Skip to main content

Introduction to Nanomedicine and Cancer Therapy

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Nanomedicine, the application of different nanostructures in the field of medicine which is aiming to revolutionize the health of humankind by a new developmental sector of nanopharmaceuticals [1]. The rapid evolution of nanomedicines has the huge probability to give many benefits when correlated to conventional medicines [2]. The major advantage of nanomedicine is to create a multifunctional platform using one nanostructure. Therefore, the various properties of nanostructures/NPs are exploited as tools in all aspect of medicine starting from diagnosis to treatment even at a molecular or cellular level for very rare and irremediable diseases [3]. Some of the applications of nanomedicine are as follows: drug delivery, therapies, in vivo imaging, in vitro diagnostics, biomaterials, active implants, bone substitute materials, dental restoratives, and antibiotic materials [4–6]. In the last two decades, significant progress has been made in the field of nanomedicine and nanobiotechnology, resulting in an enormous number of products. So, by the end of 2020, one-third of research patents and many start-up companies in the nanomedicine sector will engage in the biomedical applications [7]. To be specific, as of 2013, 1265 molecules are registered for clinical trials in which 789 were for nanomedicine applications or products [8]. Figure 1.1 represents the list of some of the important nanomedicine-related search terms in ClinicalTrials.gov [9]. Therefore this proves the field of nanomedicine is booming at a faster rate. The global nanomedicine market was $1 trillion by 2015 but expected to be 100-fold in just 7 years [10].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Paras N. Prasad. Introduction to Nanomedicine and Nanobioengineering. Wiley (John Wiley & Sons, 2012).

    Google Scholar 

  2. Bharali, D. J. & Mousa, S. A. Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise. Pharmacol. Ther. 128, 324–335 (2010).

    Article  Google Scholar 

  3. Chen, G., Roy, I., Yang, C. & Prasad, P. N. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem. Rev. 116, 2826–2885 (2016).

    Article  Google Scholar 

  4. Huber, F. X. et al. Evaluation of a novel nanocrystalline hydroxyapatite paste Ostim in comparison to Alpha-BSM more bone ingrowth inside the implanted material with Ostim compared to Alpha BSM. BMC Musculoskelet. Disord. 10, 164 (2009).

    Article  Google Scholar 

  5. Wagner, V., Husing, B., Gaisser, S. & Bock, A. K. Nanomedicine : Drivers for development and possible impacts. Eur. Comm. Jt. Res. Cent. 45–53 (2006).

    Google Scholar 

  6. Webster, T. J. Projections for nanomedicine into the next decade: But is it all about pharmaceuticals? Int. J. Nanomedicine 3, (2008).

    Google Scholar 

  7. Lee Ventola, C. The Nanomedicine Revolution: Part 3: Regulatory and Safety Challenges. Pharm. Ther. 37, 631–639 (2012).

    Google Scholar 

  8. Etheridge, M. L. et al. The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine Nanotechnology, Biol. Med. 9, 1–14 (2013).

    Google Scholar 

  9. ClinicalTrials.gov Background - ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/about-site/background.

  10. Alexander, A. A. & Jotterand, F. Market Considerations for Nanomedicines and Theranostic Nanomedicines. Cancer Theranostics 471–491 (2014). doi:https://doi.org/10.1016/B978-0-12-407722-5.00025-6

  11. Etheridge, M. L. et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. (2013). doi:https://doi.org/10.1016/j.nano.2012.05.013

  12. Weissig, V., Pettinger, T. K. & Murdock, N. Nanopharmaceuticals (part 1): products on the market. Int. J. Nanomedicine 9, 4357–4373 (2014).

    Article  Google Scholar 

  13. Bawa, R. Nanopharmaceuticals: Nanopharmaceuticals. Eur. J. Nanomedicine 3, (2010).

    Google Scholar 

  14. Ventola, C. L. The nanomedicine revolution: part 2: current and future clinical applications. P T 37, 582–91 (2012).

    Google Scholar 

  15. Who. WHO | Cancer. WHO (2016).

    Google Scholar 

  16. Did we just get a small step closer to curing cancer?, World Economic Forum. Available at: https://www.weforum.org/agenda/2016/02/did-we-just-get-a-step-closer-to-curing-cancer/.

  17. Med, I. J. & Res, N. ClinMed. 3, 1–5 (2016).

    Google Scholar 

  18. Wicki, A., Witzigmann, D., Balasubramanian, V. & Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 200, 138–157 (2015).

    Article  Google Scholar 

  19. Koo, H. et al. In vivo targeted delivery of nanoparticles for theranosis. Acc. Chem. Res. 44, 1018–1028 (2011).

    Article  Google Scholar 

  20. Morigi, V. et al. Nanotechnology in Medicine: From Inception to Market Domination. J. Drug Deliv. 2012, 1–7 (2012).

    Article  Google Scholar 

  21. Bawa, R. Nanoparticle-based therapeutics in humans: A survey. Nanotechnol. Law Bus. 5, 135–155 (2008).

    Google Scholar 

  22. Kalash, R. et al. Differences in irradiated lung gene transcription between fibrosis-prone C57BL/6NHsd and fibrosis-resistant C3H/HeNHsd mice. In Vivo 28, 147–171 (2014).

    Google Scholar 

  23. Liu, Y., Miyoshi, H. & Nakamura, M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 120, 2527–2537 (2007).

    Article  Google Scholar 

  24. Torchilin, V. P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 9, E128–E147 (2007).

    Article  Google Scholar 

  25. Ali, I. et al. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets 11, 135–146 (2011).

    Article  Google Scholar 

  26. Heidel, J. D. & Davis, M. E. Clinical developments in nanotechnology for cancer therapy. Pharm. Res. 28, 187–199 (2011).

    Google Scholar 

  27. Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008).

    Article  Google Scholar 

  28. Heath, J. R., Heath, J. R., Davis, M. E. & Davis, M. E. Nanotechnology and cancer. Annu. Rev. Med. 59, 251–65 (2008).

    Article  Google Scholar 

  29. Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 624, 25–37 (2010).

    Article  Google Scholar 

  30. Kobayashi, H., Watanabe, R. & Choyke, P. L. Improving conventional enhanced permeability and retention (EPR) effects; What is the appropriate target? Theranostics 4, 81–89 (2014).

    Article  Google Scholar 

  31. Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001).

    Article  Google Scholar 

  32. Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug. Chem. 21, 797–802 (2010).

    Article  Google Scholar 

  33. Brannon-Peppas, L. & Blanchette, J. O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 64, 206–212 (2012).

    Article  Google Scholar 

  34. Northfelt, D. W. et al. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: Results of a randomized phase III clinical trial. J. Clin. Oncol. 16, 2445–2451 (1998).

    Article  Google Scholar 

  35. Schleich, N. et al. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J. Control. Release 194, 82–91 (2014).

    Article  Google Scholar 

  36. Jain, K. K. Advances in the field of nanooncology. BMC Med. 8, 83 (2010).

    Article  Google Scholar 

  37. Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).

    Article  Google Scholar 

  38. Doane, T. L. & Burda, C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–911 (2012).

    Article  Google Scholar 

  39. Shenhar, R. & Rotello, V. M. Nanoparticles: Scaffolds and building blocks. Acc. Chem. Res. 36, 549–561 (2003).

    Article  Google Scholar 

  40. Salata, O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2, 3 (2004).

    Google Scholar 

  41. Boal, A. K. & Rotello, V. M. Fabrication and Self-Optimization of Multivalent Receptors on Nanoparticle Scaffolds. J. Am. Chem. Soc. 122, 734–735 (2000).

    Article  Google Scholar 

  42. Ghosh, P. S., Han, G., Erdogan, B., Rosado, O. & Rotello, V. M. Binding of nanoparticle receptors to peptide α-helices using amino acid-functionalized nanoparticles. J. Pept. Sci. 14, 134–138 (2008).

    Article  Google Scholar 

  43. Bawa, R. Regulating nanomedicine. Nat. Mater. 6, 249 (2007).

    Article  Google Scholar 

  44. Brian Profitt. Hadoop: What It Is And How It Works. (2013). Available at: http://readwrite.com/2013/05/23/hadoop-what-it-is-and-how-it-works.

  45. Decuzzi, P., Causa, F., Ferrari, M. & Netti, P. A. The effective dispersion of nanovectors within the tumor microvasculature. Ann. Biomed. Eng. 34, 633–41 (2006).

    Article  Google Scholar 

  46. Lee, S. Y., Ferrari, M. & Decuzzi, P. Shaping nano/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 20, 495101 (2009).

    Article  Google Scholar 

  47. Gavze, E. & Shapiro, M. Particles in a shear flow near a solid wall: Effect of nonsphericity on forces and velocities. Int. J. Multiph. Flow 23, 155–182 (1997).

    Article  MATH  Google Scholar 

  48. Gentile, F. et al. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J. Biomech. 41, 2312–8 (2008).

    Article  Google Scholar 

  49. Toy, R., Hayden, E., Shoup, C., Baskaran, H. & Karathanasis, E. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22, 115101 (2011).

    Article  Google Scholar 

  50. Gavze, E. & Shapiro, M. Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity. J. Fluid Mech. 371, (1998) doi: https://doi.org/10.1017/S0022112098002109.

  51. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007).

    Google Scholar 

  52. Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A. 103, 4930–4 (2006).

    Article  Google Scholar 

  53. Decuzzi, P. & Ferrari, M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27, 5307–5314 (2006).

    Article  Google Scholar 

  54. Sharma, G. et al. Polymer particle shape independently influences binding and internalization by macrophages. J. Control. Release 147, 408–12 (2010).

    Article  Google Scholar 

  55. Decuzzi, P., Lee, S., Bhushan, B. & Ferrari, M. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 33, 179–90 (2005).

    Article  Google Scholar 

  56. Park, J. & Butler, J. E. Analysis of the Migration of Rigid Polymers and Nanorods in a Rotating Viscometric Flow. Macromolecules 43, 2535–2543 (2010).

    Article  Google Scholar 

  57. Toy, R., Peiris, P. M., Ghaghada, K. B. & Karathanasis, E. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond). 9, 121–34 (2014).

    Article  Google Scholar 

  58. Doshi, N. et al. Flow and adhesion of drug carriers in blood vessels depend on their shape: A study using model synthetic microvascular networks. J. Control. Release 146, 196–200 (2010).

    Article  Google Scholar 

  59. Murphy, C. J. Peer Reviewed: Optical Sensing with Quantum Dots. Anal. Chem. 74, 520 A-526 A (2002).

    Google Scholar 

  60. Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86–92 (2004).

    Article  Google Scholar 

  61. Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    Article  Google Scholar 

  62. Jana, N. R. et al. Design and development of quantum dots and other nanoparticles based cellular imaging probe. Phys. Chem. Chem. Phys. 13, 385–396 (2011).

    Article  Google Scholar 

  63. Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Applications of gold nanorods for cancer imaging and photothermal therapy. Methods Mol. Biol. 624, 343–57 (2010).

    Article  Google Scholar 

  64. Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science (80). 271, (1996).

    Google Scholar 

  65. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–44 (2005).

    Article  Google Scholar 

  66. Huang, X., Neretina, S. & El-Sayed, M. A. Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Adv. Mater. 21, 4880–4910 (2009).

    Article  Google Scholar 

  67. Handbook of Nanophase and Nanostructured Materials. (Kluwer Academic Publishers, 2003). doi:10.1007/0-387-23814-X

    Google Scholar 

  68. Lue, J. T. A review of characterization and physical property studies of metallic nanoparticles. J. Phys. Chem. Solids 62, 1599–1612 (2001).

    Article  Google Scholar 

  69. Jeong, U., Teng, X., Wang, Y., Yang, H. & Xia, Y. Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 19, 33–60 (2007).

    Article  Google Scholar 

  70. De, M., Ghosh, P. S. & Rotello, V. M. Applications of Nanoparticles in Biology. Adv. Mater. 1003, 4225–4241 (2008).

    Article  Google Scholar 

  71. Saha, K., Bajaj, A., Duncan, B. & Rotello, V. M. Beauty is skin deep: A surface monolayer perspective on nanoparticle interactions with cells and bio-macromolecules. Small 7, 1903–1918 (2011).

    Article  Google Scholar 

  72. Hirsch, L. R. et al. Metal nanoshells. Ann. Biomed. Eng. 34, 15–22 (2006).

    Article  Google Scholar 

  73. Law, W. C. et al. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5, 1302–1310 (2009).

    Article  Google Scholar 

  74. Pankhurst, Q. A., Thanh, N. T. K., Jones, S. K. & Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 42, 224001 (2009).

    Article  Google Scholar 

  75. Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F. & Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971–3010 (2012).

    Article  Google Scholar 

  76. Lauterbur, P. C. C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973).

    Google Scholar 

  77. Elmaoğlu, M. & Çelik, A. in MRI Handbook 7–23 (Springer US, 2011).

    Google Scholar 

  78. John P Ridgway, Cardiovascular magnetic resonance physics for clinicians: part I. Journal of Cardiovascular Magnetic Resonance 12, 71 (2010).

    Article  Google Scholar 

  79. Magnetic Resonance Imaging (MRI) | National Institute of Biomedical Imaging and Bioengineering. Available at: https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri.

  80. Elmaoğlu, M. & Çelik, A. in MRI Handbook 25–46 (Springer US, 2011).

    Google Scholar 

  81. Zhang, Y., Lin, J. D., Vijayaragavan, V., Bhakoo, K. K. & Tan, T. T. Y. Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T1 magnetic resonance imaging. Chem. Commun. 48, 10322–10324 (2012).

    Article  Google Scholar 

  82. Cheng, K. et al. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009).

    Article  Google Scholar 

  83. Klasson, A. et al. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media Mol. Imaging 3, 106–111 (2008).

    Article  Google Scholar 

  84. Wang, Y. X. J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 1, 35–40 (2011).

    Google Scholar 

  85. Law, W. C. et al. Optically and magnetically doped organically modified silica nanoparticles as efficient magnetically guided biomarkers for two-photon imaging of live cancer cells. J. Phys. Chem. C 112, 7972–7977 (2008).

    Article  Google Scholar 

  86. Erogbogbo, F. et al. Biocompatible magnetofluorescent probes: Luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. ACS Nano 4, 5131–5138 (2010).

    Article  Google Scholar 

  87. Lai, C. W. et al. Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: A facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small 4, 218–224 (2008).

    Article  Google Scholar 

  88. Mi, C. et al. Doped nanostructures. Nanoscale 2, 1057 (2010).

    Article  Google Scholar 

  89. Ma, Y. et al. Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Adv. Funct. Mater. 23, 815–822 (2013).

    Article  Google Scholar 

  90. Alric, C. et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 130, 5908–5915 (2008).

    Article  Google Scholar 

  91. Kalender, W. A. X-ray computed tomography. Phys. Med. Biol. 51, R29–R43 (2006).

    Article  Google Scholar 

  92. Popovtzer, R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int. J. Nanomedicine 6, 2859 (2011).

    Article  Google Scholar 

  93. Hainfeld, J. F., Slatkin, D. N., Focella, T. M. & Smilowitz, H. M. Gold nanoparticles: A new X-ray contrast agent. Br. J. Radiol. 79, 248–253 (2006).

    Article  Google Scholar 

  94. Xu, C. et al. Au–Fe3O4 Dumbbell Nanoparticles as Dual-Functional Probes. Angew. Chemie Int. Ed. 47, 173–176 (2008).

    Article  Google Scholar 

  95. Zhou, B. et al. Synthesis and characterization of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool and tumor CT imaging. ACS Appl. Mater. Interfaces 6, 17190–17199 (2014).

    Article  Google Scholar 

  96. Liu, Y. et al. Hybrid BaYbF5 nanoparticles: novel binary contrast agent for high-resolution in vivo X-ray computed tomography angiography. Adv. Healthc. mater. 1, 461–6 (2012).

    Article  Google Scholar 

  97. Ingvaldsen, J. E. & Gulla, J. A. Context-aware user-driven news recommendation. CEUR Workshop Proceedings 1542, (John Wiley & Sons, Inc., 2015).

    Google Scholar 

  98. Orringer, D. a et al. Small solutions for big problems: the application of nanoparticles to brain tumor diagnosis and therapy. Clin. Pharmacol. Ther. 85, 531–534 (2009).

    Article  Google Scholar 

  99. Orringer, D. A. et al. The brain tumor window model: A combined cranial window and implanted glioma model for evaluating iIntraoperative contrast agents. Neurosurgery 66, 736–743 (2010).

    Article  Google Scholar 

  100. Pezacki, J. P. et al. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat. Chem. Biol. 7, 137–145 (2011).

    Article  Google Scholar 

  101. Koole, R. et al. Magnetic quantum dots for multimodal imaging. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 1, 475–491 (2009).

    Google Scholar 

  102. Michalet, X. & Pinaud, F. F. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science (80). 307, 538–545 (2005).

    Google Scholar 

  103. Swami, A. et al. in Drug Delivery 9–30 (Springer US, 2012). doi:https://doi.org/10.1007/978-1-4614-2305-8

    Google Scholar 

  104. Pridgen, E. M., Langer, R. & Farokhzad, O. C. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine (Lond). 2, 669–680 (2007).

    Article  Google Scholar 

  105. Torchilin, V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm. 71, 431–444 (2009).

    Article  Google Scholar 

  106. Medeiros, S. F., Santos, A. M., Fessi, H. & Elaissari, A. Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm. 403, 139–161 (2011).

    Article  Google Scholar 

  107. Katz, J. S. & Burdick, J. A. Light-responsive biomaterials: Development and applications. Macromol. Biosci. 10, 339–348 (2010).

    Article  Google Scholar 

  108. De Jong, W. H. & Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 3, 133–149 (2008).

    Article  Google Scholar 

  109. Probst, C. E., Zrazhevskiy, P., Bagalkot, V. & Gao, X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 65, 703–718 (2013).

    Article  Google Scholar 

  110. Cheng, Z. et al. Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI. Biomaterials 35, 6359–6368 (2014).

    Article  Google Scholar 

  111. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A. 100, 13549–54 (2003).

    Article  Google Scholar 

  112. Heat-Related Illness: Symptoms, Types, and First Aid. Available at: http://www.medicinenet.com/hyperthermia/article.html.

  113. Van Loo, G. et al. The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death Differ. 9, 1031–42 (2002).

    Article  Google Scholar 

  114. Kumar, C. S. S. R. & Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011).

    Article  Google Scholar 

  115. Goldstein, L. S., Dewhirst, M. W., Repacholi, M. & Kheifets, L. Summary, conclusions and recommendations: adverse temperature levels in the human body. Int. J. Hyperth. 19, 373–384 (2003).

    Article  Google Scholar 

  116. Raaphorst, G. P., Freeman, M. L. & Dewey, W. C. Radiosensitivity and Recovery from Radiation Damage in Cultured CHO Cells Exposed to Hyperthermia at 42.5 or 45.5°C. Radiat. Res. 79, 390 (1979).

    Article  Google Scholar 

  117. Habash, R. W. Y., Bansal, R., Krewski, D. & Alhafid, H. T. Thermal therapy, Part 2: Hyperthermia techniques. Crit. Rev. Biomed. Eng. 34, 491–542 (2006).

    Article  Google Scholar 

  118. Cabuy, E. Hyperthermia in cancer treatment Hyperthermia in Cancer Treatment. Neoplasma 41, 269–276 (2016).

    Google Scholar 

  119. GILCHRIST, R. K. et al. Selective inductive heating of lymph nodes. 146, 596–606 (1957).

    Google Scholar 

  120. McCarthy, J. R. & Weissleder, R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008).

    Article  Google Scholar 

  121. Dutz, S. & Hergt, R. Magnetic particle hyperthermia-A promising tumour therapy? Nanotechnology 25, 452001 (2014).

    Article  Google Scholar 

  122. Bornstein, B. A. et al. Local hyperthermia, radiation therapy, and chemotherapy in patients with local-regional recurrence of breast carcinoma. Int. J. Radiat. Oncol. 25, 79–85 (1993).

    Article  Google Scholar 

  123. Jordan, A. et al. Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia. Int. J. Hyperth. 9, 51–68 (1993).

    Article  Google Scholar 

  124. Jeyadevan, B. Present status and prospects of magnetite nanoparticles-based hyperthermia. J. Ceram. Soc. Japan 118, 391–401 (2010).

    Article  Google Scholar 

  125. Suto, M. et al. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1493–1496 (2009).

    Article  Google Scholar 

  126. Kötitz, R., Weitschies, W., Trahms, L. & Semmler, W. Investigation of Brownian and Néel relaxation in magnetic fluids. J. Magn. Magn. Mater. 201, 102–104 (1999).

    Google Scholar 

  127. Rosensweig, R. E. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002).

    Article  Google Scholar 

  128. Hergt, R. et al. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745–3754 (1998).

    Article  Google Scholar 

  129. Jean-Paul Fortin, et al. Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia. J. Am. Chem. Soc., 129 (9), 2628–2635 (2007).

    Article  Google Scholar 

  130. Fortin, J. P., Gazeau, F. & Wilhelm, C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J. 37, 223–228 (2008).

    Article  Google Scholar 

  131. Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005).

    Article  Google Scholar 

  132. Schütt, W. et al. Applications of Magnetic Targeting in Diagnosis and Therapy-Possibilities and Limitations: A Mini-Review. Hybridoma 16, 109–117 (1997).

    Article  Google Scholar 

  133. Derfus, A. M. et al. Remotely triggered release from magnetic nanoparticles. Adv. Mater. 19, 3932–3936 (2007).

    Article  Google Scholar 

  134. Kost, J., Wolfrum, J. & Langer, R. Magnetically enhanced insulin release in diabetic rats. J. Biomed. Mater. Res. 21, 1367–1373 (1987).

    Article  Google Scholar 

  135. Zonghuan Lu, et al. Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embedded with Co@Au Nanoparticles. Langmuir, 21 (5), 2042–2050 (2005).

    Article  Google Scholar 

  136. Chu, K. F. & Dupuy, D. E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14, 199–208 (2014).

    Article  Google Scholar 

  137. Pereira, P. L. Actual role of radiofrequency ablation of liver metastases. Eur. Radiol. 17, 2062–70 (2007).

    Article  Google Scholar 

  138. Nikfarjam, M., Muralidharan, V. & Christophi, C. Mechanisms of Focal Heat Destruction of Liver Tumors. J. Surg. Res. 127, 208–223 (2005).

    Article  Google Scholar 

  139. Ahmed, M., Brace, C. L., Lee, F. T. & Goldberg, S. N. Principles of and advances in percutaneous ablation. Radiology 258, 351–69 (2011).

    Article  Google Scholar 

  140. Den Brok, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br. J. Cancer 95, 896–905 (2006).

    Article  Google Scholar 

  141. Lubner, M. G., Brace, C. L., Hinshaw, J. L. & Lee, F. T. Microwave tumor ablation: mechanism of action, clinical results, and devices. J. Vasc. Interv. Radiol. 21, S192-203 (2010).

    Article  Google Scholar 

  142. Wright, A. S., Lee, F. T. & Mahvi, D. M. Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis. Ann. Surg. Oncol. 10, 275–83 (2003).

    Article  Google Scholar 

  143. Yeh, Y. C., Creran, B. & Rotello, V. M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4, 1871–80 (2012).

    Article  Google Scholar 

  144. Wang, C. et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J. Am. Chem. Soc. 131, 8824–8832 (2009).

    Article  Google Scholar 

  145. Lyon, J. L., Fleming, D. A., Stone, M. B., Schiffer, P. & Williams, M. E. Synthesis of Fe oxide Core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett. 4, 719–723 (2004).

    Article  Google Scholar 

  146. Xu, C., Wang, B. & Sun, S. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 131, 4216–4217 (2009).

    Article  Google Scholar 

  147. Kim, D., Kim, J. W., Jeong, Y. Y. & Jon, S. Antibiofouling Polymer Coated Gold@Iron Oxide Nanoparticle (GION) as a Dual Contrast Agent for CT and MRI. Bull. Korean Chem. Soc. 30, 1855–1857 (2009).

    Article  Google Scholar 

  148. Lim, J. K., Majetich, S. A. & Tilton, R. D. Stabilization of superparamagnetic iron oxide core-gold shell nanoparticles in high ionic strength media. Langmuir 25, 13384–13393 (2009).

    Article  Google Scholar 

  149. Wang, L. et al. Monodispersed core-shell Fe3O4@Au nanoparticles. J. Phys. Chem. B 109, 21593–21601 (2005).

    Article  Google Scholar 

  150. Lim, J. & Majetich, S. A. Composite magnetic-plasmonic nanoparticles for biomedicine: Manipulation and imaging. Nano Today 8, 98–113 (2013).

    Article  Google Scholar 

  151. Jin, X. et al. Facile deposition of continuous gold shells on Tween-20 modified Fe3O4 superparticles. J. Mater. Chem. B 1, 1921–1925 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manisekaran, R. (2018). Introduction to Nanomedicine and Cancer Therapy. In: Design and Evaluation of Plasmonic/Magnetic Au-MFe2O4 (M-Fe/Co/Mn) Core-Shell Nanoparticles Functionalized with Doxorubicin for Cancer Therapeutics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-67609-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67609-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67608-1

  • Online ISBN: 978-3-319-67609-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics