Advertisement

Literature Survey on Magnetic, Gold, and Core-Shell Nanoparticles

  • Ravichandran Manisekaran
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Magnetic materials at nanoscale possess various biomedical applications due to their unique physical properties at the cellular and molecular levels of the biological interface. They are an efficient theranostic agent since they are considered to be good for therapeutic purposes, as well as for MR contrast imaging [1, 2]. They have been exploited for the diagnosis and treatment of cancer [3], cardiovascular diseases [4], and neurological diseases [5]. The size, shape, surface charge, surface chemistries, and composition can be tailored for such NPs so that their magnetic properties are improved and hence can be used proficiently for the theranostic purpose, both in vivo and in vitro [6].

References

  1. 1.
    Tartaj, P., del Puerto Morales, M., Veintemillas-Vergaguer, S., Gonzalez-Carreño, T. & Serna, C. J. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys. 42, 182–197 (2009).Google Scholar
  2. 2.
    Corot, C., Robert, P., & Port, M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 58, 1471–1504 (2006).CrossRefGoogle Scholar
  3. 3.
    Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005).CrossRefGoogle Scholar
  4. 4.
    Wickline, S. A., Neubauer, A. M., Winter, P. M., Caruthers, S. D. & Lanza, G. M. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J. Magn. Reson. Imaging 25, 667–680 (2007).CrossRefGoogle Scholar
  5. 5.
    Corot, C. et al. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest. Radiol. 39, 619–625 (2004).CrossRefGoogle Scholar
  6. 6.
    Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005).CrossRefGoogle Scholar
  7. 7.
    Bonnemain, B. Superparamagnetic Agents in Magnetic Resonance Imaging: Physicochemical Characteristics and Clinical Applications A Review. J. Drug Target. 6, 167–174 (1998).CrossRefGoogle Scholar
  8. 8.
    Senyei, A., Widder, K. & Czerlinski, G. Magnetic guidance of drug-carrying microspheres. J. Appl. Phys. 49, 3578–3583 (1978).CrossRefGoogle Scholar
  9. 9.
    Veiseh, O. et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 5, 1003–1008 (2005).CrossRefGoogle Scholar
  10. 10.
    Torchilin, V. P. Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 64, 302–315 (2012).CrossRefGoogle Scholar
  11. 11.
    Mourino, M. R. From Thales to Lauterbur, or from the lodestone to MR imaging: magnetism and medicine. Radiology 180, 593–612 (1991).CrossRefGoogle Scholar
  12. 12.
    Lu, A. H., Salabas, E. L. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chemie - Int. Ed. 46, 1222–1244 (2007).CrossRefGoogle Scholar
  13. 13.
    Gao, J. et al. FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J. Am. Chem. Soc. 129, 1428–1433 (2007).CrossRefGoogle Scholar
  14. 14.
    Jinhao Gao, et al. Fluorescent Magnetic Nanocrystals by Sequential Addition of Reagents in a One-Pot Reaction: A Simple Preparation for Multifunctional Nanostructures. J. Am. Chem. Soc., 129 (39), pp 11928–11935 (2007).CrossRefGoogle Scholar
  15. 15.
    De la Presa, P. et al. Synthesis and characterization of FePt/Au core-shell nanoparticles. J. Magn. Magn. Mater. 316, e753–e755 (2007).CrossRefGoogle Scholar
  16. 16.
    Wang, C., Yin, H., Dai, S. & Sun, S. A General Approach to Noble Metal−Metal Oxide Dumbbell Nanoparticles and Their Catalytic Application for CO Oxidation. Chem. Mater. 22, 3277–3282 (2010).CrossRefGoogle Scholar
  17. 17.
    Pan, Y., Gao, J., Zhang, B., Zhang, X. & Xu, B. Colloidosome-based Synthesis of a Multifunctional Nanostructure of Silver and Hollow Iron Oxide Nanoparticles. Langmuir 26, 4184–4187 (2010).CrossRefGoogle Scholar
  18. 18.
    Peng, S., Lei, C., Ren, Y., Cook, R. E. & Sun, Y. Plasmonic/Magnetic Bifunctional Nanoparticles. Angew. Chemie Int. Ed. 50, 3158–3163 (2011).CrossRefGoogle Scholar
  19. 19.
    Hongwei Gu, Rongkun Zheng, XiXiang Zhang, & Bing Xu. Facile One-Pot Synthesis of Bifunctional Heterodimers of Nanoparticles: A Conjugate of Quantum Dot and Magnetic Nanoparticles. (2004). doi:https://doi.org/10.1021/JA0496423
  20. 20.
    Chouly, C., Pouliquen, D., Lucet, I., Jeune, J. J. & Jallet, P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J. Microencapsul. 13, 245–255 (1996).CrossRefGoogle Scholar
  21. 21.
    Gref, R. et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surfaces B Biointerfaces 18, 301–313 (2000).CrossRefGoogle Scholar
  22. 22.
    Moghimi, S. M., Hunter, a C. & Murray, J. C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283–318 (2001).Google Scholar
  23. 23.
    Juliano, R. L., Alahari, S., Yoo, H., Kole, R. & Cho, M. Antisense pharmacodynamics: Critical issues in the transport and delivery of antisense oligonucleotides. Pharm. Res. 16, 494–502 (1999).CrossRefGoogle Scholar
  24. 24.
    Brigger, I., Dubernet, C. & Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54, 631–651 (2002).CrossRefGoogle Scholar
  25. 25.
    Krotz, F. et al. Magnetofection-A highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 7, 700–710 (2003).CrossRefGoogle Scholar
  26. 26.
    Plank, C., Scherer, F., Schillinger, U., Anton, M. & Bergemann, C. Magnetofection: Enhancing and targeting gene delivery by magnetic force. Eur. Cells Mater. 3, 79–80 (2002).Google Scholar
  27. 27.
    Pan, B. et al. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 67, 8156–8163 (2007).CrossRefGoogle Scholar
  28. 28.
    Schillinger, U. et al. Advances in magnetofection - Magnetically guided nucleic acid delivery. J. Magn. Magn. Mater. 293, 501–508 (2005).CrossRefGoogle Scholar
  29. 29.
    Medarova, Z., Pham, W., Farrar, C., Petkova, V. & Moore, A. In vivo imaging of siRNA delivery and silencing in tumors. Nat. Med. 13, 372–7 (2007).CrossRefGoogle Scholar
  30. 30.
    Mykhaylyk, O. et al. Magnetic nanoparticle formulations for DNA and siRNA delivery. J. Magn. Magn. Mater. 311, 275–281 (2007).CrossRefGoogle Scholar
  31. 31.
    Pankhurst, Q. A., Connolly, J., Jones, S. K. & Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36, 167–181 (2003).CrossRefGoogle Scholar
  32. 32.
    Dobson, J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 13, 283–287 (2006).CrossRefGoogle Scholar
  33. 33.
    Chomoucka, J. et al. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62, 144–149 (2010).CrossRefGoogle Scholar
  34. 34.
    Neuberger, T., Hofmann, H., Hofmann, M. & Von Rechenberg, B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496 (2005).CrossRefGoogle Scholar
  35. 35.
    Grief, A. D. & Richardson, G. Mathematical modelling of magnetically targeted drug delivery. J. Magn. Magn. Mater. 293, 455–463 (2005).CrossRefGoogle Scholar
  36. 36.
    Lübbe, A. S. et al. Clinical experiences with magnetic drug targeting: a phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56, 4686–4693 (1996).Google Scholar
  37. 37.
    Lübbe, A. S., Alexiou, C. & Bergemann, C. Clinical applications of magnetic drug targeting. J. Surg. Res. 95, 200–6 (2001).CrossRefGoogle Scholar
  38. 38.
    Mornet, S., Vasseur, S., Grasset, F. & Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14, 2161–2175 (2004).Google Scholar
  39. 39.
    Alexiou, C. et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60, 6641–6648 (2000).Google Scholar
  40. 40.
    Schulze, K. et al. Intraarticular application of superparamagnetic nanoparticles and their uptake by synovial membrane - An experimental study in sheep. J. Magn. Magn. Mater. 293, 419–432 (2005).CrossRefGoogle Scholar
  41. 41.
    Kohler, N. et al. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2, 785–792 (2006).CrossRefGoogle Scholar
  42. 42.
    Kohler, N., Sun, C., Wang, J. & Zhang, M. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21, 8858–8864 (2005).CrossRefGoogle Scholar
  43. 43.
    Yang, J., Lee, H., Hyung, W., Park, S.-B. & Haam, S. Magnetic PECA nanoparticles as drug carriers for targeted delivery: synthesis and release characteristics. J. Microencapsul. 23, 203–212 (2006).CrossRefGoogle Scholar
  44. 44.
    Johnson, G. A. et al. Histology by magnetic resonance microscopy. Magn. Reson. Q. 9, 1–30 (1993).Google Scholar
  45. 45.
    Fawell, S. et al. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. U. S. A. 91, 664–668 (1994).CrossRefGoogle Scholar
  46. 46.
    Weissleder, R. et al. vivo magnetic resonance imaging of transgene expression. Nat. Med. 6, 351–355 (2000).CrossRefGoogle Scholar
  47. 47.
    Enochs, W. S., Harsh, G., Hochberg, F. & Weissleder, R. Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent (Combidex). J. Magn. Reson. Imaging 9, 228–232 (1999).Google Scholar
  48. 48.
    Contag, P. R., Olomu, I. N., Stevenson, D. K. & Contag, C. H. Bioluminescent indicators in living mammals. Nat. Med. 4, 245–247 (1998).CrossRefGoogle Scholar
  49. 49.
    Zhao, M., Beauregard, D. A. D. A.. Loizou, L., Davletov, B. & Brindle, K. M. M. K. M. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat. Med. 7, 1241–1244 (2001).CrossRefGoogle Scholar
  50. 50.
    Poptani, H. et al. Monitoring thymidine kinase and ganciclovir-induced changes in rat malignant glioma in vivo by nuclear magnetic resonance imaging. Cancer gene therapy 5, 101–109 (1998).Google Scholar
  51. 51.
    Blankenberg, F. G. et al. Quantitative analysis of apoptotic cell death using proton nuclear magnetic resonance spectroscopy. Blood 89, 3778–3786 (1997).Google Scholar
  52. 52.
    Nunn, A. V. W. et al. Characterisation of secondary metabolites associated with neutrophil apoptosis. FEBS Lett. 392, 295–298 (1996).CrossRefGoogle Scholar
  53. 53.
    Luderer, A. A. et al. Glass-Ceramic-Mediated, Magnetic-Field-Induced Localized Hyperthermia: Response of a Murine Mammary Carcinoma. Radiat. Res. 94, 190 (1983).CrossRefGoogle Scholar
  54. 54.
    Chan, D. C., Kirpotin, D. B. & Bunn P. A. Jr. Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. J. Magn. Magn. Mater. 122, 374–378 (1993).CrossRefGoogle Scholar
  55. 55.
    Brady, L. W., Heilmann, H. P., Seegenschmiedt, M. H., Fessenden, P. & Vernon, C. C. Thermoradiotherapy and Thermochemotherapy. Springer Berlin 173, (Springer Berlin Heidelberg, 2012).Google Scholar
  56. 56.
    Jordan, A. et al. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J. Magn. Magn. Mater. 194, 185–196 (1999).CrossRefGoogle Scholar
  57. 57.
    Wada, S., Tazawa, K., Furuta, I. & Nagae, H. Antitumor effect of new local hyperthermia using dextran magnetite complex in hamster tongue carcinoma. Oral Dis. 9, 218–223 (2003).CrossRefGoogle Scholar
  58. 58.
    Ito, A., Shinkai, M., Honda, H. & Kobayashi, T. Heat-inducible TNF-α gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther. 8, 649–654 (2001).CrossRefGoogle Scholar
  59. 59.
    Petros, R. a & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).CrossRefGoogle Scholar
  60. 60.
    Kudgus, R. A., Bhattacharya, R. & Mukherjee, P. Cancer nanotechnology: emerging role of gold nanoconjugates. Anticancer. Agents Med. Chem. 11, 965–973 (2011).CrossRefGoogle Scholar
  61. 61.
    Arvizo, R. R. et al. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41, 2943–2970 (2012).CrossRefGoogle Scholar
  62. 62.
    Doane, T. & Burda, C. Nanoparticle mediated non-covalent drug delivery. Adv. Drug Deliv. Rev. 65, 607–621 (2013).Google Scholar
  63. 63.
    Li, S. D. & Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 5, 496–504 (2008).CrossRefGoogle Scholar
  64. 64.
    Tao, A. R., Habas, S. & Yang, P. Shape control of colloidal metal nanocrystals. Small 4, 310–325 (2008).CrossRefGoogle Scholar
  65. 65.
    Daniel, M.-C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004).CrossRefGoogle Scholar
  66. 66.
    Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution. Science 318, 430–3 (2007).CrossRefGoogle Scholar
  67. 67.
    Alkilany, A. M., Thompson, L. B., Boulos, S. P., Sisco, P. N. & Murphy, C. J. Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev. 64, 190–199 (2012).CrossRefGoogle Scholar
  68. 68.
    Hong, R. et al. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc. 128, 1078–1079 (2006).CrossRefGoogle Scholar
  69. 69.
    Rosi, N. L. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science. 312, 1027–1030 (2006).Google Scholar
  70. 70.
    Li, Z. Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res. 30, 1558–1562 (2002).CrossRefGoogle Scholar
  71. 71.
    Huff, T. B., Hansen, M. N., Zhao, Y., Cheng, J. X. & Wei, A. Controlling the cellular uptake of gold nanorods. Langmuir 23, 1596–1599 (2007).CrossRefGoogle Scholar
  72. 72.
    Letsinger, R. L., Elghanian, R., Viswanadham, G. & Mirkin, C. A. Use of a steroid cyclic disulfide anchor in constructing gold nanoparticle-oligonucleotide conjugates. Bioconjug. Chem. 11, 289–291 (2000).CrossRefGoogle Scholar
  73. 73.
    Hoft, R. C., Ford, M. J., McDonagh, A. M. & Cortie, M. B. Adsorption of amine compounds on the Au(111) surface: A density functional study. J. Phys. Chem. C 111, 13886–13891 (2007).CrossRefGoogle Scholar
  74. 74.
    A. D. McFarland, C. L. Haynes, C. A. Mirkin, R. P. V. D. and H. A. G. Citrate Synthesis of Gold Nanoparticles, MRSEC Education, University of Wisconsin–Madison. (2004).Google Scholar
  75. 75.
    Seferos, D. S., Giljohann, D. A., Rosi, N. L. & Mirkin, C. A. Locked nucleic acid-nanoparticle conjugates. ChemBioChem 8, 1230–1232 (2007).CrossRefGoogle Scholar
  76. 76.
    Hill, H. D., Millstone, J. E., Banholzer, M. J. & Mirkin, C. A. The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3, 418–424 (2009).CrossRefGoogle Scholar
  77. 77.
    Storhoff, J. J., Elghanian, R., Mirkin, C. A. & Letsinger, R. L. Sequence-dependent stability of DNA-modified gold nanoparticles. Langmuir 18, 6666–6670 (2002).CrossRefGoogle Scholar
  78. 78.
    Giljohann, D. A., Seferos, D. S., Prigodich, A. E., Patel, P. C. & Mirkin, C. A. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc. 131, 2072–2073 (2009).CrossRefGoogle Scholar
  79. 79.
    Xing, B. et al. Self-assembled multivalent vancomycin on cell surfaces against vancomycin-resistant enterococci (VRE). Chem. Commun. (Camb). 2224–2225 (2003).Google Scholar
  80. 80.
    Rao, J. A Trivalent System from Vancomycin·D-Ala-D-Ala with Higher Affinity Than Avidin·Biotin. Science (80). 280, 708–711 (1998).CrossRefGoogle Scholar
  81. 81.
    Gu, H., Ho, P. L., Tong, E., Wang, L. & Xu, B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 3, 1261–1263 (2003).CrossRefGoogle Scholar
  82. 82.
    Huang, W. C., Tsai, P. J. & Chen, Y. C. Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria. Nanomedicine (Lond). 2, 777–787 (2007).CrossRefGoogle Scholar
  83. 83.
    Kell, A. J. et al. Vancomycin-modified nanoparticles for efficient targeting and preconcentration of gram-positive and gram-negative bacteria. ACS Nano 2, 1777–1788 (2008).CrossRefGoogle Scholar
  84. 84.
    Gil-Tomás, J. et al. Lethal photosensitisation of Staphylococcus aureus using a toluidine blue O–tiopronin–gold nanoparticle conjugate. J. Mater. Chem. 17, 3739 (2007).CrossRefGoogle Scholar
  85. 85.
    Vigderman, L. & Zubarev, E. R. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv. Drug Deliv. Rev. 65, 663–676 (2013).CrossRefGoogle Scholar
  86. 86.
    Kennedy, L. C. et al. A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies. Small 7, 169–183 (2011).CrossRefGoogle Scholar
  87. 87.
    Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–228 (2008).Google Scholar
  88. 88.
    Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A. 100, 13549–54 (2003).CrossRefGoogle Scholar
  89. 89.
    Zharov, V. P., Galitovsky, V. & Viegas, M. Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl. Phys. Lett. 83, 4897–4899 (2003).CrossRefGoogle Scholar
  90. 90.
    Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R. & Lin, C. P. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 84, 4023–4032 (2003).CrossRefGoogle Scholar
  91. 91.
    Huang, X., Qian, W., El-Sayed, I. H. & El-Sayed, M. A. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg. Med. 39, 747–753 (2007).CrossRefGoogle Scholar
  92. 92.
    Harris, N., Ford, M. J. & Cortie, M. B. Optimization of plasmonic heating by gold nanospheres and nanoshells. J. Phys. Chem. B 110, 10701–10707 (2006).CrossRefGoogle Scholar
  93. 93.
    Takahashi, H., Niidome, T., Nariai, A., Niidome, Y. & Yamada, S. Gold Nanorod-sensitized Cell Death: Microscopic Observation of Single Living Cells Irradiated by Pulsed Near-infrared Laser Light in the Presence of Gold Nanorods. Chem. Lett. 35, 500–501 (2006).CrossRefGoogle Scholar
  94. 94.
    Huff, T. B. et al. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (Lond). 2, 125–32 (2007).CrossRefGoogle Scholar
  95. 95.
    Pissuwan, D., Valenzuela, S. M., Killingsworth, M. C., Xu, X. & Cortie, M. B. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J. Nanoparticle Res. 9, 1109–1124 (2007).CrossRefGoogle Scholar
  96. 96.
    Loo, C., Lowery, A., Halas, N., West, J. & Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–711 (2005).CrossRefGoogle Scholar
  97. 97.
    Stern, J. M. et al. Efficacy of Laser-Activated Gold Nanoshells in Ablating Prostate Cancer Cells in Vitro. J. Endourol. 21, 939–943 (2007).CrossRefGoogle Scholar
  98. 98.
    Diagaradjane, P. et al. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: Characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano Lett. 8, 1492–1500 (2008).CrossRefGoogle Scholar
  99. 99.
    Waldman, S. A. et al. Opportunities for near-infrared thermal ablation of colorectal metastases by guanylyl cyclase C-targeted gold nanoshells. Future Oncol. 2, 705–716 (2006).CrossRefGoogle Scholar
  100. 100.
    Phillips, M. A., Gran, M. L. & Peppas, N. A. Targeted nanodelivery of drugs and diagnostics. Nano Today 5, 143–159 (2010).CrossRefGoogle Scholar
  101. 101.
    Nie, S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond). 5, 523–528 (2010).CrossRefGoogle Scholar
  102. 102.
    El-Sayed, I. H., Huang, X. & El-Sayed, M. A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006).CrossRefGoogle Scholar
  103. 103.
    Melancon, M. P. et al. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol. Cancer Ther. 7, 1730–1739 (2008).CrossRefGoogle Scholar
  104. 104.
    Visaria, R. K. et al. Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-α delivery. Mol. Cancer Ther. 5, 1014–20 (2006).CrossRefGoogle Scholar
  105. 105.
    Larson, T. a, Bankson, J., Aaron, J. & Sokolov, K. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 18, 325101 (2007).CrossRefGoogle Scholar
  106. 106.
    Ke, H. et al. Gold-nanoshelled microcapsules: A theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew. Chemie - Int. Ed. 50, 3017–3021 (2011).CrossRefGoogle Scholar
  107. 107.
    Kirpotin, D. B. et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 66, 6732–6740 (2006).CrossRefGoogle Scholar
  108. 108.
    Choi, C. H. J., Alabi, C. A., Webster, P. & Davis, M. E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 107, 1235–40 (2010).CrossRefGoogle Scholar
  109. 109.
    Tuchin, V. V. Handbook of Photonics for Biomedical Science (Series in Medical Physics and Biomedical Engineering). (CRC Press, 2010).Google Scholar
  110. 110.
    Wilson, R. The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 37, 2028–2045 (2008).CrossRefGoogle Scholar
  111. 111.
    Lakowicz, J. R. et al. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133, 1308–1346 (2008).CrossRefGoogle Scholar
  112. 112.
    Bardhan, R., Grady, N. K., Cole, J. R., Joshi, A. & Halas, N. J. Fluorescence enhancement by au nanostructures: Nanoshells and nanorods. ACS Nano 3, 744–752 (2009).Google Scholar
  113. 113.
    Ming, T. et al. Experimental Evidence of Plasmophores: Plasmon-Directed Polarized Emission from Gold Nanorod–Fluorophore Hybrid Nanostructures. Nano Lett. 11, 2296–2303 (2011).CrossRefGoogle Scholar
  114. 114.
    Sershen, S. R., Westcott, S. L., Halas, N. J. & West, J. L. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51, 293–298 (2000).CrossRefGoogle Scholar
  115. 115.
    Radt, B., Smith, T. A. & Caruso, F. Optically addressable nanostructured capsules. Adv. Mater. 16, 2184–2189 (2004).CrossRefGoogle Scholar
  116. 116.
    Shiotani, A., Mori, T., Niidome, T., Niidome, Y. & Katayama, Y. Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation. Langmuir 23, 4012–4018 (2007).CrossRefGoogle Scholar
  117. 117.
    Nakamura, T. et al. Large payloads of gold nanoparticles into the polyamine network core of stimuli-responsive PEGylated nanogels for selective and noninvasive cancer photothermal therapy. Nanoscale 2, 739–746 (2010).CrossRefGoogle Scholar
  118. 118.
    Chithrani, B. D. & Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550 (2007).CrossRefGoogle Scholar
  119. 119.
    Liu, S. Y., Liang, Z. S., Gao, F., Luo, S. F. & Lu, G. Q. In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells. J. Mater. Sci. Mater. Med. 21, 665–674 (2010).CrossRefGoogle Scholar
  120. 120.
    Bardhan, R. et al. Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo. Nano Lett. 10, 4920–4928 (2010).CrossRefGoogle Scholar
  121. 121.
    Kuo, W. S. et al. Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem. Commun. 103, 4853 (2009).CrossRefGoogle Scholar
  122. 122.
    Kuo, W. S. et al. Gold Nanorods in Photodynamic Therapy, as Hyperthermia Agents, and in Near-Infrared Optical Imaging. Angew. Chemie 122, 2771–2775 (2010).CrossRefGoogle Scholar
  123. 123.
    Tuchina, E. S., Tuchin, V. V, Khlebtsov, B. N. & Khlebtsov, N. G. Phototoxic effect of conjugates of plasmon-resonance nanoparticles with indocyanine green dye on Staphylococcus aureus induced by IR laser radiation. Quantum Electron. 41, 354–359 (2011).CrossRefGoogle Scholar
  124. 124.
    Henglein, A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861–1873 (1989).CrossRefGoogle Scholar
  125. 125.
    Spanhel, L., Weller, H. & Henglein, A. Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. J. Am. Chem. Soc. 109, 6632–6635 (1987).CrossRefGoogle Scholar
  126. 126.
    Youn, H. C., Baral, S. & Fendler, J. H. Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: preparation and utilization for photosensitized charge separation and hydrogen generation. J. Phys. Chem. 92, 6320–6327 (1988).CrossRefGoogle Scholar
  127. 127.
    Ghosh Chaudhuri, R. & Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012).CrossRefGoogle Scholar
  128. 128.
    Oldenburg, S., Averitt, R., Westcott, S. & Halas, N. Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998).CrossRefGoogle Scholar
  129. 129.
    Caruso, F. Nanoengineering of Particle Surfaces. Adv. Mater. 13, 11–22 (2001).CrossRefGoogle Scholar
  130. 130.
    Balakrishnan, S., Bonder, M. J. & Hadjipanayis, G. C. Particle size effect on phase and magnetic properties of polymer-coated magnetic nanoparticles. J. Magn. Magn. Mater. 321, 117–122 (2009).CrossRefGoogle Scholar
  131. 131.
    Salgueiriño-Maceira, V. & Correa-Duarte, M. A. Increasing the Complexity of Magnetic Core/Shell Structured Nanocomposites for Biological Applications. Adv. Mater. 19, 4131–4144 (2007).CrossRefGoogle Scholar
  132. 132.
    Babes, Denizot, Tanguy, Le Jeune & Jallet. Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study. J. Colloid Interface Sci. 212, 474–482 (1999).Google Scholar
  133. 133.
    De Farias, P. M. A. et al. Highly fluorescent semiconductor core–shell CdTe–CdS nanocrystals for monitoring living yeast cells activity. Appl. Phys. A 89, 957–961 (2007).CrossRefGoogle Scholar
  134. 134.
    Dresco, P. A., Zaitsev, V. S., Gambino, R. J. & Chu, B. Preparation and Properties of Magnetite and Polymer Magnetite Nanoparticles. Langmuir 15, 1945–1951 (1999).CrossRefGoogle Scholar
  135. 135.
    Sounderya, N. & Zhang, Y. Use of Core/Shell Structured Nanoparticles for Biomedical Applications. Recent Patents Biomed. Eng. 1, 34–42 (2008).CrossRefGoogle Scholar
  136. 136.
    Laurent, S. et al. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 108, 2064–2110 (2008).Google Scholar
  137. 137.
    Jaiswal, J. K., Mattoussi, H., Mauro, J. M. & Simon, S. M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51 (2002).CrossRefGoogle Scholar
  138. 138.
    Michalet, X. & Pinaud, F. F. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science (80). 307, 538–545 (2005).Google Scholar
  139. 139.
    De, M., Ghosh, P. S. & Rotello, V. M. Applications of Nanoparticles in Biology. Adv. Mater. 1003, 4225–4241 (2008).CrossRefGoogle Scholar
  140. 140.
    El-toni, A. M., Habila, M. A. & Labis, P. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale, 8, 2510–2531 (2016).CrossRefGoogle Scholar
  141. 141.
    Gawande, M. B. et al. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44, 7540–7590 (2015).CrossRefGoogle Scholar
  142. 142.
    Jun, Y. et al. Heterostructured magnetic nanoparticles: their versatility and high performance capabilities. Chem. Commun. 35, 1203–1214 (2007).CrossRefGoogle Scholar
  143. 143.
    Niemeyer, C. M. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science. Angew. Chemie Int. Ed. 40, 4128–4158 (2001).CrossRefGoogle Scholar
  144. 144.
    Zhang, X. F. et al. Fe3O4–silica core–shell nanoporous particles for high-capacity pH-triggered drug delivery. J. Mater. Chem. 22, 14450 (2012).CrossRefGoogle Scholar
  145. 145.
    Deng, Y. et al. Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System. J. Am. Chem. Soc. 132, 8466–8473 (2010).CrossRefGoogle Scholar
  146. 146.
    Ma, M. et al. Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo/chemo-therapy and multimodal imaging. Biomaterials 33, 989–998 (2012).CrossRefGoogle Scholar
  147. 147.
    Barbé, C. et al. Silica Particles: A Novel Drug-Delivery System. Adv. Mater. 16, 1959–1966 (2004).CrossRefGoogle Scholar
  148. 148.
    Mohammad-Beigi, H., Yaghmaei, S., Roostaazad, R. & Arpanaei, A. Comparison of different strategies for the assembly of gold colloids onto Fe3O4@SiO2 nanocomposite particles. Phys. E Low-dimensional Syst. Nanostructures 49, 30–38 (2013).CrossRefGoogle Scholar
  149. 149.
    Srdic, V., Mojic, B., Nikolic, M. & Ognjanovic, S. Recent progress on synthesis of ceramics core/shell nanostructures. Process. Appl. Ceram. 7, 45–62 (2013).CrossRefGoogle Scholar
  150. 150.
    Khan, E. A., Hu, E. & Lai, Z. Preparation of metal oxide/zeolite core–shell nanostructures. Microporous Mesoporous Mater. 118, 210–217 (2009).CrossRefGoogle Scholar
  151. 151.
    Yang, Y. C. et al. Facet-dependent optical properties of polyhedral Au–Cu2O core–shell nanocrystals. Nanoscale 6, 4316 (2014).CrossRefGoogle Scholar
  152. 152.
    Tian, J. et al. Ag@poly(m-phenylenediamine)-Ag core–shell nanoparticles: one-step preparation, characterization, and their application for H2O2 detection. Catal. Sci. Technol. 1, 1393 (2011).CrossRefGoogle Scholar
  153. 153.
    Zhang, L. et al. Controllable synthesis of core–shell Co@CoO nanocomposites with a superior performance as an anode material for lithium-ion batteries. J. Mater. Chem. 21, 18279 (2011).CrossRefGoogle Scholar
  154. 154.
    Tian, J., Jin, J., Zheng, F. & Zhao, H. Self-Assembly of Gold Nanoparticles and Polystyrene: A Highly Versatile Approach to the Preparation of Colloidal Particles with Polystyrene Cores and Gold Nanoparticle Coronae. Langmuir 26, 8762–8768 (2010).CrossRefGoogle Scholar
  155. 155.
    Xue, X. et al. Emerging functional nanomaterials for therapeutics. J. Mater. Chem. 21, 13107 (2011).CrossRefGoogle Scholar
  156. 156.
    Kim, J. et al. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 38, 372–390 (2009).CrossRefGoogle Scholar
  157. 157.
    Jun, Y., Lee, J. & Cheon, J. Chemical Design of Nanoparticle Probes for High‐Performance Magnetic Resonance Imaging. Angew. Chemie Int. Ed. 47, 5122–5135 (2008).CrossRefGoogle Scholar
  158. 158.
    Zhu, X. et al. Au@SiO2 core–shell nanoparticles for laser desorption/ionization time of flight mass spectrometry. Analyst 137, 2454 (2012).CrossRefGoogle Scholar
  159. 159.
    Bai, Z. et al. Fluorescent pH Sensor Based on Ag@SiO2 Core–Shell Nanoparticle. ACS Appl. Mater. Interfaces 5, 5856–5860 (2013).CrossRefGoogle Scholar
  160. 160.
    Li, G. et al. Noble metal nanoparticle@metal oxide core/yolk–shell nanostructures as catalysts: recent progress and perspective. Nanoscale 6, 3995 (2014).CrossRefGoogle Scholar
  161. 161.
    Lin, J. et al. Gold-Coated Iron (Fe@Au) Nanoparticles: Synthesis, Characterization, and Magnetic Field-Induced Self-Assembly. J. Solid State Chem. 159, 26–31 (2001).CrossRefGoogle Scholar
  162. 162.
    Carpenter, E. E., Sims, J. A., Wienmann, J. A., Zhou, W. L. & O’Connor, C. J. Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques. J. Appl. Phys. 87, 5615 (2000).CrossRefGoogle Scholar
  163. 163.
    Salazar-Alvarez, G. et al. Fabrication and Properties of Self-Assembled Nanosized Magnetic Particles. MRS Proc. 707, W7.1.1 (2001).Google Scholar
  164. 164.
    Fleming, D. A. et al. Chemically Functional Alkanethiol Derivitized Magnetic Nanoparticles. MRS Proc. 746, Q6.4 (2002).Google Scholar
  165. 165.
    Seung Uk Son, et al. Designed Synthesis of Atom-Economical Pd/Ni Bimetallic Nanoparticle-Based Catalysts for Sonogashira Coupling Reactions. J. Am. Chem. Soc., 126 (16), 5026–5027 (2004).CrossRefGoogle Scholar
  166. 166.
    Zhichuan Xu, Yanglong Hou, and & Sun, S. Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties. J. Am. Chem. Soc., 129 (28), 8698–8699 (2007).CrossRefGoogle Scholar
  167. 167.
    El-Toni, A. M. et al. Synthesis of double mesoporous core–shell silica nanospheres with radially oriented mesopores via one-templating step using anionic surfactant. Chem. Commun. 46, 6482 (2010).CrossRefGoogle Scholar
  168. 168.
    El-Toni, A., Ibrahim, M., Labis, J., Khan, A. & Alhoshan, M. Optimization of Synthesis Parameters for Mesoporous Shell Formation on Magnetic Nanocores and Their Application as Nanocarriers for Docetaxel Cancer Drug. Int. J. Mol. Sci. 14, 11496–11509 (2013).CrossRefGoogle Scholar
  169. 169.
    Qian, X. et al. Controllable fabrication of uniform core–shell structured zeolite@SBA-15 composites. Chem. Sci. 2, 2006 (2011).CrossRefGoogle Scholar
  170. 170.
    Wang, G. & Harrison, A. Preparation of Iron Particles Coated with Silica. Journal of Colloid and Interface Science 217, 203–207 (1999).CrossRefGoogle Scholar
  171. 171.
    Deng, S., Pingali, K. C. & Rockstraw, D. A. Synthesis of Ru-Ni Core-Shell Nanoparticles for Potential Sensor Applications. IEEE Sens. J. 8, 730–734 (2008).CrossRefGoogle Scholar
  172. 172.
    Chertok, B., David, A. E. & Yang, V. C. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials 31, 6317–6324 (2010).CrossRefGoogle Scholar
  173. 173.
    Pathak, C., Jaiswal, Y. K. & Vinayak, M. Queuine promotes antioxidant defence system by activating cellular antioxidant enzyme activities in cancer. Biosci. Rep. 28, (2008).Google Scholar
  174. 174.
    Kircher, M. F. et al. A Multimodal Nanoparticle for Preoperative Magnetic Resonance Imaging and Intraoperative Optical Brain Tumor Delineation Advances in Brief A Multimodal Nanoparticle for Preoperative Magnetic Resonance Imaging and Intraoperative Optical Brain Tumor Delinea. Cancer Res, 63(23), 8122–8125 (2003).Google Scholar
  175. 175.
    Lien, Y. H. & Wu, T. M. Preparation and characterization of thermosensitive polymers grafted onto silica-coated iron oxide nanoparticles. J. Colloid Interface Sci. 326, 517–521 (2008).CrossRefGoogle Scholar
  176. 176.
    Woo-ram Lee, et al. Redox−Transmetalation Process as a Generalized Synthetic Strategy for Core−Shell Magnetic Nanoparticles. J. Am. Chem. Soc., 127 (46), pp 16090–16097 (2005).CrossRefGoogle Scholar
  177. 177.
    Tan, W. et al. Bionanotechnology based on silica nanoparticles. Med. Res. Rev. 24, 621–638 (2004).CrossRefGoogle Scholar
  178. 178.
    Eyk A. Schellenberger, David Sosnovik, Ralph Weissleder, and & Lee Josephson. Magneto/Optical Annexin V, a Multimodal Protein. Bioconjugate Chem., 15 (5), 1062–1067 (2004).CrossRefGoogle Scholar
  179. 179.
    Daneshvar, H. et al. Imaging characteristics of zinc sulfide shell, cadmium telluride core quantum dots. Nanomedicine 3, 21–29 (2008).CrossRefGoogle Scholar
  180. 180.
    SalmanOgli, A. & Rostami, A. Investigation of electronic and optical properties of (CdSe/ZnS/CdSe/ZnS) quantum dot–quantum well heteronanocrystal. J. Nanoparticle Res. 13, 1197–1205 (2011).CrossRefGoogle Scholar
  181. 181.
    Ying Wang, et al. Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores. J. Phys. Chem. B, 108 (40), 15461–15469 (2004).CrossRefGoogle Scholar
  182. 182.
    Wang, Y. et al. Upconversion Luminescence of β-NaYF4 : Yb3+, Er3+@β-NaYF4 Core/Shell Nanoparticles: Excitation Power Density and Surface Dependence. J. Phys. Chem. C 113, 7164–7169 (2009).CrossRefGoogle Scholar
  183. 183.
    Qian, H. S. & Zhang, Y. Synthesis of Hexagonal-Phase Core−Shell NaYF4 Nanocrystals with Tunable Upconversion Fluorescence. Langmuir 24, 12123–12125 (2008).CrossRefGoogle Scholar
  184. 184.
    Stanciu, L., Won, Y. H., Ganesana, M. & Andreescu, S. Magnetic Particle-Based Hybrid Platforms for Bioanalytical Sensors. Sensors 9, 2976–2999 (2009).Google Scholar
  185. 185.
    Qiu, J. D., Cui, S. G., Deng, M. Q. & Liang, R. P. Direct electrochemistry of myoglobin immobilized in NiO/MWNTs hybrid nanocomposite for electrocatalytic detection of hydrogen peroxide. J. Appl. Electrochem. 40, 1651–1657 (2010).CrossRefGoogle Scholar
  186. 186.
    Qiu, J. D., Cui, S. G. & Liang, R. P. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on ceria nanoparticles coated with multiwalled carbon nanotubesby a hydrothermal synthetic method. Microchim. Acta 171, 333–339 (2010).Google Scholar
  187. 187.
    Khlebtsov, N. et al. Analytical and Theranostic Applications of Gold Nanoparticles and Multifunctional Nanocomposites. Theranostics 3, 167–180 (2013).CrossRefGoogle Scholar
  188. 188.
    Wang, X., Yang, T. & Jiao, K. Electrochemical sensing the DNA damage in situ induced by a cathodic process based on Fe@Fe2O3 core–shell nanonecklace and Au nanoparticles mimicking metal toxicity pathways in vivo. Biosens. Bioelectron. 25, 668–673 (2009).CrossRefGoogle Scholar
  189. 189.
    Qiu, J. D., Peng, H. P., Liang, R. P. & Xia, X. H. Facile preparation of magnetic core–shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry. Biosens. Bioelectron. 25, 1447–1453 (2010).CrossRefGoogle Scholar
  190. 190.
    Zhang, X. F. et al. Synthesis, structure and magnetic properties of SiO2-coated Fe nanocapsules. Mater. Sci. Eng. A 454, 211–215 (2007).CrossRefGoogle Scholar
  191. 191.
    Xuan, S., Wang, Y. X. J., Yu, J. C. & Leung, K. C. F. Preparation, Characterization, and Catalytic Activity of Core/Shell Fe3O4@Polyaniline@Au Nanocomposites. Langmuir 25, 11835–11843 (2009).CrossRefGoogle Scholar
  192. 192.
    Yin, H., Ma, Z., Chi, M. & Dai, S. Heterostructured catalysts prepared by dispersing Au@Fe2O3 core–shell structures on supports and their performance in CO oxidation. Catal. Today 160, 87–95 (2011).CrossRefGoogle Scholar
  193. 193.
    Riccardo Ferrando, Julius Jellinek, & Johnston, R. L. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev., 108 (3), 845–910 (2008).CrossRefGoogle Scholar
  194. 194.
    Wang, L. & Yamauchi, Y. Autoprogrammed Synthesis of Triple-Layered Au@Pd@Pt Core−Shell Nanoparticles Consisting of a Au@Pd Bimetallic Core and Nanoporous Pt Shell. J. Am. Chem. Soc. 132, 13636–13638 (2010).CrossRefGoogle Scholar
  195. 195.
    Fan, F. R. et al. Epitaxial Growth of Heterogeneous Metal Nanocrystals: From Gold Nano-octahedra to Palladium and Silver Nanocubes. J. Am. Chem. Soc. 130, 6949–6951 (2008).CrossRefGoogle Scholar
  196. 196.
    Kumagai, M. et al. Enhanced in vivo magnetic resonance imaging of tumors by PEGylated iron-oxide-gold core-shell nanoparticles with prolonged blood circulation properties. Macromol. Rapid Commun. 31, 1521–1528 (2010).CrossRefGoogle Scholar
  197. 197.
    Kayal, S. & Ramanujan, R. V. Anti-Cancer Drug Loaded Iron–Gold Core–Shell Nanoparticles (Fe@Au) for Magnetic Drug Targeting. J. Nanosci. Nanotechnol. 10, 5527–5539 (2010).CrossRefGoogle Scholar
  198. 198.
    Silva, S. M., Tavallaie, R., Sandiford, L., Tilley, D. & Gooding, J. J. Gold coated magnetic nanoparticles : from preparation to surface modification for analytical and biomedical applications. Chem. Commun. 52, 7528–7540 (2016).CrossRefGoogle Scholar
  199. 199.
    Ghorbani, M., Hamishehkar, H., Arsalani, N. & Entezami, A. A. Preparation of thermo and pH-responsive polymer@Au/Fe3O4 core/shell nanoparticles as a carrier for delivery of anticancer agent. J. Nanoparticle Res. 17, 305 (2015).CrossRefGoogle Scholar
  200. 200.
    Lo, C. K. et al. Homocysteine-protected gold-coated magnetic nanoparticles: synthesis and characterisation. J. Mater. Chem. 17, 2418 (2007).CrossRefGoogle Scholar
  201. 201.
    Rudakovskaya, P. G., Beloglazkina, E. K., Majouga, A. G. & Zyk, N. V. Synthesis and characterization of terpyridine-type ligand-protected gold-coated Fe3O4 nanoparticles. Mendeleev Commun. 20, 158–160 (2010).CrossRefGoogle Scholar
  202. 202.
    Zhou, H. et al. Ultrasensitive DNA monitoring by Au–Fe3O4 nanocomplex. Sensors Actuators B Chem. 163, 224–232 (2012).CrossRefGoogle Scholar
  203. 203.
    Lingyan Wang, Lingyan Wang, et al. Monodispersed Core−Shell Fe3O4@Au Nanoparticles. J. Phys. Chem. B, 109 (46), 21593–21601 (2005).CrossRefGoogle Scholar
  204. 204.
    Jin, Y., Jia, C., Huang, S. W., O’Donnell, M. & Gao, X. Multifunctional nanoparticles as coupled contrast agents. Nat. Commun. 1, 1–8 (2010).CrossRefGoogle Scholar
  205. 205.
    Hu, Y., Meng, L., Niu, L. & Lu, Q. Facile Synthesis of Superparamagnetic Fe3O4 @polyphosphazene@Au Shells for Magnetic Resonance Imaging and Photothermal Therapy. ACS Appl. Mater. Interfaces 5, 4586–4591 (2013).CrossRefGoogle Scholar
  206. 206.
    Dong, W. et al. Facile Synthesis of Monodisperse Superparamagnetic Fe3O4 Core@hybrid@Au Shell Nanocomposite for Bimodal Imaging and Photothermal Therapy. Adv. Mater. 23, 5392–5397 (2011).CrossRefGoogle Scholar
  207. 207.
    Salgueiriño-Maceira, V. et al. Bifunctional gold-coated magnetic silica spheres. Chem. Mater. 18, 2701–2706 (2006).CrossRefGoogle Scholar
  208. 208.
    Taufika Islam Williams, et al. Epithelial Ovarian Cancer: Disease Etiology, Treatment, Detection, and Investigational Gene, Metabolite, and Protein Biomarkers. (2007). doi:https://doi.org/10.1021/PR070041V
  209. 209.
    Zhuo, Y., Yuan, P. X., Yuan, R., Chai, Y. Q. & Hong, C. L. Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials 30, 2284–2290 (2009).CrossRefGoogle Scholar
  210. 210.
    Xie, J. et al. Manipulating the Power of an Additional Phase: A Flower-like Au-Fe3O4 Optical Nanosensor for Imaging Protease Expressions In vivo. ACS Nano 5, 3043–3051 (2011).Google Scholar
  211. 211.
    Cherukuri, P., Glazer, E. S. & Curley, S. A. Targeted hyperthermia using metal nanoparticles. Adv. Drug Deliv. Rev. 62, 339–345 (2010).CrossRefGoogle Scholar
  212. 212.
    Rai, P. et al. Development and applications of photo-triggered theranostic agents. Adv. Drug Deliv. Rev. 62, 1094–1124 (2010).CrossRefGoogle Scholar
  213. 213.
    Mohammad, F., Balaji, G., Weber, A., Uppu, R. M. & Kumar, C. S. S. R. Influence of Gold Nanoshell on Hyperthermia of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs). J. Phys. Chem. C. Nanomater. Interfaces 114, 19194–19201 (2010).Google Scholar
  214. 214.
    Kim, J. et al. Designed Fabrication of Multifunctional Magnetic Gold Nanoshells and Their Application to Magnetic Resonance Imaging and Photothermal Therapy. Angew. Chemie Int. Ed. 45, 7754–7758 (2006).CrossRefGoogle Scholar
  215. 215.
    Xu, C. et al. Au-Fe3O4 Dumbbell Nanoparticles as Dual-Functional Probes. Angew. Chemie Int. Ed. 47, 173–176 (2008).CrossRefGoogle Scholar
  216. 216.
    García, I., Gallo, J., Genicio, N., Padro, D. & Penadés, S. Magnetic Glyconanoparticles as a Versatile Platform for Selective Immunolabeling and Imaging of Cells. Bioconjug. Chem. 22, 264–273 (2011).CrossRefGoogle Scholar
  217. 217.
    Bardhan, R. et al. Nanoshells with Targeted Simultaneous Enhancement of Magnetic and Optical Imaging and Photothermal Therapeutic Response. Adv. Funct. Mater. 19, 3901–3909 (2009).CrossRefMathSciNetGoogle Scholar
  218. 218.
    Xu, C., Wang, B. & Sun, S. Dumbbell-like Au-Fe3O4 Nanoparticles for Target-Specific Platin Delivery. J. Am. Chem. Soc. 131, 4216–4217 (2009).CrossRefGoogle Scholar
  219. 219.
    Plank, C., Scherer, F., Schillinger, U., Bergemann, C. & Anton, M. Magnetofection: Enhancing and Targeting Gene Delivery with Superparamagnetic Nanoparticles and Magnetic Fields. J. Liposome Res. 13, 29–32 (2003).CrossRefGoogle Scholar
  220. 220.
    Cho, K., Wang, X., Nie, S., Chen, Z. G. & Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310–6 (2008).CrossRefGoogle Scholar
  221. 221.
    Kamei, K. et al. Direct cell entry of gold/iron-oxide magnetic nanoparticles in adenovirus mediated gene delivery. Biomaterials 30, 1809–1814 (2009).CrossRefGoogle Scholar
  222. 222.
    Thaxton, C. S., Georganopoulou, D. G. & Mirkin, C. A. Gold nanoparticle probes for the detection of nucleic acid targets. Clin. Chim. Acta 363, 120–126 (2006).CrossRefGoogle Scholar
  223. 223.
    Savka I. Stoeva, Fengwei Huo, Jae-Seung Lee, and & Mirkin, C. A. Three-Layer Composite Magnetic Nanoparticle Probes for DNA. J. Am. Chem. Soc., 127 (44), 15362–15363 (2005).Google Scholar
  224. 224.
    Zhao, J. et al. Ultrasensitive electrochemical aptasensor for thrombin based on the amplification of aptamer–AuNPs–HRP conjugates. Biosens. Bioelectron. 26, 2297–2303 (2011).CrossRefGoogle Scholar
  225. 225.
    Wang, C. & Irudayaraj, J. Multifunctional Magnetic-Optical Nanoparticle Probes for Simultaneous Detection, Separation, and Thermal Ablation of Multiple Pathogens. Small 6, 283–289 (2010).CrossRefGoogle Scholar
  226. 226.
    Liu, H. L., Sonn, C. H., Wu, J. H., Lee, K. M. & Kim, Y. K. Synthesis of streptavidin-FITC-conjugated core-shell Fe3O4-Au nanocrystals and their application for the purification of CD4+ lymphocytes. Biomaterials 29, 4003–4011 (2008).CrossRefGoogle Scholar
  227. 227.
    Yu, C. J., Lin, C. Y., Liu, C. H., Cheng, T. L. & Tseng, W. L. Synthesis of poly(diallyldimethylammonium chloride)-coated Fe3O4 nanoparticles for colorimetric sensing of glucose and selective extraction of thiol. Biosensors and Bioelectronics 26, (2010).Google Scholar
  228. 228.
    Qi, D., Zhang, H., Tang, J., Deng, C. & Zhang, X. Facile synthesis of mercaptophenylboronic acid-functionalized core-shell structure Fe3O4@C@Au magnetic microspheres for selective enrichment of glycopeptides and glycoproteins. J. Phys. Chem. C 114, 9221–9226 (2010).CrossRefGoogle Scholar
  229. 229.
    Hashmi, A. S. K. & Hutchings, G. J. Gold Catalysis. Angew. Chemie Int. Ed. 45, 7896–7936 (2006).CrossRefGoogle Scholar
  230. 230.
    Arcadi, A. Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chem. Rev. 108, 3266–3325 (2008).CrossRefGoogle Scholar
  231. 231.
    Corma, A. et al. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096 (2008).CrossRefGoogle Scholar
  232. 232.
    Yin, H. et al. Colloidal deposition synthesis of supported gold nanocatalysts based on Au–Fe3O4 dumbbell nanoparticles. Chem. Commun. 37, 4357 (2008).CrossRefGoogle Scholar
  233. 233.
    Edwards, J. K. et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3 catalysts. J. Mater. Chem. 15, 4595 (2005).CrossRefGoogle Scholar
  234. 234.
    Ge, J., Huynh, T., Hu, Y. & Yin, Y. Hierarchical Magnetite/Silica Nanoassemblies as Magnetically Recoverable Catalyst–Supports. Nano Lett. 8, 931–934 (2008).CrossRefGoogle Scholar
  235. 235.
    Lee, Y., Garcia, M. A., Frey Huls N.A., Sun, S. Synthetic Tuning of the Catalytic Properties of Au-Fe3O4 Nanoparticles. Angew. Chemie Int. Ed. 49, 1271–1274 (2010).CrossRefGoogle Scholar
  236. 236.
    B. Saha, J. Bhattacharya, A. Mukherjee, A. Ghosh, C. Santra, A. Dasgupta, P. Karmakar, In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics, Nanoscale Res. Lett., 2 (2007), pp. 614-622.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ravichandran Manisekaran
    • 1
  1. 1.Center for Research and Advanced Studies of the National Polytechnic InstituteMexico CityMexico

Personalised recommendations