Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Magnetic materials at nanoscale possess various biomedical applications due to their unique physical properties at the cellular and molecular levels of the biological interface. They are an efficient theranostic agent since they are considered to be good for therapeutic purposes, as well as for MR contrast imaging [1, 2]. They have been exploited for the diagnosis and treatment of cancer [3], cardiovascular diseases [4], and neurological diseases [5]. The size, shape, surface charge, surface chemistries, and composition can be tailored for such NPs so that their magnetic properties are improved and hence can be used proficiently for the theranostic purpose, both in vivo and in vitro [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tartaj, P., del Puerto Morales, M., Veintemillas-Vergaguer, S., Gonzalez-Carreño, T. & Serna, C. J. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys. 42, 182–197 (2009).

    Google Scholar 

  2. Corot, C., Robert, P., & Port, M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 58, 1471–1504 (2006).

    Article  Google Scholar 

  3. Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005).

    Article  Google Scholar 

  4. Wickline, S. A., Neubauer, A. M., Winter, P. M., Caruthers, S. D. & Lanza, G. M. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J. Magn. Reson. Imaging 25, 667–680 (2007).

    Article  Google Scholar 

  5. Corot, C. et al. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest. Radiol. 39, 619–625 (2004).

    Article  Google Scholar 

  6. Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005).

    Article  Google Scholar 

  7. Bonnemain, B. Superparamagnetic Agents in Magnetic Resonance Imaging: Physicochemical Characteristics and Clinical Applications A Review. J. Drug Target. 6, 167–174 (1998).

    Article  Google Scholar 

  8. Senyei, A., Widder, K. & Czerlinski, G. Magnetic guidance of drug-carrying microspheres. J. Appl. Phys. 49, 3578–3583 (1978).

    Article  Google Scholar 

  9. Veiseh, O. et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 5, 1003–1008 (2005).

    Article  Google Scholar 

  10. Torchilin, V. P. Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 64, 302–315 (2012).

    Article  Google Scholar 

  11. Mourino, M. R. From Thales to Lauterbur, or from the lodestone to MR imaging: magnetism and medicine. Radiology 180, 593–612 (1991).

    Article  Google Scholar 

  12. Lu, A. H., Salabas, E. L. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chemie - Int. Ed. 46, 1222–1244 (2007).

    Article  Google Scholar 

  13. Gao, J. et al. FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J. Am. Chem. Soc. 129, 1428–1433 (2007).

    Article  Google Scholar 

  14. Jinhao Gao, et al. Fluorescent Magnetic Nanocrystals by Sequential Addition of Reagents in a One-Pot Reaction: A Simple Preparation for Multifunctional Nanostructures. J. Am. Chem. Soc., 129 (39), pp 11928–11935 (2007).

    Article  Google Scholar 

  15. De la Presa, P. et al. Synthesis and characterization of FePt/Au core-shell nanoparticles. J. Magn. Magn. Mater. 316, e753–e755 (2007).

    Article  Google Scholar 

  16. Wang, C., Yin, H., Dai, S. & Sun, S. A General Approach to Noble Metal−Metal Oxide Dumbbell Nanoparticles and Their Catalytic Application for CO Oxidation. Chem. Mater. 22, 3277–3282 (2010).

    Article  Google Scholar 

  17. Pan, Y., Gao, J., Zhang, B., Zhang, X. & Xu, B. Colloidosome-based Synthesis of a Multifunctional Nanostructure of Silver and Hollow Iron Oxide Nanoparticles. Langmuir 26, 4184–4187 (2010).

    Article  Google Scholar 

  18. Peng, S., Lei, C., Ren, Y., Cook, R. E. & Sun, Y. Plasmonic/Magnetic Bifunctional Nanoparticles. Angew. Chemie Int. Ed. 50, 3158–3163 (2011).

    Article  Google Scholar 

  19. Hongwei Gu, Rongkun Zheng, XiXiang Zhang, & Bing Xu. Facile One-Pot Synthesis of Bifunctional Heterodimers of Nanoparticles: A Conjugate of Quantum Dot and Magnetic Nanoparticles. (2004). doi:https://doi.org/10.1021/JA0496423

  20. Chouly, C., Pouliquen, D., Lucet, I., Jeune, J. J. & Jallet, P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J. Microencapsul. 13, 245–255 (1996).

    Article  Google Scholar 

  21. Gref, R. et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surfaces B Biointerfaces 18, 301–313 (2000).

    Article  Google Scholar 

  22. Moghimi, S. M., Hunter, a C. & Murray, J. C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283–318 (2001).

    Google Scholar 

  23. Juliano, R. L., Alahari, S., Yoo, H., Kole, R. & Cho, M. Antisense pharmacodynamics: Critical issues in the transport and delivery of antisense oligonucleotides. Pharm. Res. 16, 494–502 (1999).

    Article  Google Scholar 

  24. Brigger, I., Dubernet, C. & Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54, 631–651 (2002).

    Article  Google Scholar 

  25. Krotz, F. et al. Magnetofection-A highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 7, 700–710 (2003).

    Article  Google Scholar 

  26. Plank, C., Scherer, F., Schillinger, U., Anton, M. & Bergemann, C. Magnetofection: Enhancing and targeting gene delivery by magnetic force. Eur. Cells Mater. 3, 79–80 (2002).

    Google Scholar 

  27. Pan, B. et al. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 67, 8156–8163 (2007).

    Article  Google Scholar 

  28. Schillinger, U. et al. Advances in magnetofection - Magnetically guided nucleic acid delivery. J. Magn. Magn. Mater. 293, 501–508 (2005).

    Article  Google Scholar 

  29. Medarova, Z., Pham, W., Farrar, C., Petkova, V. & Moore, A. In vivo imaging of siRNA delivery and silencing in tumors. Nat. Med. 13, 372–7 (2007).

    Article  Google Scholar 

  30. Mykhaylyk, O. et al. Magnetic nanoparticle formulations for DNA and siRNA delivery. J. Magn. Magn. Mater. 311, 275–281 (2007).

    Article  Google Scholar 

  31. Pankhurst, Q. A., Connolly, J., Jones, S. K. & Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36, 167–181 (2003).

    Article  Google Scholar 

  32. Dobson, J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 13, 283–287 (2006).

    Article  Google Scholar 

  33. Chomoucka, J. et al. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62, 144–149 (2010).

    Article  Google Scholar 

  34. Neuberger, T., Hofmann, H., Hofmann, M. & Von Rechenberg, B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496 (2005).

    Article  Google Scholar 

  35. Grief, A. D. & Richardson, G. Mathematical modelling of magnetically targeted drug delivery. J. Magn. Magn. Mater. 293, 455–463 (2005).

    Article  Google Scholar 

  36. Lübbe, A. S. et al. Clinical experiences with magnetic drug targeting: a phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56, 4686–4693 (1996).

    Google Scholar 

  37. Lübbe, A. S., Alexiou, C. & Bergemann, C. Clinical applications of magnetic drug targeting. J. Surg. Res. 95, 200–6 (2001).

    Article  Google Scholar 

  38. Mornet, S., Vasseur, S., Grasset, F. & Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14, 2161–2175 (2004).

    Google Scholar 

  39. Alexiou, C. et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60, 6641–6648 (2000).

    Google Scholar 

  40. Schulze, K. et al. Intraarticular application of superparamagnetic nanoparticles and their uptake by synovial membrane - An experimental study in sheep. J. Magn. Magn. Mater. 293, 419–432 (2005).

    Article  Google Scholar 

  41. Kohler, N. et al. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2, 785–792 (2006).

    Article  Google Scholar 

  42. Kohler, N., Sun, C., Wang, J. & Zhang, M. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21, 8858–8864 (2005).

    Article  Google Scholar 

  43. Yang, J., Lee, H., Hyung, W., Park, S.-B. & Haam, S. Magnetic PECA nanoparticles as drug carriers for targeted delivery: synthesis and release characteristics. J. Microencapsul. 23, 203–212 (2006).

    Article  Google Scholar 

  44. Johnson, G. A. et al. Histology by magnetic resonance microscopy. Magn. Reson. Q. 9, 1–30 (1993).

    Google Scholar 

  45. Fawell, S. et al. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. U. S. A. 91, 664–668 (1994).

    Article  Google Scholar 

  46. Weissleder, R. et al. vivo magnetic resonance imaging of transgene expression. Nat. Med. 6, 351–355 (2000).

    Article  Google Scholar 

  47. Enochs, W. S., Harsh, G., Hochberg, F. & Weissleder, R. Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent (Combidex). J. Magn. Reson. Imaging 9, 228–232 (1999).

    Google Scholar 

  48. Contag, P. R., Olomu, I. N., Stevenson, D. K. & Contag, C. H. Bioluminescent indicators in living mammals. Nat. Med. 4, 245–247 (1998).

    Article  Google Scholar 

  49. Zhao, M., Beauregard, D. A. D. A.. Loizou, L., Davletov, B. & Brindle, K. M. M. K. M. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat. Med. 7, 1241–1244 (2001).

    Article  Google Scholar 

  50. Poptani, H. et al. Monitoring thymidine kinase and ganciclovir-induced changes in rat malignant glioma in vivo by nuclear magnetic resonance imaging. Cancer gene therapy 5, 101–109 (1998).

    Google Scholar 

  51. Blankenberg, F. G. et al. Quantitative analysis of apoptotic cell death using proton nuclear magnetic resonance spectroscopy. Blood 89, 3778–3786 (1997).

    Google Scholar 

  52. Nunn, A. V. W. et al. Characterisation of secondary metabolites associated with neutrophil apoptosis. FEBS Lett. 392, 295–298 (1996).

    Article  Google Scholar 

  53. Luderer, A. A. et al. Glass-Ceramic-Mediated, Magnetic-Field-Induced Localized Hyperthermia: Response of a Murine Mammary Carcinoma. Radiat. Res. 94, 190 (1983).

    Article  Google Scholar 

  54. Chan, D. C., Kirpotin, D. B. & Bunn P. A. Jr. Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. J. Magn. Magn. Mater. 122, 374–378 (1993).

    Article  Google Scholar 

  55. Brady, L. W., Heilmann, H. P., Seegenschmiedt, M. H., Fessenden, P. & Vernon, C. C. Thermoradiotherapy and Thermochemotherapy. Springer Berlin 173, (Springer Berlin Heidelberg, 2012).

    Google Scholar 

  56. Jordan, A. et al. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J. Magn. Magn. Mater. 194, 185–196 (1999).

    Article  Google Scholar 

  57. Wada, S., Tazawa, K., Furuta, I. & Nagae, H. Antitumor effect of new local hyperthermia using dextran magnetite complex in hamster tongue carcinoma. Oral Dis. 9, 218–223 (2003).

    Article  Google Scholar 

  58. Ito, A., Shinkai, M., Honda, H. & Kobayashi, T. Heat-inducible TNF-α gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther. 8, 649–654 (2001).

    Article  Google Scholar 

  59. Petros, R. a & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).

    Article  Google Scholar 

  60. Kudgus, R. A., Bhattacharya, R. & Mukherjee, P. Cancer nanotechnology: emerging role of gold nanoconjugates. Anticancer. Agents Med. Chem. 11, 965–973 (2011).

    Article  Google Scholar 

  61. Arvizo, R. R. et al. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41, 2943–2970 (2012).

    Article  Google Scholar 

  62. Doane, T. & Burda, C. Nanoparticle mediated non-covalent drug delivery. Adv. Drug Deliv. Rev. 65, 607–621 (2013).

    Google Scholar 

  63. Li, S. D. & Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 5, 496–504 (2008).

    Article  Google Scholar 

  64. Tao, A. R., Habas, S. & Yang, P. Shape control of colloidal metal nanocrystals. Small 4, 310–325 (2008).

    Article  Google Scholar 

  65. Daniel, M.-C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004).

    Article  Google Scholar 

  66. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution. Science 318, 430–3 (2007).

    Article  Google Scholar 

  67. Alkilany, A. M., Thompson, L. B., Boulos, S. P., Sisco, P. N. & Murphy, C. J. Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev. 64, 190–199 (2012).

    Article  Google Scholar 

  68. Hong, R. et al. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc. 128, 1078–1079 (2006).

    Article  Google Scholar 

  69. Rosi, N. L. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science. 312, 1027–1030 (2006).

    Google Scholar 

  70. Li, Z. Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res. 30, 1558–1562 (2002).

    Article  Google Scholar 

  71. Huff, T. B., Hansen, M. N., Zhao, Y., Cheng, J. X. & Wei, A. Controlling the cellular uptake of gold nanorods. Langmuir 23, 1596–1599 (2007).

    Article  Google Scholar 

  72. Letsinger, R. L., Elghanian, R., Viswanadham, G. & Mirkin, C. A. Use of a steroid cyclic disulfide anchor in constructing gold nanoparticle-oligonucleotide conjugates. Bioconjug. Chem. 11, 289–291 (2000).

    Article  Google Scholar 

  73. Hoft, R. C., Ford, M. J., McDonagh, A. M. & Cortie, M. B. Adsorption of amine compounds on the Au(111) surface: A density functional study. J. Phys. Chem. C 111, 13886–13891 (2007).

    Article  Google Scholar 

  74. A. D. McFarland, C. L. Haynes, C. A. Mirkin, R. P. V. D. and H. A. G. Citrate Synthesis of Gold Nanoparticles, MRSEC Education, University of Wisconsin–Madison. (2004).

    Google Scholar 

  75. Seferos, D. S., Giljohann, D. A., Rosi, N. L. & Mirkin, C. A. Locked nucleic acid-nanoparticle conjugates. ChemBioChem 8, 1230–1232 (2007).

    Article  Google Scholar 

  76. Hill, H. D., Millstone, J. E., Banholzer, M. J. & Mirkin, C. A. The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3, 418–424 (2009).

    Article  Google Scholar 

  77. Storhoff, J. J., Elghanian, R., Mirkin, C. A. & Letsinger, R. L. Sequence-dependent stability of DNA-modified gold nanoparticles. Langmuir 18, 6666–6670 (2002).

    Article  Google Scholar 

  78. Giljohann, D. A., Seferos, D. S., Prigodich, A. E., Patel, P. C. & Mirkin, C. A. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc. 131, 2072–2073 (2009).

    Article  Google Scholar 

  79. Xing, B. et al. Self-assembled multivalent vancomycin on cell surfaces against vancomycin-resistant enterococci (VRE). Chem. Commun. (Camb). 2224–2225 (2003).

    Google Scholar 

  80. Rao, J. A Trivalent System from Vancomycin·D-Ala-D-Ala with Higher Affinity Than Avidin·Biotin. Science (80). 280, 708–711 (1998).

    Article  Google Scholar 

  81. Gu, H., Ho, P. L., Tong, E., Wang, L. & Xu, B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 3, 1261–1263 (2003).

    Article  Google Scholar 

  82. Huang, W. C., Tsai, P. J. & Chen, Y. C. Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria. Nanomedicine (Lond). 2, 777–787 (2007).

    Article  Google Scholar 

  83. Kell, A. J. et al. Vancomycin-modified nanoparticles for efficient targeting and preconcentration of gram-positive and gram-negative bacteria. ACS Nano 2, 1777–1788 (2008).

    Article  Google Scholar 

  84. Gil-Tomás, J. et al. Lethal photosensitisation of Staphylococcus aureus using a toluidine blue O–tiopronin–gold nanoparticle conjugate. J. Mater. Chem. 17, 3739 (2007).

    Article  Google Scholar 

  85. Vigderman, L. & Zubarev, E. R. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv. Drug Deliv. Rev. 65, 663–676 (2013).

    Article  Google Scholar 

  86. Kennedy, L. C. et al. A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies. Small 7, 169–183 (2011).

    Article  Google Scholar 

  87. Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–228 (2008).

    Google Scholar 

  88. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A. 100, 13549–54 (2003).

    Article  Google Scholar 

  89. Zharov, V. P., Galitovsky, V. & Viegas, M. Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl. Phys. Lett. 83, 4897–4899 (2003).

    Article  Google Scholar 

  90. Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R. & Lin, C. P. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 84, 4023–4032 (2003).

    Article  Google Scholar 

  91. Huang, X., Qian, W., El-Sayed, I. H. & El-Sayed, M. A. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg. Med. 39, 747–753 (2007).

    Article  Google Scholar 

  92. Harris, N., Ford, M. J. & Cortie, M. B. Optimization of plasmonic heating by gold nanospheres and nanoshells. J. Phys. Chem. B 110, 10701–10707 (2006).

    Article  Google Scholar 

  93. Takahashi, H., Niidome, T., Nariai, A., Niidome, Y. & Yamada, S. Gold Nanorod-sensitized Cell Death: Microscopic Observation of Single Living Cells Irradiated by Pulsed Near-infrared Laser Light in the Presence of Gold Nanorods. Chem. Lett. 35, 500–501 (2006).

    Article  Google Scholar 

  94. Huff, T. B. et al. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (Lond). 2, 125–32 (2007).

    Article  Google Scholar 

  95. Pissuwan, D., Valenzuela, S. M., Killingsworth, M. C., Xu, X. & Cortie, M. B. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J. Nanoparticle Res. 9, 1109–1124 (2007).

    Article  Google Scholar 

  96. Loo, C., Lowery, A., Halas, N., West, J. & Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–711 (2005).

    Article  Google Scholar 

  97. Stern, J. M. et al. Efficacy of Laser-Activated Gold Nanoshells in Ablating Prostate Cancer Cells in Vitro. J. Endourol. 21, 939–943 (2007).

    Article  Google Scholar 

  98. Diagaradjane, P. et al. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: Characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano Lett. 8, 1492–1500 (2008).

    Article  Google Scholar 

  99. Waldman, S. A. et al. Opportunities for near-infrared thermal ablation of colorectal metastases by guanylyl cyclase C-targeted gold nanoshells. Future Oncol. 2, 705–716 (2006).

    Article  Google Scholar 

  100. Phillips, M. A., Gran, M. L. & Peppas, N. A. Targeted nanodelivery of drugs and diagnostics. Nano Today 5, 143–159 (2010).

    Article  Google Scholar 

  101. Nie, S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond). 5, 523–528 (2010).

    Article  Google Scholar 

  102. El-Sayed, I. H., Huang, X. & El-Sayed, M. A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006).

    Article  Google Scholar 

  103. Melancon, M. P. et al. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol. Cancer Ther. 7, 1730–1739 (2008).

    Article  Google Scholar 

  104. Visaria, R. K. et al. Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-α delivery. Mol. Cancer Ther. 5, 1014–20 (2006).

    Article  Google Scholar 

  105. Larson, T. a, Bankson, J., Aaron, J. & Sokolov, K. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 18, 325101 (2007).

    Article  Google Scholar 

  106. Ke, H. et al. Gold-nanoshelled microcapsules: A theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew. Chemie - Int. Ed. 50, 3017–3021 (2011).

    Article  Google Scholar 

  107. Kirpotin, D. B. et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 66, 6732–6740 (2006).

    Article  Google Scholar 

  108. Choi, C. H. J., Alabi, C. A., Webster, P. & Davis, M. E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 107, 1235–40 (2010).

    Article  Google Scholar 

  109. Tuchin, V. V. Handbook of Photonics for Biomedical Science (Series in Medical Physics and Biomedical Engineering). (CRC Press, 2010).

    Google Scholar 

  110. Wilson, R. The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 37, 2028–2045 (2008).

    Article  Google Scholar 

  111. Lakowicz, J. R. et al. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133, 1308–1346 (2008).

    Article  Google Scholar 

  112. Bardhan, R., Grady, N. K., Cole, J. R., Joshi, A. & Halas, N. J. Fluorescence enhancement by au nanostructures: Nanoshells and nanorods. ACS Nano 3, 744–752 (2009).

    Google Scholar 

  113. Ming, T. et al. Experimental Evidence of Plasmophores: Plasmon-Directed Polarized Emission from Gold Nanorod–Fluorophore Hybrid Nanostructures. Nano Lett. 11, 2296–2303 (2011).

    Article  Google Scholar 

  114. Sershen, S. R., Westcott, S. L., Halas, N. J. & West, J. L. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51, 293–298 (2000).

    Article  Google Scholar 

  115. Radt, B., Smith, T. A. & Caruso, F. Optically addressable nanostructured capsules. Adv. Mater. 16, 2184–2189 (2004).

    Article  Google Scholar 

  116. Shiotani, A., Mori, T., Niidome, T., Niidome, Y. & Katayama, Y. Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation. Langmuir 23, 4012–4018 (2007).

    Article  Google Scholar 

  117. Nakamura, T. et al. Large payloads of gold nanoparticles into the polyamine network core of stimuli-responsive PEGylated nanogels for selective and noninvasive cancer photothermal therapy. Nanoscale 2, 739–746 (2010).

    Article  Google Scholar 

  118. Chithrani, B. D. & Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550 (2007).

    Article  Google Scholar 

  119. Liu, S. Y., Liang, Z. S., Gao, F., Luo, S. F. & Lu, G. Q. In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells. J. Mater. Sci. Mater. Med. 21, 665–674 (2010).

    Article  Google Scholar 

  120. Bardhan, R. et al. Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo. Nano Lett. 10, 4920–4928 (2010).

    Article  Google Scholar 

  121. Kuo, W. S. et al. Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem. Commun. 103, 4853 (2009).

    Article  Google Scholar 

  122. Kuo, W. S. et al. Gold Nanorods in Photodynamic Therapy, as Hyperthermia Agents, and in Near-Infrared Optical Imaging. Angew. Chemie 122, 2771–2775 (2010).

    Article  Google Scholar 

  123. Tuchina, E. S., Tuchin, V. V, Khlebtsov, B. N. & Khlebtsov, N. G. Phototoxic effect of conjugates of plasmon-resonance nanoparticles with indocyanine green dye on Staphylococcus aureus induced by IR laser radiation. Quantum Electron. 41, 354–359 (2011).

    Article  Google Scholar 

  124. Henglein, A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861–1873 (1989).

    Article  Google Scholar 

  125. Spanhel, L., Weller, H. & Henglein, A. Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. J. Am. Chem. Soc. 109, 6632–6635 (1987).

    Article  Google Scholar 

  126. Youn, H. C., Baral, S. & Fendler, J. H. Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: preparation and utilization for photosensitized charge separation and hydrogen generation. J. Phys. Chem. 92, 6320–6327 (1988).

    Article  Google Scholar 

  127. Ghosh Chaudhuri, R. & Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012).

    Article  Google Scholar 

  128. Oldenburg, S., Averitt, R., Westcott, S. & Halas, N. Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998).

    Article  Google Scholar 

  129. Caruso, F. Nanoengineering of Particle Surfaces. Adv. Mater. 13, 11–22 (2001).

    Article  Google Scholar 

  130. Balakrishnan, S., Bonder, M. J. & Hadjipanayis, G. C. Particle size effect on phase and magnetic properties of polymer-coated magnetic nanoparticles. J. Magn. Magn. Mater. 321, 117–122 (2009).

    Article  Google Scholar 

  131. Salgueiriño-Maceira, V. & Correa-Duarte, M. A. Increasing the Complexity of Magnetic Core/Shell Structured Nanocomposites for Biological Applications. Adv. Mater. 19, 4131–4144 (2007).

    Article  Google Scholar 

  132. Babes, Denizot, Tanguy, Le Jeune & Jallet. Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study. J. Colloid Interface Sci. 212, 474–482 (1999).

    Google Scholar 

  133. De Farias, P. M. A. et al. Highly fluorescent semiconductor core–shell CdTe–CdS nanocrystals for monitoring living yeast cells activity. Appl. Phys. A 89, 957–961 (2007).

    Article  Google Scholar 

  134. Dresco, P. A., Zaitsev, V. S., Gambino, R. J. & Chu, B. Preparation and Properties of Magnetite and Polymer Magnetite Nanoparticles. Langmuir 15, 1945–1951 (1999).

    Article  Google Scholar 

  135. Sounderya, N. & Zhang, Y. Use of Core/Shell Structured Nanoparticles for Biomedical Applications. Recent Patents Biomed. Eng. 1, 34–42 (2008).

    Article  Google Scholar 

  136. Laurent, S. et al. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 108, 2064–2110 (2008).

    Google Scholar 

  137. Jaiswal, J. K., Mattoussi, H., Mauro, J. M. & Simon, S. M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51 (2002).

    Article  Google Scholar 

  138. Michalet, X. & Pinaud, F. F. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science (80). 307, 538–545 (2005).

    Google Scholar 

  139. De, M., Ghosh, P. S. & Rotello, V. M. Applications of Nanoparticles in Biology. Adv. Mater. 1003, 4225–4241 (2008).

    Article  Google Scholar 

  140. El-toni, A. M., Habila, M. A. & Labis, P. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale, 8, 2510–2531 (2016).

    Article  Google Scholar 

  141. Gawande, M. B. et al. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44, 7540–7590 (2015).

    Article  Google Scholar 

  142. Jun, Y. et al. Heterostructured magnetic nanoparticles: their versatility and high performance capabilities. Chem. Commun. 35, 1203–1214 (2007).

    Article  Google Scholar 

  143. Niemeyer, C. M. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science. Angew. Chemie Int. Ed. 40, 4128–4158 (2001).

    Article  Google Scholar 

  144. Zhang, X. F. et al. Fe3O4–silica core–shell nanoporous particles for high-capacity pH-triggered drug delivery. J. Mater. Chem. 22, 14450 (2012).

    Article  Google Scholar 

  145. Deng, Y. et al. Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System. J. Am. Chem. Soc. 132, 8466–8473 (2010).

    Article  Google Scholar 

  146. Ma, M. et al. Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo/chemo-therapy and multimodal imaging. Biomaterials 33, 989–998 (2012).

    Article  Google Scholar 

  147. Barbé, C. et al. Silica Particles: A Novel Drug-Delivery System. Adv. Mater. 16, 1959–1966 (2004).

    Article  Google Scholar 

  148. Mohammad-Beigi, H., Yaghmaei, S., Roostaazad, R. & Arpanaei, A. Comparison of different strategies for the assembly of gold colloids onto Fe3O4@SiO2 nanocomposite particles. Phys. E Low-dimensional Syst. Nanostructures 49, 30–38 (2013).

    Article  Google Scholar 

  149. Srdic, V., Mojic, B., Nikolic, M. & Ognjanovic, S. Recent progress on synthesis of ceramics core/shell nanostructures. Process. Appl. Ceram. 7, 45–62 (2013).

    Article  Google Scholar 

  150. Khan, E. A., Hu, E. & Lai, Z. Preparation of metal oxide/zeolite core–shell nanostructures. Microporous Mesoporous Mater. 118, 210–217 (2009).

    Article  Google Scholar 

  151. Yang, Y. C. et al. Facet-dependent optical properties of polyhedral Au–Cu2O core–shell nanocrystals. Nanoscale 6, 4316 (2014).

    Article  Google Scholar 

  152. Tian, J. et al. Ag@poly(m-phenylenediamine)-Ag core–shell nanoparticles: one-step preparation, characterization, and their application for H2O2 detection. Catal. Sci. Technol. 1, 1393 (2011).

    Article  Google Scholar 

  153. Zhang, L. et al. Controllable synthesis of core–shell Co@CoO nanocomposites with a superior performance as an anode material for lithium-ion batteries. J. Mater. Chem. 21, 18279 (2011).

    Article  Google Scholar 

  154. Tian, J., Jin, J., Zheng, F. & Zhao, H. Self-Assembly of Gold Nanoparticles and Polystyrene: A Highly Versatile Approach to the Preparation of Colloidal Particles with Polystyrene Cores and Gold Nanoparticle Coronae. Langmuir 26, 8762–8768 (2010).

    Article  Google Scholar 

  155. Xue, X. et al. Emerging functional nanomaterials for therapeutics. J. Mater. Chem. 21, 13107 (2011).

    Article  Google Scholar 

  156. Kim, J. et al. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 38, 372–390 (2009).

    Article  Google Scholar 

  157. Jun, Y., Lee, J. & Cheon, J. Chemical Design of Nanoparticle Probes for High‐Performance Magnetic Resonance Imaging. Angew. Chemie Int. Ed. 47, 5122–5135 (2008).

    Article  Google Scholar 

  158. Zhu, X. et al. Au@SiO2 core–shell nanoparticles for laser desorption/ionization time of flight mass spectrometry. Analyst 137, 2454 (2012).

    Article  Google Scholar 

  159. Bai, Z. et al. Fluorescent pH Sensor Based on Ag@SiO2 Core–Shell Nanoparticle. ACS Appl. Mater. Interfaces 5, 5856–5860 (2013).

    Article  Google Scholar 

  160. Li, G. et al. Noble metal nanoparticle@metal oxide core/yolk–shell nanostructures as catalysts: recent progress and perspective. Nanoscale 6, 3995 (2014).

    Article  Google Scholar 

  161. Lin, J. et al. Gold-Coated Iron (Fe@Au) Nanoparticles: Synthesis, Characterization, and Magnetic Field-Induced Self-Assembly. J. Solid State Chem. 159, 26–31 (2001).

    Article  Google Scholar 

  162. Carpenter, E. E., Sims, J. A., Wienmann, J. A., Zhou, W. L. & O’Connor, C. J. Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques. J. Appl. Phys. 87, 5615 (2000).

    Article  Google Scholar 

  163. Salazar-Alvarez, G. et al. Fabrication and Properties of Self-Assembled Nanosized Magnetic Particles. MRS Proc. 707, W7.1.1 (2001).

    Google Scholar 

  164. Fleming, D. A. et al. Chemically Functional Alkanethiol Derivitized Magnetic Nanoparticles. MRS Proc. 746, Q6.4 (2002).

    Google Scholar 

  165. Seung Uk Son, et al. Designed Synthesis of Atom-Economical Pd/Ni Bimetallic Nanoparticle-Based Catalysts for Sonogashira Coupling Reactions. J. Am. Chem. Soc., 126 (16), 5026–5027 (2004).

    Article  Google Scholar 

  166. Zhichuan Xu, Yanglong Hou, and & Sun, S. Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties. J. Am. Chem. Soc., 129 (28), 8698–8699 (2007).

    Article  Google Scholar 

  167. El-Toni, A. M. et al. Synthesis of double mesoporous core–shell silica nanospheres with radially oriented mesopores via one-templating step using anionic surfactant. Chem. Commun. 46, 6482 (2010).

    Article  Google Scholar 

  168. El-Toni, A., Ibrahim, M., Labis, J., Khan, A. & Alhoshan, M. Optimization of Synthesis Parameters for Mesoporous Shell Formation on Magnetic Nanocores and Their Application as Nanocarriers for Docetaxel Cancer Drug. Int. J. Mol. Sci. 14, 11496–11509 (2013).

    Article  Google Scholar 

  169. Qian, X. et al. Controllable fabrication of uniform core–shell structured zeolite@SBA-15 composites. Chem. Sci. 2, 2006 (2011).

    Article  Google Scholar 

  170. Wang, G. & Harrison, A. Preparation of Iron Particles Coated with Silica. Journal of Colloid and Interface Science 217, 203–207 (1999).

    Article  Google Scholar 

  171. Deng, S., Pingali, K. C. & Rockstraw, D. A. Synthesis of Ru-Ni Core-Shell Nanoparticles for Potential Sensor Applications. IEEE Sens. J. 8, 730–734 (2008).

    Article  Google Scholar 

  172. Chertok, B., David, A. E. & Yang, V. C. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials 31, 6317–6324 (2010).

    Article  Google Scholar 

  173. Pathak, C., Jaiswal, Y. K. & Vinayak, M. Queuine promotes antioxidant defence system by activating cellular antioxidant enzyme activities in cancer. Biosci. Rep. 28, (2008).

    Google Scholar 

  174. Kircher, M. F. et al. A Multimodal Nanoparticle for Preoperative Magnetic Resonance Imaging and Intraoperative Optical Brain Tumor Delineation Advances in Brief A Multimodal Nanoparticle for Preoperative Magnetic Resonance Imaging and Intraoperative Optical Brain Tumor Delinea. Cancer Res, 63(23), 8122–8125 (2003).

    Google Scholar 

  175. Lien, Y. H. & Wu, T. M. Preparation and characterization of thermosensitive polymers grafted onto silica-coated iron oxide nanoparticles. J. Colloid Interface Sci. 326, 517–521 (2008).

    Article  Google Scholar 

  176. Woo-ram Lee, et al. Redox−Transmetalation Process as a Generalized Synthetic Strategy for Core−Shell Magnetic Nanoparticles. J. Am. Chem. Soc., 127 (46), pp 16090–16097 (2005).

    Article  Google Scholar 

  177. Tan, W. et al. Bionanotechnology based on silica nanoparticles. Med. Res. Rev. 24, 621–638 (2004).

    Article  Google Scholar 

  178. Eyk A. Schellenberger, David Sosnovik, Ralph Weissleder, and & Lee Josephson. Magneto/Optical Annexin V, a Multimodal Protein. Bioconjugate Chem., 15 (5), 1062–1067 (2004).

    Article  Google Scholar 

  179. Daneshvar, H. et al. Imaging characteristics of zinc sulfide shell, cadmium telluride core quantum dots. Nanomedicine 3, 21–29 (2008).

    Article  Google Scholar 

  180. SalmanOgli, A. & Rostami, A. Investigation of electronic and optical properties of (CdSe/ZnS/CdSe/ZnS) quantum dot–quantum well heteronanocrystal. J. Nanoparticle Res. 13, 1197–1205 (2011).

    Article  Google Scholar 

  181. Ying Wang, et al. Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores. J. Phys. Chem. B, 108 (40), 15461–15469 (2004).

    Article  Google Scholar 

  182. Wang, Y. et al. Upconversion Luminescence of β-NaYF4 : Yb3+, Er3+@β-NaYF4 Core/Shell Nanoparticles: Excitation Power Density and Surface Dependence. J. Phys. Chem. C 113, 7164–7169 (2009).

    Article  Google Scholar 

  183. Qian, H. S. & Zhang, Y. Synthesis of Hexagonal-Phase Core−Shell NaYF4 Nanocrystals with Tunable Upconversion Fluorescence. Langmuir 24, 12123–12125 (2008).

    Article  Google Scholar 

  184. Stanciu, L., Won, Y. H., Ganesana, M. & Andreescu, S. Magnetic Particle-Based Hybrid Platforms for Bioanalytical Sensors. Sensors 9, 2976–2999 (2009).

    Google Scholar 

  185. Qiu, J. D., Cui, S. G., Deng, M. Q. & Liang, R. P. Direct electrochemistry of myoglobin immobilized in NiO/MWNTs hybrid nanocomposite for electrocatalytic detection of hydrogen peroxide. J. Appl. Electrochem. 40, 1651–1657 (2010).

    Article  Google Scholar 

  186. Qiu, J. D., Cui, S. G. & Liang, R. P. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on ceria nanoparticles coated with multiwalled carbon nanotubesby a hydrothermal synthetic method. Microchim. Acta 171, 333–339 (2010).

    Google Scholar 

  187. Khlebtsov, N. et al. Analytical and Theranostic Applications of Gold Nanoparticles and Multifunctional Nanocomposites. Theranostics 3, 167–180 (2013).

    Article  Google Scholar 

  188. Wang, X., Yang, T. & Jiao, K. Electrochemical sensing the DNA damage in situ induced by a cathodic process based on Fe@Fe2O3 core–shell nanonecklace and Au nanoparticles mimicking metal toxicity pathways in vivo. Biosens. Bioelectron. 25, 668–673 (2009).

    Article  Google Scholar 

  189. Qiu, J. D., Peng, H. P., Liang, R. P. & Xia, X. H. Facile preparation of magnetic core–shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry. Biosens. Bioelectron. 25, 1447–1453 (2010).

    Article  Google Scholar 

  190. Zhang, X. F. et al. Synthesis, structure and magnetic properties of SiO2-coated Fe nanocapsules. Mater. Sci. Eng. A 454, 211–215 (2007).

    Article  Google Scholar 

  191. Xuan, S., Wang, Y. X. J., Yu, J. C. & Leung, K. C. F. Preparation, Characterization, and Catalytic Activity of Core/Shell Fe3O4@Polyaniline@Au Nanocomposites. Langmuir 25, 11835–11843 (2009).

    Article  Google Scholar 

  192. Yin, H., Ma, Z., Chi, M. & Dai, S. Heterostructured catalysts prepared by dispersing Au@Fe2O3 core–shell structures on supports and their performance in CO oxidation. Catal. Today 160, 87–95 (2011).

    Article  Google Scholar 

  193. Riccardo Ferrando, Julius Jellinek, & Johnston, R. L. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev., 108 (3), 845–910 (2008).

    Article  Google Scholar 

  194. Wang, L. & Yamauchi, Y. Autoprogrammed Synthesis of Triple-Layered Au@Pd@Pt Core−Shell Nanoparticles Consisting of a Au@Pd Bimetallic Core and Nanoporous Pt Shell. J. Am. Chem. Soc. 132, 13636–13638 (2010).

    Article  Google Scholar 

  195. Fan, F. R. et al. Epitaxial Growth of Heterogeneous Metal Nanocrystals: From Gold Nano-octahedra to Palladium and Silver Nanocubes. J. Am. Chem. Soc. 130, 6949–6951 (2008).

    Article  Google Scholar 

  196. Kumagai, M. et al. Enhanced in vivo magnetic resonance imaging of tumors by PEGylated iron-oxide-gold core-shell nanoparticles with prolonged blood circulation properties. Macromol. Rapid Commun. 31, 1521–1528 (2010).

    Article  Google Scholar 

  197. Kayal, S. & Ramanujan, R. V. Anti-Cancer Drug Loaded Iron–Gold Core–Shell Nanoparticles (Fe@Au) for Magnetic Drug Targeting. J. Nanosci. Nanotechnol. 10, 5527–5539 (2010).

    Article  Google Scholar 

  198. Silva, S. M., Tavallaie, R., Sandiford, L., Tilley, D. & Gooding, J. J. Gold coated magnetic nanoparticles : from preparation to surface modification for analytical and biomedical applications. Chem. Commun. 52, 7528–7540 (2016).

    Article  Google Scholar 

  199. Ghorbani, M., Hamishehkar, H., Arsalani, N. & Entezami, A. A. Preparation of thermo and pH-responsive polymer@Au/Fe3O4 core/shell nanoparticles as a carrier for delivery of anticancer agent. J. Nanoparticle Res. 17, 305 (2015).

    Article  Google Scholar 

  200. Lo, C. K. et al. Homocysteine-protected gold-coated magnetic nanoparticles: synthesis and characterisation. J. Mater. Chem. 17, 2418 (2007).

    Article  Google Scholar 

  201. Rudakovskaya, P. G., Beloglazkina, E. K., Majouga, A. G. & Zyk, N. V. Synthesis and characterization of terpyridine-type ligand-protected gold-coated Fe3O4 nanoparticles. Mendeleev Commun. 20, 158–160 (2010).

    Article  Google Scholar 

  202. Zhou, H. et al. Ultrasensitive DNA monitoring by Au–Fe3O4 nanocomplex. Sensors Actuators B Chem. 163, 224–232 (2012).

    Article  Google Scholar 

  203. Lingyan Wang, Lingyan Wang, et al. Monodispersed Core−Shell Fe3O4@Au Nanoparticles. J. Phys. Chem. B, 109 (46), 21593–21601 (2005).

    Article  Google Scholar 

  204. Jin, Y., Jia, C., Huang, S. W., O’Donnell, M. & Gao, X. Multifunctional nanoparticles as coupled contrast agents. Nat. Commun. 1, 1–8 (2010).

    Article  Google Scholar 

  205. Hu, Y., Meng, L., Niu, L. & Lu, Q. Facile Synthesis of Superparamagnetic Fe3O4 @polyphosphazene@Au Shells for Magnetic Resonance Imaging and Photothermal Therapy. ACS Appl. Mater. Interfaces 5, 4586–4591 (2013).

    Article  Google Scholar 

  206. Dong, W. et al. Facile Synthesis of Monodisperse Superparamagnetic Fe3O4 Core@hybrid@Au Shell Nanocomposite for Bimodal Imaging and Photothermal Therapy. Adv. Mater. 23, 5392–5397 (2011).

    Article  Google Scholar 

  207. Salgueiriño-Maceira, V. et al. Bifunctional gold-coated magnetic silica spheres. Chem. Mater. 18, 2701–2706 (2006).

    Article  Google Scholar 

  208. Taufika Islam Williams, et al. Epithelial Ovarian Cancer: Disease Etiology, Treatment, Detection, and Investigational Gene, Metabolite, and Protein Biomarkers. (2007). doi:https://doi.org/10.1021/PR070041V

  209. Zhuo, Y., Yuan, P. X., Yuan, R., Chai, Y. Q. & Hong, C. L. Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials 30, 2284–2290 (2009).

    Article  Google Scholar 

  210. Xie, J. et al. Manipulating the Power of an Additional Phase: A Flower-like Au-Fe3O4 Optical Nanosensor for Imaging Protease Expressions In vivo. ACS Nano 5, 3043–3051 (2011).

    Google Scholar 

  211. Cherukuri, P., Glazer, E. S. & Curley, S. A. Targeted hyperthermia using metal nanoparticles. Adv. Drug Deliv. Rev. 62, 339–345 (2010).

    Article  Google Scholar 

  212. Rai, P. et al. Development and applications of photo-triggered theranostic agents. Adv. Drug Deliv. Rev. 62, 1094–1124 (2010).

    Article  Google Scholar 

  213. Mohammad, F., Balaji, G., Weber, A., Uppu, R. M. & Kumar, C. S. S. R. Influence of Gold Nanoshell on Hyperthermia of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs). J. Phys. Chem. C. Nanomater. Interfaces 114, 19194–19201 (2010).

    Google Scholar 

  214. Kim, J. et al. Designed Fabrication of Multifunctional Magnetic Gold Nanoshells and Their Application to Magnetic Resonance Imaging and Photothermal Therapy. Angew. Chemie Int. Ed. 45, 7754–7758 (2006).

    Article  Google Scholar 

  215. Xu, C. et al. Au-Fe3O4 Dumbbell Nanoparticles as Dual-Functional Probes. Angew. Chemie Int. Ed. 47, 173–176 (2008).

    Article  Google Scholar 

  216. García, I., Gallo, J., Genicio, N., Padro, D. & Penadés, S. Magnetic Glyconanoparticles as a Versatile Platform for Selective Immunolabeling and Imaging of Cells. Bioconjug. Chem. 22, 264–273 (2011).

    Article  Google Scholar 

  217. Bardhan, R. et al. Nanoshells with Targeted Simultaneous Enhancement of Magnetic and Optical Imaging and Photothermal Therapeutic Response. Adv. Funct. Mater. 19, 3901–3909 (2009).

    Article  MathSciNet  Google Scholar 

  218. Xu, C., Wang, B. & Sun, S. Dumbbell-like Au-Fe3O4 Nanoparticles for Target-Specific Platin Delivery. J. Am. Chem. Soc. 131, 4216–4217 (2009).

    Article  Google Scholar 

  219. Plank, C., Scherer, F., Schillinger, U., Bergemann, C. & Anton, M. Magnetofection: Enhancing and Targeting Gene Delivery with Superparamagnetic Nanoparticles and Magnetic Fields. J. Liposome Res. 13, 29–32 (2003).

    Article  Google Scholar 

  220. Cho, K., Wang, X., Nie, S., Chen, Z. G. & Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310–6 (2008).

    Article  Google Scholar 

  221. Kamei, K. et al. Direct cell entry of gold/iron-oxide magnetic nanoparticles in adenovirus mediated gene delivery. Biomaterials 30, 1809–1814 (2009).

    Article  Google Scholar 

  222. Thaxton, C. S., Georganopoulou, D. G. & Mirkin, C. A. Gold nanoparticle probes for the detection of nucleic acid targets. Clin. Chim. Acta 363, 120–126 (2006).

    Article  Google Scholar 

  223. Savka I. Stoeva, Fengwei Huo, Jae-Seung Lee, and & Mirkin, C. A. Three-Layer Composite Magnetic Nanoparticle Probes for DNA. J. Am. Chem. Soc., 127 (44), 15362–15363 (2005).

    Google Scholar 

  224. Zhao, J. et al. Ultrasensitive electrochemical aptasensor for thrombin based on the amplification of aptamer–AuNPs–HRP conjugates. Biosens. Bioelectron. 26, 2297–2303 (2011).

    Article  Google Scholar 

  225. Wang, C. & Irudayaraj, J. Multifunctional Magnetic-Optical Nanoparticle Probes for Simultaneous Detection, Separation, and Thermal Ablation of Multiple Pathogens. Small 6, 283–289 (2010).

    Article  Google Scholar 

  226. Liu, H. L., Sonn, C. H., Wu, J. H., Lee, K. M. & Kim, Y. K. Synthesis of streptavidin-FITC-conjugated core-shell Fe3O4-Au nanocrystals and their application for the purification of CD4+ lymphocytes. Biomaterials 29, 4003–4011 (2008).

    Article  Google Scholar 

  227. Yu, C. J., Lin, C. Y., Liu, C. H., Cheng, T. L. & Tseng, W. L. Synthesis of poly(diallyldimethylammonium chloride)-coated Fe3O4 nanoparticles for colorimetric sensing of glucose and selective extraction of thiol. Biosensors and Bioelectronics 26, (2010).

    Google Scholar 

  228. Qi, D., Zhang, H., Tang, J., Deng, C. & Zhang, X. Facile synthesis of mercaptophenylboronic acid-functionalized core-shell structure Fe3O4@C@Au magnetic microspheres for selective enrichment of glycopeptides and glycoproteins. J. Phys. Chem. C 114, 9221–9226 (2010).

    Article  Google Scholar 

  229. Hashmi, A. S. K. & Hutchings, G. J. Gold Catalysis. Angew. Chemie Int. Ed. 45, 7896–7936 (2006).

    Article  Google Scholar 

  230. Arcadi, A. Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chem. Rev. 108, 3266–3325 (2008).

    Article  Google Scholar 

  231. Corma, A. et al. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096 (2008).

    Article  Google Scholar 

  232. Yin, H. et al. Colloidal deposition synthesis of supported gold nanocatalysts based on Au–Fe3O4 dumbbell nanoparticles. Chem. Commun. 37, 4357 (2008).

    Article  Google Scholar 

  233. Edwards, J. K. et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3 catalysts. J. Mater. Chem. 15, 4595 (2005).

    Article  Google Scholar 

  234. Ge, J., Huynh, T., Hu, Y. & Yin, Y. Hierarchical Magnetite/Silica Nanoassemblies as Magnetically Recoverable Catalyst–Supports. Nano Lett. 8, 931–934 (2008).

    Article  Google Scholar 

  235. Lee, Y., Garcia, M. A., Frey Huls N.A., Sun, S. Synthetic Tuning of the Catalytic Properties of Au-Fe3O4 Nanoparticles. Angew. Chemie Int. Ed. 49, 1271–1274 (2010).

    Article  Google Scholar 

  236. B. Saha, J. Bhattacharya, A. Mukherjee, A. Ghosh, C. Santra, A. Dasgupta, P. Karmakar, In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics, Nanoscale Res. Lett., 2 (2007), pp. 614-622.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manisekaran, R. (2018). Literature Survey on Magnetic, Gold, and Core-Shell Nanoparticles. In: Design and Evaluation of Plasmonic/Magnetic Au-MFe2O4 (M-Fe/Co/Mn) Core-Shell Nanoparticles Functionalized with Doxorubicin for Cancer Therapeutics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-67609-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67609-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67608-1

  • Online ISBN: 978-3-319-67609-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics