Advertisement

Introduction to Nanomedicine and Cancer Therapy

  • Ravichandran Manisekaran
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Nanomedicine, the application of different nanostructures in the field of medicine which is aiming to revolutionize the health of humankind by a new developmental sector of nanopharmaceuticals [1]. The rapid evolution of nanomedicines has the huge probability to give many benefits when correlated to conventional medicines [2]. The major advantage of nanomedicine is to create a multifunctional platform using one nanostructure. Therefore, the various properties of nanostructures/NPs are exploited as tools in all aspect of medicine starting from diagnosis to treatment even at a molecular or cellular level for very rare and irremediable diseases [3]. Some of the applications of nanomedicine are as follows: drug delivery, therapies, in vivo imaging, in vitro diagnostics, biomaterials, active implants, bone substitute materials, dental restoratives, and antibiotic materials [4–6]. In the last two decades, significant progress has been made in the field of nanomedicine and nanobiotechnology, resulting in an enormous number of products. So, by the end of 2020, one-third of research patents and many start-up companies in the nanomedicine sector will engage in the biomedical applications [7]. To be specific, as of 2013, 1265 molecules are registered for clinical trials in which 789 were for nanomedicine applications or products [8]. Figure 1.1 represents the list of some of the important nanomedicine-related search terms in ClinicalTrials.gov [9]. Therefore this proves the field of nanomedicine is booming at a faster rate. The global nanomedicine market was $1 trillion by 2015 but expected to be 100-fold in just 7 years [10].

References

  1. 1.
    Paras N. Prasad. Introduction to Nanomedicine and Nanobioengineering. Wiley (John Wiley & Sons, 2012).Google Scholar
  2. 2.
    Bharali, D. J. & Mousa, S. A. Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise. Pharmacol. Ther. 128, 324–335 (2010).CrossRefGoogle Scholar
  3. 3.
    Chen, G., Roy, I., Yang, C. & Prasad, P. N. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem. Rev. 116, 2826–2885 (2016).CrossRefGoogle Scholar
  4. 4.
    Huber, F. X. et al. Evaluation of a novel nanocrystalline hydroxyapatite paste Ostim in comparison to Alpha-BSM more bone ingrowth inside the implanted material with Ostim compared to Alpha BSM. BMC Musculoskelet. Disord. 10, 164 (2009).CrossRefGoogle Scholar
  5. 5.
    Wagner, V., Husing, B., Gaisser, S. & Bock, A. K. Nanomedicine : Drivers for development and possible impacts. Eur. Comm. Jt. Res. Cent. 45–53 (2006).Google Scholar
  6. 6.
    Webster, T. J. Projections for nanomedicine into the next decade: But is it all about pharmaceuticals? Int. J. Nanomedicine 3, (2008).Google Scholar
  7. 7.
    Lee Ventola, C. The Nanomedicine Revolution: Part 3: Regulatory and Safety Challenges. Pharm. Ther. 37, 631–639 (2012).Google Scholar
  8. 8.
    Etheridge, M. L. et al. The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine Nanotechnology, Biol. Med. 9, 1–14 (2013).Google Scholar
  9. 9.
  10. 10.
    Alexander, A. A. & Jotterand, F. Market Considerations for Nanomedicines and Theranostic Nanomedicines. Cancer Theranostics 471–491 (2014). doi:https://doi.org/10.1016/B978-0-12-407722-5.00025-6
  11. 11.
    Etheridge, M. L. et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. (2013). doi:https://doi.org/10.1016/j.nano.2012.05.013
  12. 12.
    Weissig, V., Pettinger, T. K. & Murdock, N. Nanopharmaceuticals (part 1): products on the market. Int. J. Nanomedicine 9, 4357–4373 (2014).CrossRefGoogle Scholar
  13. 13.
    Bawa, R. Nanopharmaceuticals: Nanopharmaceuticals. Eur. J. Nanomedicine 3, (2010).Google Scholar
  14. 14.
    Ventola, C. L. The nanomedicine revolution: part 2: current and future clinical applications. P T 37, 582–91 (2012).Google Scholar
  15. 15.
    Who. WHO | Cancer. WHO (2016).Google Scholar
  16. 16.
    Did we just get a small step closer to curing cancer?, World Economic Forum. Available at: https://www.weforum.org/agenda/2016/02/did-we-just-get-a-step-closer-to-curing-cancer/.
  17. 17.
    Med, I. J. & Res, N. ClinMed. 3, 1–5 (2016).Google Scholar
  18. 18.
    Wicki, A., Witzigmann, D., Balasubramanian, V. & Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 200, 138–157 (2015).CrossRefGoogle Scholar
  19. 19.
    Koo, H. et al. In vivo targeted delivery of nanoparticles for theranosis. Acc. Chem. Res. 44, 1018–1028 (2011).CrossRefGoogle Scholar
  20. 20.
    Morigi, V. et al. Nanotechnology in Medicine: From Inception to Market Domination. J. Drug Deliv. 2012, 1–7 (2012).CrossRefGoogle Scholar
  21. 21.
    Bawa, R. Nanoparticle-based therapeutics in humans: A survey. Nanotechnol. Law Bus. 5, 135–155 (2008).Google Scholar
  22. 22.
    Kalash, R. et al. Differences in irradiated lung gene transcription between fibrosis-prone C57BL/6NHsd and fibrosis-resistant C3H/HeNHsd mice. In Vivo 28, 147–171 (2014).Google Scholar
  23. 23.
    Liu, Y., Miyoshi, H. & Nakamura, M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 120, 2527–2537 (2007).CrossRefGoogle Scholar
  24. 24.
    Torchilin, V. P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 9, E128–E147 (2007).CrossRefGoogle Scholar
  25. 25.
    Ali, I. et al. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets 11, 135–146 (2011).CrossRefGoogle Scholar
  26. 26.
    Heidel, J. D. & Davis, M. E. Clinical developments in nanotechnology for cancer therapy. Pharm. Res. 28, 187–199 (2011).Google Scholar
  27. 27.
    Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008).CrossRefGoogle Scholar
  28. 28.
    Heath, J. R., Heath, J. R., Davis, M. E. & Davis, M. E. Nanotechnology and cancer. Annu. Rev. Med. 59, 251–65 (2008).CrossRefGoogle Scholar
  29. 29.
    Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 624, 25–37 (2010).CrossRefGoogle Scholar
  30. 30.
    Kobayashi, H., Watanabe, R. & Choyke, P. L. Improving conventional enhanced permeability and retention (EPR) effects; What is the appropriate target? Theranostics 4, 81–89 (2014).CrossRefGoogle Scholar
  31. 31.
    Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001).CrossRefGoogle Scholar
  32. 32.
    Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug. Chem. 21, 797–802 (2010).CrossRefGoogle Scholar
  33. 33.
    Brannon-Peppas, L. & Blanchette, J. O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 64, 206–212 (2012).CrossRefGoogle Scholar
  34. 34.
    Northfelt, D. W. et al. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: Results of a randomized phase III clinical trial. J. Clin. Oncol. 16, 2445–2451 (1998).CrossRefGoogle Scholar
  35. 35.
    Schleich, N. et al. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J. Control. Release 194, 82–91 (2014).CrossRefGoogle Scholar
  36. 36.
    Jain, K. K. Advances in the field of nanooncology. BMC Med. 8, 83 (2010).CrossRefGoogle Scholar
  37. 37.
    Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).CrossRefGoogle Scholar
  38. 38.
    Doane, T. L. & Burda, C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–911 (2012).CrossRefGoogle Scholar
  39. 39.
    Shenhar, R. & Rotello, V. M. Nanoparticles: Scaffolds and building blocks. Acc. Chem. Res. 36, 549–561 (2003).CrossRefGoogle Scholar
  40. 40.
    Salata, O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2, 3 (2004).Google Scholar
  41. 41.
    Boal, A. K. & Rotello, V. M. Fabrication and Self-Optimization of Multivalent Receptors on Nanoparticle Scaffolds. J. Am. Chem. Soc. 122, 734–735 (2000).CrossRefGoogle Scholar
  42. 42.
    Ghosh, P. S., Han, G., Erdogan, B., Rosado, O. & Rotello, V. M. Binding of nanoparticle receptors to peptide α-helices using amino acid-functionalized nanoparticles. J. Pept. Sci. 14, 134–138 (2008).CrossRefGoogle Scholar
  43. 43.
    Bawa, R. Regulating nanomedicine. Nat. Mater. 6, 249 (2007).CrossRefGoogle Scholar
  44. 44.
    Brian Profitt. Hadoop: What It Is And How It Works. (2013). Available at: http://readwrite.com/2013/05/23/hadoop-what-it-is-and-how-it-works.
  45. 45.
    Decuzzi, P., Causa, F., Ferrari, M. & Netti, P. A. The effective dispersion of nanovectors within the tumor microvasculature. Ann. Biomed. Eng. 34, 633–41 (2006).CrossRefGoogle Scholar
  46. 46.
    Lee, S. Y., Ferrari, M. & Decuzzi, P. Shaping nano/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 20, 495101 (2009).CrossRefGoogle Scholar
  47. 47.
    Gavze, E. & Shapiro, M. Particles in a shear flow near a solid wall: Effect of nonsphericity on forces and velocities. Int. J. Multiph. Flow 23, 155–182 (1997).zbMATHCrossRefGoogle Scholar
  48. 48.
    Gentile, F. et al. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J. Biomech. 41, 2312–8 (2008).CrossRefGoogle Scholar
  49. 49.
    Toy, R., Hayden, E., Shoup, C., Baskaran, H. & Karathanasis, E. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22, 115101 (2011).CrossRefGoogle Scholar
  50. 50.
    Gavze, E. & Shapiro, M. Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity. J. Fluid Mech. 371, (1998) doi: https://doi.org/10.1017/S0022112098002109.
  51. 51.
    Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007).Google Scholar
  52. 52.
    Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A. 103, 4930–4 (2006).CrossRefGoogle Scholar
  53. 53.
    Decuzzi, P. & Ferrari, M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27, 5307–5314 (2006).CrossRefGoogle Scholar
  54. 54.
    Sharma, G. et al. Polymer particle shape independently influences binding and internalization by macrophages. J. Control. Release 147, 408–12 (2010).CrossRefGoogle Scholar
  55. 55.
    Decuzzi, P., Lee, S., Bhushan, B. & Ferrari, M. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 33, 179–90 (2005).CrossRefGoogle Scholar
  56. 56.
    Park, J. & Butler, J. E. Analysis of the Migration of Rigid Polymers and Nanorods in a Rotating Viscometric Flow. Macromolecules 43, 2535–2543 (2010).CrossRefGoogle Scholar
  57. 57.
    Toy, R., Peiris, P. M., Ghaghada, K. B. & Karathanasis, E. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond). 9, 121–34 (2014).CrossRefGoogle Scholar
  58. 58.
    Doshi, N. et al. Flow and adhesion of drug carriers in blood vessels depend on their shape: A study using model synthetic microvascular networks. J. Control. Release 146, 196–200 (2010).CrossRefGoogle Scholar
  59. 59.
    Murphy, C. J. Peer Reviewed: Optical Sensing with Quantum Dots. Anal. Chem. 74, 520 A-526 A (2002).Google Scholar
  60. 60.
    Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86–92 (2004).CrossRefGoogle Scholar
  61. 61.
    Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 41, 1578–1586 (2008).CrossRefGoogle Scholar
  62. 62.
    Jana, N. R. et al. Design and development of quantum dots and other nanoparticles based cellular imaging probe. Phys. Chem. Chem. Phys. 13, 385–396 (2011).CrossRefGoogle Scholar
  63. 63.
    Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Applications of gold nanorods for cancer imaging and photothermal therapy. Methods Mol. Biol. 624, 343–57 (2010).CrossRefGoogle Scholar
  64. 64.
    Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science (80). 271, (1996).Google Scholar
  65. 65.
    Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–44 (2005).CrossRefGoogle Scholar
  66. 66.
    Huang, X., Neretina, S. & El-Sayed, M. A. Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Adv. Mater. 21, 4880–4910 (2009).CrossRefGoogle Scholar
  67. 67.
    Handbook of Nanophase and Nanostructured Materials. (Kluwer Academic Publishers, 2003). doi:10.1007/0-387-23814-XGoogle Scholar
  68. 68.
    Lue, J. T. A review of characterization and physical property studies of metallic nanoparticles. J. Phys. Chem. Solids 62, 1599–1612 (2001).CrossRefGoogle Scholar
  69. 69.
    Jeong, U., Teng, X., Wang, Y., Yang, H. & Xia, Y. Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 19, 33–60 (2007).CrossRefGoogle Scholar
  70. 70.
    De, M., Ghosh, P. S. & Rotello, V. M. Applications of Nanoparticles in Biology. Adv. Mater. 1003, 4225–4241 (2008).CrossRefGoogle Scholar
  71. 71.
    Saha, K., Bajaj, A., Duncan, B. & Rotello, V. M. Beauty is skin deep: A surface monolayer perspective on nanoparticle interactions with cells and bio-macromolecules. Small 7, 1903–1918 (2011).CrossRefGoogle Scholar
  72. 72.
    Hirsch, L. R. et al. Metal nanoshells. Ann. Biomed. Eng. 34, 15–22 (2006).CrossRefGoogle Scholar
  73. 73.
    Law, W. C. et al. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5, 1302–1310 (2009).CrossRefGoogle Scholar
  74. 74.
    Pankhurst, Q. A., Thanh, N. T. K., Jones, S. K. & Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 42, 224001 (2009).CrossRefGoogle Scholar
  75. 75.
    Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F. & Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971–3010 (2012).CrossRefGoogle Scholar
  76. 76.
    Lauterbur, P. C. C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973).Google Scholar
  77. 77.
    Elmaoğlu, M. & Çelik, A. in MRI Handbook 7–23 (Springer US, 2011).Google Scholar
  78. 78.
    John P Ridgway, Cardiovascular magnetic resonance physics for clinicians: part I. Journal of Cardiovascular Magnetic Resonance 12, 71 (2010).CrossRefGoogle Scholar
  79. 79.
    Magnetic Resonance Imaging (MRI) | National Institute of Biomedical Imaging and Bioengineering. Available at: https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri.
  80. 80.
    Elmaoğlu, M. & Çelik, A. in MRI Handbook 25–46 (Springer US, 2011).Google Scholar
  81. 81.
    Zhang, Y., Lin, J. D., Vijayaragavan, V., Bhakoo, K. K. & Tan, T. T. Y. Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T1 magnetic resonance imaging. Chem. Commun. 48, 10322–10324 (2012).CrossRefGoogle Scholar
  82. 82.
    Cheng, K. et al. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009).CrossRefGoogle Scholar
  83. 83.
    Klasson, A. et al. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media Mol. Imaging 3, 106–111 (2008).CrossRefGoogle Scholar
  84. 84.
    Wang, Y. X. J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 1, 35–40 (2011).Google Scholar
  85. 85.
    Law, W. C. et al. Optically and magnetically doped organically modified silica nanoparticles as efficient magnetically guided biomarkers for two-photon imaging of live cancer cells. J. Phys. Chem. C 112, 7972–7977 (2008).CrossRefGoogle Scholar
  86. 86.
    Erogbogbo, F. et al. Biocompatible magnetofluorescent probes: Luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. ACS Nano 4, 5131–5138 (2010).CrossRefGoogle Scholar
  87. 87.
    Lai, C. W. et al. Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: A facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small 4, 218–224 (2008).CrossRefGoogle Scholar
  88. 88.
    Mi, C. et al. Doped nanostructures. Nanoscale 2, 1057 (2010).CrossRefGoogle Scholar
  89. 89.
    Ma, Y. et al. Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Adv. Funct. Mater. 23, 815–822 (2013).CrossRefGoogle Scholar
  90. 90.
    Alric, C. et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 130, 5908–5915 (2008).CrossRefGoogle Scholar
  91. 91.
    Kalender, W. A. X-ray computed tomography. Phys. Med. Biol. 51, R29–R43 (2006).CrossRefGoogle Scholar
  92. 92.
    Popovtzer, R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int. J. Nanomedicine 6, 2859 (2011).CrossRefGoogle Scholar
  93. 93.
    Hainfeld, J. F., Slatkin, D. N., Focella, T. M. & Smilowitz, H. M. Gold nanoparticles: A new X-ray contrast agent. Br. J. Radiol. 79, 248–253 (2006).CrossRefGoogle Scholar
  94. 94.
    Xu, C. et al. Au–Fe3O4 Dumbbell Nanoparticles as Dual-Functional Probes. Angew. Chemie Int. Ed. 47, 173–176 (2008).CrossRefGoogle Scholar
  95. 95.
    Zhou, B. et al. Synthesis and characterization of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool and tumor CT imaging. ACS Appl. Mater. Interfaces 6, 17190–17199 (2014).CrossRefGoogle Scholar
  96. 96.
    Liu, Y. et al. Hybrid BaYbF5 nanoparticles: novel binary contrast agent for high-resolution in vivo X-ray computed tomography angiography. Adv. Healthc. mater. 1, 461–6 (2012).CrossRefGoogle Scholar
  97. 97.
    Ingvaldsen, J. E. & Gulla, J. A. Context-aware user-driven news recommendation. CEUR Workshop Proceedings 1542, (John Wiley & Sons, Inc., 2015).Google Scholar
  98. 98.
    Orringer, D. a et al. Small solutions for big problems: the application of nanoparticles to brain tumor diagnosis and therapy. Clin. Pharmacol. Ther. 85, 531–534 (2009).CrossRefGoogle Scholar
  99. 99.
    Orringer, D. A. et al. The brain tumor window model: A combined cranial window and implanted glioma model for evaluating iIntraoperative contrast agents. Neurosurgery 66, 736–743 (2010).CrossRefGoogle Scholar
  100. 100.
    Pezacki, J. P. et al. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat. Chem. Biol. 7, 137–145 (2011).CrossRefGoogle Scholar
  101. 101.
    Koole, R. et al. Magnetic quantum dots for multimodal imaging. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 1, 475–491 (2009).Google Scholar
  102. 102.
    Michalet, X. & Pinaud, F. F. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science (80). 307, 538–545 (2005).Google Scholar
  103. 103.
    Swami, A. et al. in Drug Delivery 9–30 (Springer US, 2012). doi:https://doi.org/10.1007/978-1-4614-2305-8Google Scholar
  104. 104.
    Pridgen, E. M., Langer, R. & Farokhzad, O. C. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine (Lond). 2, 669–680 (2007).CrossRefGoogle Scholar
  105. 105.
    Torchilin, V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm. 71, 431–444 (2009).CrossRefGoogle Scholar
  106. 106.
    Medeiros, S. F., Santos, A. M., Fessi, H. & Elaissari, A. Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm. 403, 139–161 (2011).CrossRefGoogle Scholar
  107. 107.
    Katz, J. S. & Burdick, J. A. Light-responsive biomaterials: Development and applications. Macromol. Biosci. 10, 339–348 (2010).CrossRefGoogle Scholar
  108. 108.
    De Jong, W. H. & Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 3, 133–149 (2008).CrossRefGoogle Scholar
  109. 109.
    Probst, C. E., Zrazhevskiy, P., Bagalkot, V. & Gao, X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 65, 703–718 (2013).CrossRefGoogle Scholar
  110. 110.
    Cheng, Z. et al. Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI. Biomaterials 35, 6359–6368 (2014).CrossRefGoogle Scholar
  111. 111.
    Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A. 100, 13549–54 (2003).CrossRefGoogle Scholar
  112. 112.
    Heat-Related Illness: Symptoms, Types, and First Aid. Available at: http://www.medicinenet.com/hyperthermia/article.html.
  113. 113.
    Van Loo, G. et al. The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death Differ. 9, 1031–42 (2002).CrossRefGoogle Scholar
  114. 114.
    Kumar, C. S. S. R. & Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011).CrossRefGoogle Scholar
  115. 115.
    Goldstein, L. S., Dewhirst, M. W., Repacholi, M. & Kheifets, L. Summary, conclusions and recommendations: adverse temperature levels in the human body. Int. J. Hyperth. 19, 373–384 (2003).CrossRefGoogle Scholar
  116. 116.
    Raaphorst, G. P., Freeman, M. L. & Dewey, W. C. Radiosensitivity and Recovery from Radiation Damage in Cultured CHO Cells Exposed to Hyperthermia at 42.5 or 45.5°C. Radiat. Res. 79, 390 (1979).CrossRefGoogle Scholar
  117. 117.
    Habash, R. W. Y., Bansal, R., Krewski, D. & Alhafid, H. T. Thermal therapy, Part 2: Hyperthermia techniques. Crit. Rev. Biomed. Eng. 34, 491–542 (2006).CrossRefGoogle Scholar
  118. 118.
    Cabuy, E. Hyperthermia in cancer treatment Hyperthermia in Cancer Treatment. Neoplasma 41, 269–276 (2016).Google Scholar
  119. 119.
    GILCHRIST, R. K. et al. Selective inductive heating of lymph nodes. 146, 596–606 (1957).Google Scholar
  120. 120.
    McCarthy, J. R. & Weissleder, R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008).CrossRefGoogle Scholar
  121. 121.
    Dutz, S. & Hergt, R. Magnetic particle hyperthermia-A promising tumour therapy? Nanotechnology 25, 452001 (2014).CrossRefGoogle Scholar
  122. 122.
    Bornstein, B. A. et al. Local hyperthermia, radiation therapy, and chemotherapy in patients with local-regional recurrence of breast carcinoma. Int. J. Radiat. Oncol. 25, 79–85 (1993).CrossRefGoogle Scholar
  123. 123.
    Jordan, A. et al. Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia. Int. J. Hyperth. 9, 51–68 (1993).CrossRefGoogle Scholar
  124. 124.
    Jeyadevan, B. Present status and prospects of magnetite nanoparticles-based hyperthermia. J. Ceram. Soc. Japan 118, 391–401 (2010).CrossRefGoogle Scholar
  125. 125.
    Suto, M. et al. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1493–1496 (2009).CrossRefGoogle Scholar
  126. 126.
    Kötitz, R., Weitschies, W., Trahms, L. & Semmler, W. Investigation of Brownian and Néel relaxation in magnetic fluids. J. Magn. Magn. Mater. 201, 102–104 (1999).Google Scholar
  127. 127.
    Rosensweig, R. E. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002).CrossRefGoogle Scholar
  128. 128.
    Hergt, R. et al. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745–3754 (1998).CrossRefGoogle Scholar
  129. 129.
    Jean-Paul Fortin, et al. Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia. J. Am. Chem. Soc., 129 (9), 2628–2635 (2007).CrossRefGoogle Scholar
  130. 130.
    Fortin, J. P., Gazeau, F. & Wilhelm, C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J. 37, 223–228 (2008).CrossRefGoogle Scholar
  131. 131.
    Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005).CrossRefGoogle Scholar
  132. 132.
    Schütt, W. et al. Applications of Magnetic Targeting in Diagnosis and Therapy-Possibilities and Limitations: A Mini-Review. Hybridoma 16, 109–117 (1997).CrossRefGoogle Scholar
  133. 133.
    Derfus, A. M. et al. Remotely triggered release from magnetic nanoparticles. Adv. Mater. 19, 3932–3936 (2007).CrossRefGoogle Scholar
  134. 134.
    Kost, J., Wolfrum, J. & Langer, R. Magnetically enhanced insulin release in diabetic rats. J. Biomed. Mater. Res. 21, 1367–1373 (1987).CrossRefGoogle Scholar
  135. 135.
    Zonghuan Lu, et al. Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embedded with Co@Au Nanoparticles. Langmuir, 21 (5), 2042–2050 (2005).CrossRefGoogle Scholar
  136. 136.
    Chu, K. F. & Dupuy, D. E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14, 199–208 (2014).CrossRefGoogle Scholar
  137. 137.
    Pereira, P. L. Actual role of radiofrequency ablation of liver metastases. Eur. Radiol. 17, 2062–70 (2007).CrossRefGoogle Scholar
  138. 138.
    Nikfarjam, M., Muralidharan, V. & Christophi, C. Mechanisms of Focal Heat Destruction of Liver Tumors. J. Surg. Res. 127, 208–223 (2005).CrossRefGoogle Scholar
  139. 139.
    Ahmed, M., Brace, C. L., Lee, F. T. & Goldberg, S. N. Principles of and advances in percutaneous ablation. Radiology 258, 351–69 (2011).CrossRefGoogle Scholar
  140. 140.
    Den Brok, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br. J. Cancer 95, 896–905 (2006).CrossRefGoogle Scholar
  141. 141.
    Lubner, M. G., Brace, C. L., Hinshaw, J. L. & Lee, F. T. Microwave tumor ablation: mechanism of action, clinical results, and devices. J. Vasc. Interv. Radiol. 21, S192-203 (2010).CrossRefGoogle Scholar
  142. 142.
    Wright, A. S., Lee, F. T. & Mahvi, D. M. Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis. Ann. Surg. Oncol. 10, 275–83 (2003).CrossRefGoogle Scholar
  143. 143.
    Yeh, Y. C., Creran, B. & Rotello, V. M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4, 1871–80 (2012).CrossRefGoogle Scholar
  144. 144.
    Wang, C. et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J. Am. Chem. Soc. 131, 8824–8832 (2009).CrossRefGoogle Scholar
  145. 145.
    Lyon, J. L., Fleming, D. A., Stone, M. B., Schiffer, P. & Williams, M. E. Synthesis of Fe oxide Core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett. 4, 719–723 (2004).CrossRefGoogle Scholar
  146. 146.
    Xu, C., Wang, B. & Sun, S. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 131, 4216–4217 (2009).CrossRefGoogle Scholar
  147. 147.
    Kim, D., Kim, J. W., Jeong, Y. Y. & Jon, S. Antibiofouling Polymer Coated Gold@Iron Oxide Nanoparticle (GION) as a Dual Contrast Agent for CT and MRI. Bull. Korean Chem. Soc. 30, 1855–1857 (2009).CrossRefGoogle Scholar
  148. 148.
    Lim, J. K., Majetich, S. A. & Tilton, R. D. Stabilization of superparamagnetic iron oxide core-gold shell nanoparticles in high ionic strength media. Langmuir 25, 13384–13393 (2009).CrossRefGoogle Scholar
  149. 149.
    Wang, L. et al. Monodispersed core-shell Fe3O4@Au nanoparticles. J. Phys. Chem. B 109, 21593–21601 (2005).CrossRefGoogle Scholar
  150. 150.
    Lim, J. & Majetich, S. A. Composite magnetic-plasmonic nanoparticles for biomedicine: Manipulation and imaging. Nano Today 8, 98–113 (2013).CrossRefGoogle Scholar
  151. 151.
    Jin, X. et al. Facile deposition of continuous gold shells on Tween-20 modified Fe3O4 superparticles. J. Mater. Chem. B 1, 1921–1925 (2013).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ravichandran Manisekaran
    • 1
  1. 1.Center for Research and Advanced Studies of the National Polytechnic InstituteMexico CityMexico

Personalised recommendations