (2003).CrossRefGoogle Scholar
- 34.Aslan, K., Lakowicz, J. R. & Geddes, C. D. Plasmon light scattering in biology and medicine: New sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol. 9, 538–544 (2005).CrossRefGoogle Scholar
- 35.Thanh, N. T. K. & Green, L. A. W. Functionalisation of nanoparticles for biomedical applications. Nano Today 5, 213–230 (2010).CrossRefGoogle Scholar
- 36.Huang, C., Jiang, J., Muangphat, C., Sun, X. & Hao, Y. Trapping Iron Oxide into Hollow Gold Nanoparticles. Nanoscale Res. Lett. 6, 1–5 (2011).CrossRefGoogle Scholar
- 37.Tiller, W. A. The Science of Crystallization. (Cambridge University Press, 1991). doi:https://doi.org/10.1017/CBO9780511623158
- 38.Rao, C. N. R., Müller, A. & Cheetham, A. K. Nanomaterials Chemistry: Recent Developments and New Directions. Nanomaterials Chemistry: Recent Developments and New Directions (Wiley-VCH Verlag GmbH & Co. KGaA, 2007). doi:https://doi.org/10.1002/9783527611362
- 39.Luzar, A. & Chandler, D. Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations. J. Chem. Phys. 98, 8160–8173 (1993).CrossRefGoogle Scholar
- 40.Murphy, C. J. et al. The many faces of gold nanorods. J. Phys. Chem. Lett. 1, 2867–2875 (2010).CrossRefGoogle Scholar
- 41.Goon, I. Y. et al. Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: Systematic control using polyethyleneimine. Chem. Mater. 21, 673–681 (2009).CrossRefGoogle Scholar
- 42.Barr, T. L. An ESCA study of the termination of the passivation of elemental metals. J. Phys. Chem. 82, 1801–1810 (1978).CrossRefGoogle Scholar
- 43.Wang, F. Quantitative Methods and Applications in GIS. (CRC Press, 2006). doi:https://doi.org/10.1201/9781420004281
- 44.Jaramillo, T. F., Baeck, S. H., Cuenya, B. R. & McFarland, E. W. Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles. J. Am. Chem. Soc. 125, 7148–7149 (2003).CrossRefGoogle Scholar
- 45.Lo, C. K. et al. Homocysteine-protected gold-coated magnetic nanoparticles: synthesis and characterisation. J. Mater. Chem. 17, 2418 (2007).CrossRefGoogle Scholar
- 46.Siegbahn, K. Electron Spectroscopy for Chemical Analysis (E.S.C.A.). Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 268, (1970).Google Scholar
- 47.Liu, H., Jiang, E. Y., Zheng, R. K. & Bai, H. L. Structure and magnetic properties of polycrystalline Fe3O4 films deposited by reactive sputtering at room temperature. Phys. Status Solidi 201, 739–744 (2004).CrossRefGoogle Scholar
- 48.Vogelson, C. T. et al. Molecular coupling layers formed by reactions of epoxy resins with self-assembled carboxylate monolayers grown on the native oxide of aluminium. J. Mater. Chem. 13, 291–296 (2003).CrossRefGoogle Scholar
- 49.Mohapatra, S. & Pramanik, P. Synthesis and stability of functionalized iron oxide nanoparticles using organophosphorus coupling agents. Colloids Surfaces A Physicochem. Eng. Asp. 339, 35–42 (2009).CrossRefGoogle Scholar
- 50.Řıhová, B. Receptor-mediated targeted drug or toxin delivery. Adv. Drug Deliv. Rev. 29, 273–289 (1998).Google Scholar
- 51.Swaan, P. W. Recent Advances in Intestinal Macromolecular Drug Delivery via Receptor-Mediated Transport Pathways. Pharm. Res. 15, 826–834 (1998).CrossRefGoogle Scholar
- 52.Cezar, G. G. et al. Identification of small molecules from human embryonic stem cells using metabolomics. Stem Cells Dev. 16, 869–882 (2007).CrossRefGoogle Scholar
- 53.Weitman, S. D. et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res. 52, 3396–401 (1992).Google Scholar
- 54.Ross, J. F., Chaudhuri, P. K. & Ratnam, M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73, 2432–43 (1994).CrossRefGoogle Scholar
- 55.Gabizon, A. et al. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: In vitro studies. Bioconjug. Chem. 10, 289–298 (1999).CrossRefGoogle Scholar
- 56.Lu, Y. & Low, P. S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev. 54, 675–693 (2002).CrossRefGoogle Scholar
- 57.Stella, B. et al. Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci. 89, 1452–1464 (2000).CrossRefGoogle Scholar
- 58.Dántola, M. L. et al. Mechanism of photooxidation of folic acid sensitized by unconjugated pterins. Photochem. Photobiol. Sci. 9, 1604–1612 (2010).CrossRefGoogle Scholar
- 59.Chen, X., Tang, Y., Cai, B. & Fan, H. ‘One-pot’ synthesis of multifunctional GSH-CdTe quantum dots for targeted drug delivery. Nanotechnology 25, 235101 (2014).CrossRefGoogle Scholar
- 60.Ravichandran, M. et al. Plasmonic/Magnetic Multifunctional nanoplatform for Cancer Theranostics. Sci. Rep. 6, 34874 (2016).CrossRefGoogle Scholar
- 61.Honary, S., Barabadi, H., Gharaei-Fathabad, E. & Naghibi, F. Green Synthesis of Silver Nanoparticles Induced by the Fungus Penicillium citrinum. Trop. J. Pharm. Res. 12, 7–11 (2013).Google Scholar
- 62.Ede, S. R., Nithiyanantham, U. & Kundu, S. Enhanced catalytic and SERS activities of CTAB stabilized interconnected osmium nanoclusters. Phys. Chem. Chem. Phys. 16, 22723–22734 (2014).CrossRefGoogle Scholar
- 63.Zhang, J., Rana, S., Srivastava, R. S. & Misra, R. D. K. On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomater. 4, 40–48 (2008).CrossRefGoogle Scholar
- 64.Yuan, Q., Hein, S. & Misra, R. D. K. New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomater. 6, 2732–2739 (2010).CrossRefGoogle Scholar
- 65.Pandey, S. et al. Folic acid mediated synaphic delivery of doxorubicin using biogenic gold nanoparticles anchored to biological linkers. J. Mater. Chem. B 1, 1361 (2013).CrossRefGoogle Scholar
- 66.Huang, J., Su, P., Zhao, B. & Yang, Y. Facile one-pot synthesis of β-cyclodextrin-polymer-modified Fe3O4 microspheres for stereoselective absorption of amino acid compounds. Anal. Methods 7, 2754–2761 (2015).CrossRefGoogle Scholar
- 67.Chen, J., Wang, Y., Ding, X., Huang, Y. & Xu, K. Analytical Methods on hydroxy functional ionic liquid-modi fi ed magnetic nanoparticles. Anal. Methods 6, 8358–8367 (2014).CrossRefGoogle Scholar
- 68.Sanders, J. P. & Gallagher, P. K. Thermomagnetometric evidence of γ-Fe2O3 as an intermediate in the oxidation of magnetite. Thermochim. Acta 406, 241–243 (2003).CrossRefGoogle Scholar
- 69.Rai, A., Prabhune, A. & Perry, C. C. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J. Mater. Chem. 20, 6789 (2010).CrossRefGoogle Scholar
- 70.Basavegowda, N., Idhayadhulla, A. & Lee, Y. R. Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities. Ind. Crops Prod. 52, 745–751 (2014).CrossRefGoogle Scholar
- 71.Sahoo, B. et al. Facile preparation of multifunctional hollow silica nanoparticles and their cancer specific targeting effect. Biomater. Sci. 1, 647 (2013).CrossRefGoogle Scholar
- 72.Jin, H. et al. Folate-Chitosan Nanoparticles Loaded with Ursolic Acid Confer Anti-Breast Cancer Activities in vitro and in vivo. Sci. Rep. 6, 30782 (2016).CrossRefGoogle Scholar
- 73.Shenderova, O., Hens, S. & McGuire, G. Seeding slurries based on detonation nanodiamond in DMSO. Diam. Relat. Mater. 19, 260–267 (2010).CrossRefGoogle Scholar
- 74.Zhang, W., Patel, K., Schexnider, A., Banu, S. & Radadia, A. D. Nanostructuring of biosensing electrodes with nanodiamonds for antibody immobilization. ACS Nano 8, 1419–28 (2014).CrossRefGoogle Scholar
- 75.Wang, L. et al. Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity. Nanoscale 5, 8384 (2013).CrossRefGoogle Scholar
- 76.Ricles, L. M., Nam, S. Y., Treviño, E. A., Emelianov, S. Y. & Suggs, L. J. A dual gold nanoparticle system for mesenchymal stem cell tracking. J. Mater. Chem. B 2, 8220–8230 (2014).CrossRefGoogle Scholar
- 77.Das, M., Mishra, D., Maiti, T. K., Basak, A & Pramanik, P. Bio-functionalization of magnetite nanoparticles using an aminophosphonic acid coupling agent: new, ultradispersed, iron-oxide folate nanoconjugates for cancer-specific targeting. Nanotechnology 19, 415101 (2008).CrossRefGoogle Scholar
- 78.Pandey, S. et al. Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging. J. Mater. Chem. B 1, 4972 (2013).CrossRefGoogle Scholar
- 79.Kamen, B. A. & Capdevila, A. Receptor-mediated folate accumulation is regulated by the cellular folate content (5-methyltetrahydro[3H]folate binding/folate-binding factor). Cell Biol. 83, 5983–5987 (1986).Google Scholar
- 80.Leamon, C. P. & Low, P. S. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc. Natl. Acad. Sci. U. S. A. 88, 5572–6 (1991).CrossRefGoogle Scholar
- 81.Estrella, V. et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73, 1524–1535 (2013).CrossRefGoogle Scholar
- 82.Rybak, S. L. & Murphy, R. F. Primary cell cultures from murine kidney and heart differ in endosomal pH. J. Cell. Physiol. 176, 216–222 (1998).CrossRefGoogle Scholar
- 83.Scherzinger, A. L. & Hendee, W. R. Basic principles of magnetic resonance imaging--an update. West. J. Med. 143, 782–92 (1985).Google Scholar
- 84.Pooley, R. A. Fundamental Physics of MR ImagingRadioGraphics 25, 1087–1099 (2005).CrossRefGoogle Scholar
- 85.Krishnan, K. M. Advances in Magnetics Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. 46, 2523–2558 (2010).Google Scholar
- 86.B. D. Cullity, C. D. G., Cullity, B. D. & Graham, C. D. Introduction to magnetic materials. 550 (2011).Google Scholar
- 87.Néel, L. Théorie du traînage magnétique des substances massives dans le domaine de Rayleigh. J. Phys. le Radium 11, 49–61 (1950).CrossRefGoogle Scholar
- 88.Bettaieb, A. & Averill-Bates, D. A. Thermotolerance induced at a fever temperature of 40 degrees C protects cells against hyperthermia-induced apoptosis mediated by death receptor signalling. Biochem. Cell Biol. 86, 521–538 (2008).CrossRefGoogle Scholar
- 89.Meenach, S. A., Hilt, J. Z. & Anderson, K. W. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Acta Biomater. 6, 1039–1046 (2010).CrossRefGoogle Scholar