Design and Evaluation of Plasmonic/Magnetic Au-MFe2O4 (M-Fe/Co/Mn) Core-Shell Nanoparticles Functionalized with Doxorubicin for Cancer Therapeutics pp 37-72 | Cite as
Literature Survey on Magnetic, Gold, and Core-Shell Nanoparticles
- 1 Citations
- 443 Downloads
Abstract
Magnetic materials at nanoscale possess various biomedical applications due to their unique physical properties at the cellular and molecular levels of the biological interface. They are an efficient theranostic agent since they are considered to be good for therapeutic purposes, as well as for MR contrast imaging [1, 2]. They have been exploited for the diagnosis and treatment of cancer [3], cardiovascular diseases [4], and neurological diseases [5]. The size, shape, surface charge, surface chemistries, and composition can be tailored for such NPs so that their magnetic properties are improved and hence can be used proficiently for the theranostic purpose, both in vivo and in vitro [6].
References
- 1.Tartaj, P., del Puerto Morales, M., Veintemillas-Vergaguer, S., Gonzalez-Carreño, T. & Serna, C. J. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys. 42, 182–197 (2009).Google Scholar
- 2.Corot, C., Robert, P., & Port, M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 58, 1471–1504 (2006).CrossRefGoogle Scholar
- 3.Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005).CrossRefGoogle Scholar
- 4.Wickline, S. A., Neubauer, A. M., Winter, P. M., Caruthers, S. D. & Lanza, G. M. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J. Magn. Reson. Imaging 25, 667–680 (2007).CrossRefGoogle Scholar
- 5.Corot, C. et al. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest. Radiol. 39, 619–625 (2004).CrossRefGoogle Scholar
- 6.Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005).CrossRefGoogle Scholar
- 7.Bonnemain, B. Superparamagnetic Agents in Magnetic Resonance Imaging: Physicochemical Characteristics and Clinical Applications A Review. J. Drug Target. 6, 167–174 (1998).CrossRefGoogle Scholar
- 8.Senyei, A., Widder, K. & Czerlinski, G. Magnetic guidance of drug-carrying microspheres. J. Appl. Phys. 49, 3578–3583 (1978).CrossRefGoogle Scholar
- 9.Veiseh, O. et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 5, 1003–1008 (2005).CrossRefGoogle Scholar
- 10.Torchilin, V. P. Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 64, 302–315 (2012).CrossRefGoogle Scholar
- 11.Mourino, M. R. From Thales to Lauterbur, or from the lodestone to MR imaging: magnetism and medicine. Radiology 180, 593–612 (1991).CrossRefGoogle Scholar
- 12.Lu, A. H., Salabas, E. L. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chemie - Int. Ed. 46, 1222–1244 (2007).CrossRefGoogle Scholar
- 13.Gao, J. et al. FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J. Am. Chem. Soc. 129, 1428–1433 (2007).CrossRefGoogle Scholar
- 14.Jinhao Gao, et al. Fluorescent Magnetic Nanocrystals by Sequential Addition of Reagents in a One-Pot Reaction: A Simple Preparation for Multifunctional Nanostructures. J. Am. Chem. Soc., 129 (39), pp 11928–11935 (2007).CrossRefGoogle Scholar
- 15.De la Presa, P. et al. Synthesis and characterization of FePt/Au core-shell nanoparticles. J. Magn. Magn. Mater. 316, e753–e755 (2007).CrossRefGoogle Scholar
- 16.Wang, C., Yin, H., Dai, S. & Sun, S. A General Approach to Noble Metal−Metal Oxide Dumbbell Nanoparticles and Their Catalytic Application for CO Oxidation. Chem. Mater. 22, 3277–3282 (2010).CrossRefGoogle Scholar
- 17.Pan, Y., Gao, J., Zhang, B., Zhang, X. & Xu, B. Colloidosome-based Synthesis of a Multifunctional Nanostructure of Silver and Hollow Iron Oxide Nanoparticles. Langmuir 26, 4184–4187 (2010).CrossRefGoogle Scholar
- 18.Peng, S., Lei, C., Ren, Y., Cook, R. E. & Sun, Y. Plasmonic/Magnetic Bifunctional Nanoparticles. Angew. Chemie Int. Ed. 50, 3158–3163 (2011).CrossRefGoogle Scholar
- 19.Hongwei Gu, Rongkun Zheng, XiXiang Zhang, & Bing Xu. Facile One-Pot Synthesis of Bifunctional Heterodimers of Nanoparticles: A Conjugate of Quantum Dot and Magnetic Nanoparticles. (2004). doi:https://doi.org/10.1021/JA0496423
- 20.Chouly, C., Pouliquen, D., Lucet, I., Jeune, J. J. & Jallet, P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J. Microencapsul. 13, 245–255 (1996).CrossRefGoogle Scholar
- 21.Gref, R. et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surfaces B Biointerfaces 18, 301–313 (2000).CrossRefGoogle Scholar
- 22.Moghimi, S. M., Hunter, a C. & Murray, J. C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283–318 (2001).Google Scholar
- 23.Juliano, R. L., Alahari, S., Yoo, H., Kole, R. & Cho, M. Antisense pharmacodynamics: Critical issues in the transport and delivery of antisense oligonucleotides. Pharm. Res. 16, 494–502 (1999).CrossRefGoogle Scholar
- 24.Brigger, I., Dubernet, C. & Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54, 631–651 (2002).CrossRefGoogle Scholar
- 25.Krotz, F. et al. Magnetofection-A highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 7, 700–710 (2003).CrossRefGoogle Scholar
- 26.Plank, C., Scherer, F., Schillinger, U., Anton, M. & Bergemann, C. Magnetofection: Enhancing and targeting gene delivery by magnetic force. Eur. Cells Mater. 3, 79–80 (2002).Google Scholar
- 27.Pan, B. et al. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 67, 8156–8163 (2007).CrossRefGoogle Scholar
- 28.Schillinger, U. et al. Advances in magnetofection - Magnetically guided nucleic acid delivery. J. Magn. Magn. Mater. 293, 501–508 (2005).CrossRefGoogle Scholar
- 29.Medarova, Z., Pham, W., Farrar, C., Petkova, V. & Moore, A. In vivo imaging of siRNA delivery and silencing in tumors. Nat. Med. 13, 372–7 (2007).CrossRefGoogle Scholar
- 30.Mykhaylyk, O. et al. Magnetic nanoparticle formulations for DNA and siRNA delivery. J. Magn. Magn. Mater. 311, 275–281 (2007).CrossRefGoogle Scholar
- 31.Pankhurst, Q. A., Connolly, J., Jones, S. K. & Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36, 167–181 (2003).CrossRefGoogle Scholar
- 32.Dobson, J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 13, 283–287 (2006).CrossRefGoogle Scholar
- 33.Chomoucka, J. et al. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62, 144–149 (2010).CrossRefGoogle Scholar
- 34.Neuberger, T., Hofmann, H., Hofmann, M. & Von Rechenberg, B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496 (2005).CrossRefGoogle Scholar
- 35.Grief, A. D. & Richardson, G. Mathematical modelling of magnetically targeted drug delivery. J. Magn. Magn. Mater. 293, 455–463 (2005).CrossRefGoogle Scholar
- 36.Lübbe, A. S. et al. Clinical experiences with magnetic drug targeting: a phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56, 4686–4693 (1996).Google Scholar
- 37.Lübbe, A. S., Alexiou, C. & Bergemann, C. Clinical applications of magnetic drug targeting. J. Surg. Res. 95, 200–6 (2001).CrossRefGoogle Scholar
- 38.Mornet, S., Vasseur, S., Grasset, F. & Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14, 2161–2175 (2004).Google Scholar
- 39.Alexiou, C. et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60, 6641–6648 (2000).Google Scholar
- 40.Schulze, K. et al. Intraarticular application of superparamagnetic nanoparticles and their uptake by synovial membrane - An experimental study in sheep. J. Magn. Magn. Mater. 293, 419–432 (2005).CrossRefGoogle Scholar
- 41.Kohler, N. et al. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2, 785–792 (2006).CrossRefGoogle Scholar
- 42.Kohler, N., Sun, C., Wang, J. & Zhang, M. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21, 8858–8864 (2005).CrossRefGoogle Scholar
- 43.Yang, J., Lee, H., Hyung, W., Park, S.-B. & Haam, S. Magnetic PECA nanoparticles as drug carriers for targeted delivery: synthesis and release characteristics. J. Microencapsul. 23, 203–212 (2006).CrossRefGoogle Scholar
- 44.Johnson, G. A. et al. Histology by magnetic resonance microscopy. Magn. Reson. Q. 9, 1–30 (1993).Google Scholar
- 45.Fawell, S. et al. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. U. S. A. 91, 664–668 (1994).CrossRefGoogle Scholar
- 46.Weissleder, R. et al. vivo magnetic resonance imaging of transgene expression. Nat. Med. 6, 351–355 (2000).CrossRefGoogle Scholar
- 47.Enochs, W. S., Harsh, G., Hochberg, F. & Weissleder, R. Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent (Combidex). J. Magn. Reson. Imaging 9, 228–232 (1999).Google Scholar
- 48.Contag, P. R., Olomu, I. N., Stevenson, D. K. & Contag, C. H. Bioluminescent indicators in living mammals. Nat. Med. 4, 245–247 (1998).CrossRefGoogle Scholar
- 49.Zhao, M., Beauregard, D. A. D. A.. Loizou, L., Davletov, B. & Brindle, K. M. M. K. M. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat. Med. 7, 1241–1244 (2001).CrossRefGoogle Scholar
- 50.Poptani, H. et al. Monitoring thymidine kinase and ganciclovir-induced changes in rat malignant glioma in vivo by nuclear magnetic resonance imaging. Cancer gene therapy 5, 101–109 (1998).Google Scholar
- 51.Blankenberg, F. G. et al. Quantitative analysis of apoptotic cell death using proton nuclear magnetic resonance spectroscopy. Blood 89, 3778–3786 (1997).Google Scholar
- 52.Nunn, A. V. W. et al. Characterisation of secondary metabolites associated with neutrophil apoptosis. FEBS Lett. 392, 295–298 (1996).CrossRefGoogle Scholar
- 53.Luderer, A. A. et al. Glass-Ceramic-Mediated, Magnetic-Field-Induced Localized Hyperthermia: Response of a Murine Mammary Carcinoma. Radiat. Res. 94, 190 (1983).CrossRefGoogle Scholar
- 54.Chan, D. C., Kirpotin, D. B. & Bunn P. A. Jr. Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. J. Magn. Magn. Mater. 122, 374–378 (1993).CrossRefGoogle Scholar
- 55.Brady, L. W., Heilmann, H. P., Seegenschmiedt, M. H., Fessenden, P. & Vernon, C. C. Thermoradiotherapy and Thermochemotherapy. Springer Berlin 173, (Springer Berlin Heidelberg, 2012).Google Scholar
- 56.Jordan, A. et al. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J. Magn. Magn. Mater. 194, 185–196 (1999).CrossRefGoogle Scholar
- 57.Wada, S., Tazawa, K., Furuta, I. & Nagae, H. Antitumor effect of new local hyperthermia using dextran magnetite complex in hamster tongue carcinoma. Oral Dis. 9, 218–223 (2003).CrossRefGoogle Scholar
- 58.Ito, A., Shinkai, M., Honda, H. & Kobayashi, T. Heat-inducible TNF-α gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther. 8, 649–654 (2001).CrossRefGoogle Scholar
- 59.Petros, R. a & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).CrossRefGoogle Scholar
- 60.Kudgus, R. A., Bhattacharya, R. & Mukherjee, P. Cancer nanotechnology: emerging role of gold nanoconjugates. Anticancer. Agents Med. Chem. 11, 965–973 (2011).CrossRefGoogle Scholar
- 61.Arvizo, R. R. et al. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41, 2943–2970 (2012).CrossRefGoogle Scholar
- 62.Doane, T. & Burda, C. Nanoparticle mediated non-covalent drug delivery. Adv. Drug Deliv. Rev. 65, 607–621 (2013).Google Scholar
- 63.Li, S. D. & Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 5, 496–504 (2008).CrossRefGoogle Scholar
- 64.Tao, A. R., Habas, S. & Yang, P. Shape control of colloidal metal nanocrystals. Small 4, 310–325 (2008).CrossRefGoogle Scholar
- 65.Daniel, M.-C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004).CrossRefGoogle Scholar
- 66.Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution. Science 318, 430–3 (2007).CrossRefGoogle Scholar
- 67.Alkilany, A. M., Thompson, L. B., Boulos, S. P., Sisco, P. N. & Murphy, C. J. Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev. 64, 190–199 (2012).CrossRefGoogle Scholar
- 68.Hong, R. et al. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc. 128, 1078–1079 (2006).CrossRefGoogle Scholar
- 69.Rosi, N. L. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science. 312, 1027–1030 (2006).Google Scholar
- 70.Li, Z. Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res. 30, 1558–1562 (2002).CrossRefGoogle Scholar
- 71.Huff, T. B., Hansen, M. N., Zhao, Y., Cheng, J. X. & Wei, A. Controlling the cellular uptake of gold nanorods. Langmuir 23, 1596–1599 (2007).CrossRefGoogle Scholar
- 72.Letsinger, R. L., Elghanian, R., Viswanadham, G. & Mirkin, C. A. Use of a steroid cyclic disulfide anchor in constructing gold nanoparticle-oligonucleotide conjugates. Bioconjug. Chem. 11, 289–291 (2000).CrossRefGoogle Scholar
- 73.Hoft, R. C., Ford, M. J., McDonagh, A. M. & Cortie, M. B. Adsorption of amine compounds on the Au(111) surface: A density functional study. J. Phys. Chem. C 111, 13886–13891 (2007).CrossRefGoogle Scholar
- 74.A. D. McFarland, C. L. Haynes, C. A. Mirkin, R. P. V. D. and H. A. G. Citrate Synthesis of Gold Nanoparticles, MRSEC Education, University of Wisconsin–Madison. (2004).Google Scholar
- 75.Seferos, D. S., Giljohann, D. A., Rosi, N. L. & Mirkin, C. A. Locked nucleic acid-nanoparticle conjugates. ChemBioChem 8, 1230–1232 (2007).CrossRefGoogle Scholar
- 76.Hill, H. D., Millstone, J. E., Banholzer, M. J. & Mirkin, C. A. The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3, 418–424 (2009).CrossRefGoogle Scholar
- 77.Storhoff, J. J., Elghanian, R., Mirkin, C. A. & Letsinger, R. L. Sequence-dependent stability of DNA-modified gold nanoparticles. Langmuir 18, 6666–6670 (2002).CrossRefGoogle Scholar
- 78.Giljohann, D. A., Seferos, D. S., Prigodich, A. E., Patel, P. C. & Mirkin, C. A. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc. 131, 2072–2073 (2009).CrossRefGoogle Scholar
- 79.Xing, B. et al. Self-assembled multivalent vancomycin on cell surfaces against vancomycin-resistant enterococci (VRE). Chem. Commun. (Camb). 2224–2225 (2003).Google Scholar
- 80.Rao, J. A Trivalent System from Vancomycin·D-Ala-D-Ala with Higher Affinity Than Avidin·Biotin. Science (80). 280, 708–711 (1998).CrossRefGoogle Scholar
- 81.Gu, H., Ho, P. L., Tong, E., Wang, L. & Xu, B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 3, 1261–1263 (2003).CrossRefGoogle Scholar
- 82.Huang, W. C., Tsai, P. J. & Chen, Y. C. Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria. Nanomedicine (Lond). 2, 777–787 (2007).CrossRefGoogle Scholar
- 83.Kell, A. J. et al. Vancomycin-modified nanoparticles for efficient targeting and preconcentration of gram-positive and gram-negative bacteria. ACS Nano 2, 1777–1788 (2008).CrossRefGoogle Scholar
- 84.Gil-Tomás, J. et al. Lethal photosensitisation of Staphylococcus aureus using a toluidine blue O–tiopronin–gold nanoparticle conjugate. J. Mater. Chem. 17, 3739 (2007).CrossRefGoogle Scholar
- 85.Vigderman, L. & Zubarev, E. R. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv. Drug Deliv. Rev. 65, 663–676 (2013).CrossRefGoogle Scholar
- 86.Kennedy, L. C. et al. A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies. Small 7, 169–183 (2011).CrossRefGoogle Scholar
- 87.Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–228 (2008).Google Scholar
- 88.Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A. 100, 13549–54 (2003).CrossRefGoogle Scholar
- 89.Zharov, V. P., Galitovsky, V. & Viegas, M. Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl. Phys. Lett. 83, 4897–4899 (2003).CrossRefGoogle Scholar
- 90.Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R. & Lin, C. P. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 84, 4023–4032 (2003).CrossRefGoogle Scholar
- 91.Huang, X., Qian, W., El-Sayed, I. H. & El-Sayed, M. A. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg. Med. 39, 747–753 (2007).CrossRefGoogle Scholar
- 92.Harris, N., Ford, M. J. & Cortie, M. B. Optimization of plasmonic heating by gold nanospheres and nanoshells. J. Phys. Chem. B 110, 10701–10707 (2006).CrossRefGoogle Scholar
- 93.Takahashi, H., Niidome, T., Nariai, A., Niidome, Y. & Yamada, S. Gold Nanorod-sensitized Cell Death: Microscopic Observation of Single Living Cells Irradiated by Pulsed Near-infrared Laser Light in the Presence of Gold Nanorods. Chem. Lett. 35, 500–501 (2006).CrossRefGoogle Scholar
- 94.Huff, T. B. et al. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (Lond). 2, 125–32 (2007).CrossRefGoogle Scholar
- 95.Pissuwan, D., Valenzuela, S. M., Killingsworth, M. C., Xu, X. & Cortie, M. B. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J. Nanoparticle Res. 9, 1109–1124 (2007).CrossRefGoogle Scholar
- 96.Loo, C., Lowery, A., Halas, N., West, J. & Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–711 (2005).CrossRefGoogle Scholar
- 97.Stern, J. M. et al. Efficacy of Laser-Activated Gold Nanoshells in Ablating Prostate Cancer Cells in Vitro. J. Endourol. 21, 939–943 (2007).CrossRefGoogle Scholar
- 98.Diagaradjane, P. et al. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: Characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano Lett. 8, 1492–1500 (2008).CrossRefGoogle Scholar
- 99.Waldman, S. A. et al. Opportunities for near-infrared thermal ablation of colorectal metastases by guanylyl cyclase C-targeted gold nanoshells. Future Oncol. 2, 705–716 (2006).CrossRefGoogle Scholar
- 100.Phillips, M. A., Gran, M. L. & Peppas, N. A. Targeted nanodelivery of drugs and diagnostics. Nano Today 5, 143–159 (2010).CrossRefGoogle Scholar
- 101.Nie, S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond). 5, 523–528 (2010).CrossRefGoogle Scholar
- 102.El-Sayed, I. H., Huang, X. & El-Sayed, M. A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006).CrossRefGoogle Scholar
- 103.Melancon, M. P. et al. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol. Cancer Ther. 7, 1730–1739 (2008).CrossRefGoogle Scholar
- 104.Visaria, R. K. et al. Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-α delivery. Mol. Cancer Ther. 5, 1014–20 (2006).CrossRefGoogle Scholar
- 105.Larson, T. a, Bankson, J., Aaron, J. & Sokolov, K. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 18, 325101 (2007).CrossRefGoogle Scholar
- 106.Ke, H. et al. Gold-nanoshelled microcapsules: A theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew. Chemie - Int. Ed. 50, 3017–3021 (2011).CrossRefGoogle Scholar
- 107.Kirpotin, D. B. et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 66, 6732–6740 (2006).CrossRefGoogle Scholar
- 108.Choi, C. H. J., Alabi, C. A., Webster, P. & Davis, M. E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 107, 1235–40 (2010).CrossRefGoogle Scholar
- 109.Tuchin, V. V. Handbook of Photonics for Biomedical Science (Series in Medical Physics and Biomedical Engineering). (CRC Press, 2010).Google Scholar
- 110.Wilson, R. The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 37, 2028–2045 (2008).CrossRefGoogle Scholar
- 111.Lakowicz, J. R. et al. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133, 1308–1346 (2008).CrossRefGoogle Scholar
- 112.Bardhan, R., Grady, N. K., Cole, J. R., Joshi, A. & Halas, N. J. Fluorescence enhancement by au nanostructures: Nanoshells and nanorods. ACS Nano 3, 744–752 (2009).Google Scholar
- 113.Ming, T. et al. Experimental Evidence of Plasmophores: Plasmon-Directed Polarized Emission from Gold Nanorod–Fluorophore Hybrid Nanostructures. Nano Lett. 11, 2296–2303 (2011).CrossRefGoogle Scholar
- 114.Sershen, S. R., Westcott, S. L., Halas, N. J. & West, J. L. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51, 293–298 (2000).CrossRefGoogle Scholar
- 115.Radt, B., Smith, T. A. & Caruso, F. Optically addressable nanostructured capsules. Adv. Mater. 16, 2184–2189 (2004).CrossRefGoogle Scholar
- 116.Shiotani, A., Mori, T., Niidome, T., Niidome, Y. & Katayama, Y. Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation. Langmuir 23, 4012–4018 (2007).CrossRefGoogle Scholar
- 117.Nakamura, T. et al. Large payloads of gold nanoparticles into the polyamine network core of stimuli-responsive PEGylated nanogels for selective and noninvasive cancer photothermal therapy. Nanoscale 2, 739–746 (2010).CrossRefGoogle Scholar
- 118.Chithrani, B. D. & Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550 (2007).CrossRefGoogle Scholar
- 119.Liu, S. Y., Liang, Z. S., Gao, F., Luo, S. F. & Lu, G. Q. In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells. J. Mater. Sci. Mater. Med. 21, 665–674 (2010).CrossRefGoogle Scholar
- 120.Bardhan, R. et al. Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo. Nano Lett. 10, 4920–4928 (2010).CrossRefGoogle Scholar
- 121.Kuo, W. S. et al. Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem. Commun. 103, 4853 (2009).CrossRefGoogle Scholar
- 122.Kuo, W. S. et al. Gold Nanorods in Photodynamic Therapy, as Hyperthermia Agents, and in Near-Infrared Optical Imaging. Angew. Chemie 122, 2771–2775 (2010).CrossRefGoogle Scholar
- 123.Tuchina, E. S., Tuchin, V. V, Khlebtsov, B. N. & Khlebtsov, N. G. Phototoxic effect of conjugates of plasmon-resonance nanoparticles with indocyanine green dye on Staphylococcus aureus induced by IR laser radiation. Quantum Electron. 41, 354–359 (2011).CrossRefGoogle Scholar
- 124.Henglein, A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861–1873 (1989).CrossRefGoogle Scholar
- 125.Spanhel, L., Weller, H. & Henglein, A. Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. J. Am. Chem. Soc. 109, 6632–6635 (1987).CrossRefGoogle Scholar
- 126.Youn, H. C., Baral, S. & Fendler, J. H. Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: preparation and utilization for photosensitized charge separation and hydrogen generation. J. Phys. Chem. 92, 6320–6327 (1988).CrossRefGoogle Scholar
- 127.Ghosh Chaudhuri, R. & Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012).CrossRefGoogle Scholar
- 128.Oldenburg, S., Averitt, R., Westcott, S. & Halas, N. Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998).CrossRefGoogle Scholar
- 129.Caruso, F. Nanoengineering of Particle Surfaces. Adv. Mater. 13, 11–22 (2001).CrossRefGoogle Scholar
- 130.Balakrishnan, S., Bonder, M. J. & Hadjipanayis, G. C. Particle size effect on phase and magnetic properties of polymer-coated magnetic nanoparticles. J. Magn. Magn. Mater. 321, 117–122 (2009).CrossRefGoogle Scholar
- 131.Salgueiriño-Maceira, V. & Correa-Duarte, M. A. Increasing the Complexity of Magnetic Core/Shell Structured Nanocomposites for Biological Applications. Adv. Mater. 19, 4131–4144 (2007).CrossRefGoogle Scholar
- 132.Babes, Denizot, Tanguy, Le Jeune & Jallet. Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study. J. Colloid Interface Sci. 212, 474–482 (1999).Google Scholar
- 133.De Farias, P. M. A. et al. Highly fluorescent semiconductor core–shell CdTe–CdS nanocrystals for monitoring living yeast cells activity. Appl. Phys. A 89, 957–961 (2007).CrossRefGoogle Scholar
- 134.Dresco, P. A., Zaitsev, V. S., Gambino, R. J. & Chu, B. Preparation and Properties of Magnetite and Polymer Magnetite Nanoparticles. Langmuir 15, 1945–1951 (1999).CrossRefGoogle Scholar
- 135.Sounderya, N. & Zhang, Y. Use of Core/Shell Structured Nanoparticles for Biomedical Applications. Recent Patents Biomed. Eng. 1, 34–42 (2008).CrossRefGoogle Scholar
- 136.Laurent, S. et al. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 108, 2064–2110 (2008).Google Scholar
- 137.Jaiswal, J. K., Mattoussi, H., Mauro, J. M. & Simon, S. M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51 (2002).CrossRefGoogle Scholar
- 138.Michalet, X. & Pinaud, F. F. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science (80). 307, 538–545 (2005).Google Scholar
- 139.De, M., Ghosh, P. S. & Rotello, V. M. Applications of Nanoparticles in Biology. Adv. Mater. 1003, 4225–4241 (2008).CrossRefGoogle Scholar
- 140.El-toni, A. M., Habila, M. A. & Labis, P. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale, 8, 2510–2531 (2016).CrossRefGoogle Scholar
- 141.Gawande, M. B. et al. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44, 7540–7590 (2015).CrossRefGoogle Scholar
- 142.Jun, Y. et al. Heterostructured magnetic nanoparticles: their versatility and high performance capabilities. Chem. Commun. 35, 1203–1214 (2007).CrossRefGoogle Scholar
- 143.Niemeyer, C. M. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science. Angew. Chemie Int. Ed. 40, 4128–4158 (2001).CrossRefGoogle Scholar
- 144.Zhang, X. F. et al. Fe3O4–silica core–shell nanoporous particles for high-capacity pH-triggered drug delivery. J. Mater. Chem. 22, 14450 (2012).CrossRefGoogle Scholar
- 145.Deng, Y. et al. Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System. J. Am. Chem. Soc. 132, 8466–8473 (2010).CrossRefGoogle Scholar
- 146.Ma, M. et al. Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo/chemo-therapy and multimodal imaging. Biomaterials 33, 989–998 (2012).CrossRefGoogle Scholar
- 147.Barbé, C. et al. Silica Particles: A Novel Drug-Delivery System. Adv. Mater. 16, 1959–1966 (2004).CrossRefGoogle Scholar
- 148.Mohammad-Beigi, H., Yaghmaei, S., Roostaazad, R. & Arpanaei, A. Comparison of different strategies for the assembly of gold colloids onto Fe3O4@SiO2 nanocomposite particles. Phys. E Low-dimensional Syst. Nanostructures 49, 30–38 (2013).CrossRefGoogle Scholar
- 149.Srdic, V., Mojic, B., Nikolic, M. & Ognjanovic, S. Recent progress on synthesis of ceramics core/shell nanostructures. Process. Appl. Ceram. 7, 45–62 (2013).CrossRefGoogle Scholar
- 150.Khan, E. A., Hu, E. & Lai, Z. Preparation of metal oxide/zeolite core–shell nanostructures. Microporous Mesoporous Mater. 118, 210–217 (2009).CrossRefGoogle Scholar
- 151.Yang, Y. C. et al. Facet-dependent optical properties of polyhedral Au–Cu2O core–shell nanocrystals. Nanoscale 6, 4316 (2014).CrossRefGoogle Scholar
- 152.Tian, J. et al. Ag@poly(m-phenylenediamine)-Ag core–shell nanoparticles: one-step preparation, characterization, and their application for H2O2 detection. Catal. Sci. Technol. 1, 1393 (2011).CrossRefGoogle Scholar
- 153.Zhang, L. et al. Controllable synthesis of core–shell Co@CoO nanocomposites with a superior performance as an anode material for lithium-ion batteries. J. Mater. Chem. 21, 18279 (2011).CrossRefGoogle Scholar
- 154.Tian, J., Jin, J., Zheng, F. & Zhao, H. Self-Assembly of Gold Nanoparticles and Polystyrene: A Highly Versatile Approach to the Preparation of Colloidal Particles with Polystyrene Cores and Gold Nanoparticle Coronae. Langmuir 26, 8762–8768 (2010).CrossRefGoogle Scholar
- 155.Xue, X. et al. Emerging functional nanomaterials for therapeutics. J. Mater. Chem. 21, 13107 (2011).CrossRefGoogle Scholar
- 156.Kim, J. et al. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 38, 372–390 (2009).CrossRefGoogle Scholar
- 157.Jun, Y., Lee, J. & Cheon, J. Chemical Design of Nanoparticle Probes for High‐Performance Magnetic Resonance Imaging. Angew. Chemie Int. Ed. 47, 5122–5135 (2008).CrossRefGoogle Scholar
- 158.Zhu, X. et al. Au@SiO2 core–shell nanoparticles for laser desorption/ionization time of flight mass spectrometry. Analyst 137, 2454 (2012).CrossRefGoogle Scholar
- 159.Bai, Z. et al. Fluorescent pH Sensor Based on Ag@SiO2 Core–Shell Nanoparticle. ACS Appl. Mater. Interfaces 5, 5856–5860 (2013).CrossRefGoogle Scholar
- 160.Li, G. et al. Noble metal nanoparticle@metal oxide core/yolk–shell nanostructures as catalysts: recent progress and perspective. Nanoscale 6, 3995 (2014).CrossRefGoogle Scholar
- 161.Lin, J. et al. Gold-Coated Iron (Fe@Au) Nanoparticles: Synthesis, Characterization, and Magnetic Field-Induced Self-Assembly. J. Solid State Chem. 159, 26–31 (2001).CrossRefGoogle Scholar
- 162.Carpenter, E. E., Sims, J. A., Wienmann, J. A., Zhou, W. L. & O’Connor, C. J. Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques. J. Appl. Phys. 87, 5615 (2000).CrossRefGoogle Scholar
- 163.Salazar-Alvarez, G. et al. Fabrication and Properties of Self-Assembled Nanosized Magnetic Particles. MRS Proc. 707, W7.1.1 (2001).Google Scholar
- 164.Fleming, D. A. et al. Chemically Functional Alkanethiol Derivitized Magnetic Nanoparticles. MRS Proc. 746, Q6.4 (2002).Google Scholar
- 165.Seung Uk Son, et al. Designed Synthesis of Atom-Economical Pd/Ni Bimetallic Nanoparticle-Based Catalysts for Sonogashira Coupling Reactions. J. Am. Chem. Soc., 126 (16), 5026–5027 (2004).CrossRefGoogle Scholar
- 166.Zhichuan Xu, Yanglong Hou, and & Sun, S. Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties. J. Am. Chem. Soc., 129 (28), 8698–8699 (2007).CrossRefGoogle Scholar
- 167.El-Toni, A. M. et al. Synthesis of double mesoporous core–shell silica nanospheres with radially oriented mesopores via one-templating step using anionic surfactant. Chem. Commun. 46, 6482 (2010).CrossRefGoogle Scholar
- 168.El-Toni, A., Ibrahim, M., Labis, J., Khan, A. & Alhoshan, M. Optimization of Synthesis Parameters for Mesoporous Shell Formation on Magnetic Nanocores and Their Application as Nanocarriers for Docetaxel Cancer Drug. Int. J. Mol. Sci. 14, 11496–11509 (2013).CrossRefGoogle Scholar
- 169.Qian, X. et al. Controllable fabrication of uniform core–shell structured zeolite@SBA-15 composites. Chem. Sci. 2, 2006 (2011).CrossRefGoogle Scholar
- 170.Wang, G. & Harrison, A. Preparation of Iron Particles Coated with Silica. Journal of Colloid and Interface Science 217, 203–207 (1999).CrossRefGoogle Scholar
- 171.Deng, S., Pingali, K. C. & Rockstraw, D. A. Synthesis of Ru-Ni Core-Shell Nanoparticles for Potential Sensor Applications. IEEE Sens. J. 8, 730–734 (2008).CrossRefGoogle Scholar
- 172.Chertok, B., David, A. E. & Yang, V. C. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials 31, 6317–6324 (2010).CrossRefGoogle Scholar
- 173.Pathak, C., Jaiswal, Y. K. & Vinayak, M. Queuine promotes antioxidant defence system by activating cellular antioxidant enzyme activities in cancer. Biosci. Rep. 28, (2008).Google Scholar
- 174.Kircher, M. F. et al. A Multimodal Nanoparticle for Preoperative Magnetic Resonance Imaging and Intraoperative Optical Brain Tumor Delineation Advances in Brief A Multimodal Nanoparticle for Preoperative Magnetic Resonance Imaging and Intraoperative Optical Brain Tumor Delinea. Cancer Res, 63(23), 8122–8125 (2003).Google Scholar
- 175.Lien, Y. H. & Wu, T. M. Preparation and characterization of thermosensitive polymers grafted onto silica-coated iron oxide nanoparticles. J. Colloid Interface Sci. 326, 517–521 (2008).CrossRefGoogle Scholar
- 176.Woo-ram Lee, et al. Redox−Transmetalation Process as a Generalized Synthetic Strategy for Core−Shell Magnetic Nanoparticles. J. Am. Chem. Soc., 127 (46), pp 16090–16097 (2005).CrossRefGoogle Scholar
- 177.Tan, W. et al. Bionanotechnology based on silica nanoparticles. Med. Res. Rev. 24, 621–638 (2004).CrossRefGoogle Scholar
- 178.Eyk A. Schellenberger, David Sosnovik, Ralph Weissleder, and & Lee Josephson. Magneto/Optical Annexin V, a Multimodal Protein. Bioconjugate Chem., 15 (5), 1062–1067 (2004).CrossRefGoogle Scholar
- 179.Daneshvar, H. et al. Imaging characteristics of zinc sulfide shell, cadmium telluride core quantum dots. Nanomedicine 3, 21–29 (2008).CrossRefGoogle Scholar
- 180.SalmanOgli, A. & Rostami, A. Investigation of electronic and optical properties of (CdSe/ZnS/CdSe/ZnS) quantum dot–quantum well heteronanocrystal. J. Nanoparticle Res. 13, 1197–1205 (2011).CrossRefGoogle Scholar
- 181.Ying Wang, et al. Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores. J. Phys. Chem. B, 108 (40), 15461–15469 (2004).CrossRefGoogle Scholar
- 182.Wang, Y. et al. Upconversion Luminescence of β-NaYF4 : Yb3+, Er3+@β-NaYF4 Core/Shell Nanoparticles: Excitation Power Density and Surface Dependence. J. Phys. Chem. C 113, 7164–7169 (2009).CrossRefGoogle Scholar
- 183.Qian, H. S. & Zhang, Y. Synthesis of Hexagonal-Phase Core−Shell NaYF4 Nanocrystals with Tunable Upconversion Fluorescence. Langmuir 24, 12123–12125 (2008).CrossRefGoogle Scholar
- 184.Stanciu, L., Won, Y. H., Ganesana, M. & Andreescu, S. Magnetic Particle-Based Hybrid Platforms for Bioanalytical Sensors. Sensors 9, 2976–2999 (2009).Google Scholar
- 185.Qiu, J. D., Cui, S. G., Deng, M. Q. & Liang, R. P. Direct electrochemistry of myoglobin immobilized in NiO/MWNTs hybrid nanocomposite for electrocatalytic detection of hydrogen peroxide. J. Appl. Electrochem. 40, 1651–1657 (2010).CrossRefGoogle Scholar
- 186.Qiu, J. D., Cui, S. G. & Liang, R. P. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on ceria nanoparticles coated with multiwalled carbon nanotubesby a hydrothermal synthetic method. Microchim. Acta 171, 333–339 (2010).Google Scholar
- 187.Khlebtsov, N. et al. Analytical and Theranostic Applications of Gold Nanoparticles and Multifunctional Nanocomposites. Theranostics 3, 167–180 (2013).CrossRefGoogle Scholar
- 188.Wang, X., Yang, T. & Jiao, K. Electrochemical sensing the DNA damage in situ induced by a cathodic process based on Fe@Fe2O3 core–shell nanonecklace and Au nanoparticles mimicking metal toxicity pathways in vivo. Biosens. Bioelectron. 25, 668–673 (2009).CrossRefGoogle Scholar
- 189.Qiu, J. D., Peng, H. P., Liang, R. P. & Xia, X. H. Facile preparation of magnetic core–shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry. Biosens. Bioelectron. 25, 1447–1453 (2010).CrossRefGoogle Scholar
- 190.Zhang, X. F. et al. Synthesis, structure and magnetic properties of SiO2-coated Fe nanocapsules. Mater. Sci. Eng. A 454, 211–215 (2007).CrossRefGoogle Scholar
- 191.Xuan, S., Wang, Y. X. J., Yu, J. C. & Leung, K. C. F. Preparation, Characterization, and Catalytic Activity of Core/Shell Fe3O4@Polyaniline@Au Nanocomposites. Langmuir 25, 11835–11843 (2009).CrossRefGoogle Scholar
- 192.Yin, H., Ma, Z., Chi, M. & Dai, S. Heterostructured catalysts prepared by dispersing Au@Fe2O3 core–shell structures on supports and their performance in CO oxidation. Catal. Today 160, 87–95 (2011).CrossRefGoogle Scholar
- 193.Riccardo Ferrando, Julius Jellinek, & Johnston, R. L. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev., 108 (3), 845–910 (2008).CrossRefGoogle Scholar
- 194.Wang, L. & Yamauchi, Y. Autoprogrammed Synthesis of Triple-Layered Au@Pd@Pt Core−Shell Nanoparticles Consisting of a Au@Pd Bimetallic Core and Nanoporous Pt Shell. J. Am. Chem. Soc. 132, 13636–13638 (2010).CrossRefGoogle Scholar
- 195.Fan, F. R. et al. Epitaxial Growth of Heterogeneous Metal Nanocrystals: From Gold Nano-octahedra to Palladium and Silver Nanocubes. J. Am. Chem. Soc. 130, 6949–6951 (2008).CrossRefGoogle Scholar
- 196.Kumagai, M. et al. Enhanced in vivo magnetic resonance imaging of tumors by PEGylated iron-oxide-gold core-shell nanoparticles with prolonged blood circulation properties. Macromol. Rapid Commun. 31, 1521–1528 (2010).CrossRefGoogle Scholar
- 197.Kayal, S. & Ramanujan, R. V. Anti-Cancer Drug Loaded Iron–Gold Core–Shell Nanoparticles (Fe@Au) for Magnetic Drug Targeting. J. Nanosci. Nanotechnol. 10, 5527–5539 (2010).CrossRefGoogle Scholar
- 198.Silva, S. M., Tavallaie, R., Sandiford, L., Tilley, D. & Gooding, J. J. Gold coated magnetic nanoparticles : from preparation to surface modification for analytical and biomedical applications. Chem. Commun. 52, 7528–7540 (2016).CrossRefGoogle Scholar
- 199.Ghorbani, M., Hamishehkar, H., Arsalani, N. & Entezami, A. A. Preparation of thermo and pH-responsive polymer@Au/Fe3O4 core/shell nanoparticles as a carrier for delivery of anticancer agent. J. Nanoparticle Res. 17, 305 (2015).CrossRefGoogle Scholar
- 200.Lo, C. K. et al. Homocysteine-protected gold-coated magnetic nanoparticles: synthesis and characterisation. J. Mater. Chem. 17, 2418 (2007).CrossRefGoogle Scholar
- 201.Rudakovskaya, P. G., Beloglazkina, E. K., Majouga, A. G. & Zyk, N. V. Synthesis and characterization of terpyridine-type ligand-protected gold-coated Fe3O4 nanoparticles. Mendeleev Commun. 20, 158–160 (2010).CrossRefGoogle Scholar
- 202.Zhou, H. et al. Ultrasensitive DNA monitoring by Au–Fe3O4 nanocomplex. Sensors Actuators B Chem. 163, 224–232 (2012).CrossRefGoogle Scholar
- 203.Lingyan Wang, Lingyan Wang, et al. Monodispersed Core−Shell Fe3O4@Au Nanoparticles. J. Phys. Chem. B, 109 (46), 21593–21601 (2005).CrossRefGoogle Scholar
- 204.Jin, Y., Jia, C., Huang, S. W., O’Donnell, M. & Gao, X. Multifunctional nanoparticles as coupled contrast agents. Nat. Commun. 1, 1–8 (2010).CrossRefGoogle Scholar
- 205.Hu, Y., Meng, L., Niu, L. & Lu, Q. Facile Synthesis of Superparamagnetic Fe3O4 @polyphosphazene@Au Shells for Magnetic Resonance Imaging and Photothermal Therapy. ACS Appl. Mater. Interfaces 5, 4586–4591 (2013).CrossRefGoogle Scholar
- 206.Dong, W. et al. Facile Synthesis of Monodisperse Superparamagnetic Fe3O4 Core@hybrid@Au Shell Nanocomposite for Bimodal Imaging and Photothermal Therapy. Adv. Mater. 23, 5392–5397 (2011).CrossRefGoogle Scholar
- 207.Salgueiriño-Maceira, V. et al. Bifunctional gold-coated magnetic silica spheres. Chem. Mater. 18, 2701–2706 (2006).CrossRefGoogle Scholar
- 208.Taufika Islam Williams, et al. Epithelial Ovarian Cancer: Disease Etiology, Treatment, Detection, and Investigational Gene, Metabolite, and Protein Biomarkers. (2007). doi:https://doi.org/10.1021/PR070041V
- 209.Zhuo, Y., Yuan, P. X., Yuan, R., Chai, Y. Q. & Hong, C. L. Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials 30, 2284–2290 (2009).CrossRefGoogle Scholar
- 210.Xie, J. et al. Manipulating the Power of an Additional Phase: A Flower-like Au-Fe3O4 Optical Nanosensor for Imaging Protease Expressions In vivo. ACS Nano 5, 3043–3051 (2011).Google Scholar
- 211.Cherukuri, P., Glazer, E. S. & Curley, S. A. Targeted hyperthermia using metal nanoparticles. Adv. Drug Deliv. Rev. 62, 339–345 (2010).CrossRefGoogle Scholar
- 212.Rai, P. et al. Development and applications of photo-triggered theranostic agents. Adv. Drug Deliv. Rev. 62, 1094–1124 (2010).CrossRefGoogle Scholar
- 213.Mohammad, F., Balaji, G., Weber, A., Uppu, R. M. & Kumar, C. S. S. R. Influence of Gold Nanoshell on Hyperthermia of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs). J. Phys. Chem. C. Nanomater. Interfaces 114, 19194–19201 (2010).Google Scholar
- 214.Kim, J. et al. Designed Fabrication of Multifunctional Magnetic Gold Nanoshells and Their Application to Magnetic Resonance Imaging and Photothermal Therapy. Angew. Chemie Int. Ed. 45, 7754–7758 (2006).CrossRefGoogle Scholar
- 215.Xu, C. et al. Au-Fe3O4 Dumbbell Nanoparticles as Dual-Functional Probes. Angew. Chemie Int. Ed. 47, 173–176 (2008).CrossRefGoogle Scholar
- 216.García, I., Gallo, J., Genicio, N., Padro, D. & Penadés, S. Magnetic Glyconanoparticles as a Versatile Platform for Selective Immunolabeling and Imaging of Cells. Bioconjug. Chem. 22, 264–273 (2011).CrossRefGoogle Scholar
- 217.Bardhan, R. et al. Nanoshells with Targeted Simultaneous Enhancement of Magnetic and Optical Imaging and Photothermal Therapeutic Response. Adv. Funct. Mater. 19, 3901–3909 (2009).CrossRefMathSciNetGoogle Scholar
- 218.Xu, C., Wang, B. & Sun, S. Dumbbell-like Au-Fe3O4 Nanoparticles for Target-Specific Platin Delivery. J. Am. Chem. Soc. 131, 4216–4217 (2009).CrossRefGoogle Scholar
- 219.Plank, C., Scherer, F., Schillinger, U., Bergemann, C. & Anton, M. Magnetofection: Enhancing and Targeting Gene Delivery with Superparamagnetic Nanoparticles and Magnetic Fields. J. Liposome Res. 13, 29–32 (2003).CrossRefGoogle Scholar
- 220.Cho, K., Wang, X., Nie, S., Chen, Z. G. & Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310–6 (2008).CrossRefGoogle Scholar
- 221.Kamei, K. et al. Direct cell entry of gold/iron-oxide magnetic nanoparticles in adenovirus mediated gene delivery. Biomaterials 30, 1809–1814 (2009).CrossRefGoogle Scholar
- 222.Thaxton, C. S., Georganopoulou, D. G. & Mirkin, C. A. Gold nanoparticle probes for the detection of nucleic acid targets. Clin. Chim. Acta 363, 120–126 (2006).CrossRefGoogle Scholar
- 223.Savka I. Stoeva, Fengwei Huo, Jae-Seung Lee, and & Mirkin, C. A. Three-Layer Composite Magnetic Nanoparticle Probes for DNA. J. Am. Chem. Soc., 127 (44), 15362–15363 (2005).Google Scholar
- 224.Zhao, J. et al. Ultrasensitive electrochemical aptasensor for thrombin based on the amplification of aptamer–AuNPs–HRP conjugates. Biosens. Bioelectron. 26, 2297–2303 (2011).CrossRefGoogle Scholar
- 225.Wang, C. & Irudayaraj, J. Multifunctional Magnetic-Optical Nanoparticle Probes for Simultaneous Detection, Separation, and Thermal Ablation of Multiple Pathogens. Small 6, 283–289 (2010).CrossRefGoogle Scholar
- 226.Liu, H. L., Sonn, C. H., Wu, J. H., Lee, K. M. & Kim, Y. K. Synthesis of streptavidin-FITC-conjugated core-shell Fe3O4-Au nanocrystals and their application for the purification of CD4+ lymphocytes. Biomaterials 29, 4003–4011 (2008).CrossRefGoogle Scholar
- 227.Yu, C. J., Lin, C. Y., Liu, C. H., Cheng, T. L. & Tseng, W. L. Synthesis of poly(diallyldimethylammonium chloride)-coated Fe3O4 nanoparticles for colorimetric sensing of glucose and selective extraction of thiol. Biosensors and Bioelectronics 26, (2010).Google Scholar
- 228.Qi, D., Zhang, H., Tang, J., Deng, C. & Zhang, X. Facile synthesis of mercaptophenylboronic acid-functionalized core-shell structure Fe3O4@C@Au magnetic microspheres for selective enrichment of glycopeptides and glycoproteins. J. Phys. Chem. C 114, 9221–9226 (2010).CrossRefGoogle Scholar
- 229.Hashmi, A. S. K. & Hutchings, G. J. Gold Catalysis. Angew. Chemie Int. Ed. 45, 7896–7936 (2006).CrossRefGoogle Scholar
- 230.Arcadi, A. Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chem. Rev. 108, 3266–3325 (2008).CrossRefGoogle Scholar
- 231.Corma, A. et al. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096 (2008).CrossRefGoogle Scholar
- 232.Yin, H. et al. Colloidal deposition synthesis of supported gold nanocatalysts based on Au–Fe3O4 dumbbell nanoparticles. Chem. Commun. 37, 4357 (2008).CrossRefGoogle Scholar
- 233.Edwards, J. K. et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3 catalysts. J. Mater. Chem. 15, 4595 (2005).CrossRefGoogle Scholar
- 234.Ge, J., Huynh, T., Hu, Y. & Yin, Y. Hierarchical Magnetite/Silica Nanoassemblies as Magnetically Recoverable Catalyst–Supports. Nano Lett. 8, 931–934 (2008).CrossRefGoogle Scholar
- 235.Lee, Y., Garcia, M. A., Frey Huls N.A., Sun, S. Synthetic Tuning of the Catalytic Properties of Au-Fe3O4 Nanoparticles. Angew. Chemie Int. Ed. 49, 1271–1274 (2010).CrossRefGoogle Scholar
- 236.B. Saha, J. Bhattacharya, A. Mukherjee, A. Ghosh, C. Santra, A. Dasgupta, P. Karmakar, In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics, Nanoscale Res. Lett., 2 (2007), pp. 614-622.Google Scholar