Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 267 Accesses

Abstract

As we saw in the previous chapters, simplified models are a useful tool to interpret LHC and other experiments’ data in terms of a minimal theory of Dark Matter, which contains only the relevant degrees of freedom that can be probed in our searches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The initial configuration \(\chi \chi \) is a CP eigenstate with eigenvalue \(-1\):the DM particles are identical fermions and their wavefunction must be antisymmetric. In the limit of zero velocity \(L=0\) requires an antisymmetric opposite spin configuration corresponding to \(S=0\). Thus the CP eigenvalue of the \(\chi \chi \) is \((-1)^{2L+S+1}=-1\). In the final state \(f\overline{f}\) f and \(\overline{f}\) have opposite chiralities, implying opposite helicities if we neglect the fermion mass \(m_f\), and the total spin along that axis is \(+\)1. Thus the CP eigenvalue for the final state is \((-1)^{2L+S+1}=+1\). CP conservation thus forbids the annihilation of two DM particles into two massless fermions in the limit of zero velocity, if the fermion current preserves chirality (see also [6]).

  2. 2.

    The “Minimal Dark Matter” model of [7, 8] can be seen as a generalization of this scenario to arbitrary representations.

  3. 3.

    This can naturally happen in various scenarios, e.g. split SUSY [9, 10] or recently proposed mini-split, motivated by the 125 GeV higgs [11, 12].

  4. 4.

    The simplest model that could provide a massive Majorana particle interacting with the \(Z'\) could be the following. We use the 2-component notation. We introduce a Majorana fermion \(\psi _0\) and two Weyl fermions \(\psi _1\), \(\psi _2\). \(\psi _1\) and \(\psi _2\) interact with the \(Z'\) with opposite charges, and we write a mass term (\(\psi _{2\,\alpha }\psi _1^\alpha +\) h.c.) that is both gauge invariant and Lorentz invariant. With just one Weyl spinor we would not manage to write a gauge invariant term. (A term like \(\psi _1^\dagger \psi _1\) would violate Lorentz symmetry.) The Lagrangian for these fields would be

    figure a

    where \(\Phi \) is the scalar field responsible of the BEH mechanism in the \(U(1)'\) sector. Notice that the third line, independently from the value of \(y_1\), \(y_2\), prevents us from writing (9.6) in terms of a Majorana spinor \(\left( {\begin{array}{c}\psi _1\\ \psi _2\end{array}}\right) \). Once \(\Phi \) assumes a vev v, the mass matrix for the triplet \((\psi _1,\psi _2, \psi _0)\) is

    figure b

    where M is a mass term for \(\psi _0\) that can possibly appear in (9.6). The diagonalisation of the mass matrix brings to a Majorana massive particle interacting with \(Z'\), which can be close to \(\psi _0\) if \(M, y_i v\ll m\). Notice that the terms proportional to v in (9.7) introduce a splitting in the mass matrix between what could be the L- and R-handed components of a Dirac spinor. Some theories of inelastic dark matter elaborate on the possibility that this mass splitting is small, and the lightest eigenstate could convert into the heavier one via inelastic scattering.

    We conclude by stressing that the vector-like coupling of \(Z'\) to \(\psi _1\) and \(\psi _2\) ensures the cancellation of the gauge anomaly in the diagrams involving these fermions.

  5. 5.

    We remark the following. If the \(Z'\) mass \(m_{Z'}\) is larger than a few TeV, the bounds shown in Fig. 9.3 and the following fall in a region in which the product \(g_{Z'}g_\chi ^{1/2}\) is necessarily \(\gtrsim 1\). This is in contrast with the fact that our \(Z'\) model has a rather large mediator width, and it must be \(g_{Z'}g_\chi ^{1/2} \lesssim 1\) in order to have \(\Gamma _{Z'}\lesssim m_{Z'}\). For this reason, with the present experimental sensitivity the lines of Fig. 9.8 correspond to a realistic physical situation only for \(m_{Z'}\sim \,\mathrm{few\ TeV}\).

  6. 6.

    For instance, Ref. [58] practically exclude an area of \(10^\circ \) from consideration. Similarly, theoretical studies (see e.g. [59]) mask out \(1^\circ \) to \(2^\circ \) around the Galactic Centre. We do not show the Fermi-LAT Galactic Centre bounds on our plots because they are inferior to the Fermi-LAT dSph bounds. It is also worth mentioning that measurements of the dSphs are essentially foregrounds-free, which renders them extremely robust.

References

  1. T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez, A. Riotto, Complementarity of DM Searches in a Consistent Simplified Model: the Case of Z’, JHEP 071, 1610 (2016), arXiv:1605.06513

  2. A. Manalaysay, L.U.X. The, dark matter search, Talk at IDM2016 (Sheffield, UK, 2016)

    Google Scholar 

  3. PICO Collaboration, C. Amole et al., Dark Matter Search Results from the PICO-60 CF \(_3\) I Bubble Chamber, Submitted to: Phys. Rev. D (2015), arXiv:1510.07754

  4. IceCube Collaboration, M.G. Aartsen et al., Search for dark matter annihilations in the Sun with the 79-string IceCube detector, Phys. Rev. Lett. 110, no. 13 131302 (2013), arXiv:1212.4097

  5. IceCube Collaboration, M.G. Aartsen et al., Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry, JCAP 022(04), 1604 (2016), arXiv:1601.00653

  6. M. Drees, M.M. Nojiri, The Neutralino relic density in minimal N=1 supergravity, Phys. Rev. D47, 376–408 (1993), arXiv:hep-ph/9207234

  7. M. Cirelli, N. Fornengo, A. Strumia, Minimal dark matter, Nucl. Phys. B753, 178–194 (2006), arXiv:hep-ph/0512090

  8. M. Cirelli, A. Strumia, Minimal Dark Matter: Model and results, New J. Phys. 11, 105005 (2009), arXiv:0903.3381

  9. N. Arkani-Hamed, S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06, 073 (2005), arXiv:hep-th/0405159

  10. G.F. Giudice, A. Romanino, Split supersymmetry, Nucl. Phys. B699, 65–89 (2004), arXiv:hep-ph/0406088. [Erratum: Nucl. Phys. B 706, 487 (2005)]

  11. A. Arvanitaki, N. Craig, S. Dimopoulos, G. Villadoro, Mini-Split, JHEP 02 (2013), p. 126, arXiv:1210.0555

  12. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner, T. Zorawski, Simply Unnatural Supersymmetry, arXiv:1212.6971

  13. Z. Bern, P. Gondolo, M. Perelstein, Neutralino annihilation into two photons, Phys. Lett. B411, 86–96 (1997), arXiv:hep-ph/9706538

  14. L. Bergstrom, P. Ullio, Full one loop calculation of neutralino annihilation into two photons, Nucl. Phys. B504, 27–44 (1997), arXiv:hep-ph/9706232

  15. O. Lebedev, Y. Mambrini, Axial dark matter: The case for an invisible Z’, Phys. Lett. B734, 350–353 (2014), arXiv:1403.4837

  16. F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02, 016 (2016), arXiv:1510.02110. [JHEP02,016(2016)]

  17. N.F. Bell, Y.Cai, R.K. Leane, Mono-W Dark Matter Signals at the LHC: Simplified Model Analysis, JCAP 1601, no. 01 051 (2016), arXiv:1512.00476

  18. O. Buchmueller, M.J. Dolan, S.A. Malik, C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: Vector mediators, JHEP 037, 1501 (2015), arXiv:1407.8257

  19. M. Blennow, J. Herrero-Garcia, T. Schwetz, S. Vogl, Halo-independent tests of dark matter direct detection signals: local DM density, LHC, and thermal freeze-out, JCAP 1508, no. 08 039 (2015), arXiv:1505.05710

  20. A. Alves, S. Profumo, F.S. Queiroz, The dark \(Z^{\prime }\) portal: direct, indirect and collider searches, JHEP 1404, 063 (2014), arXiv:1312.5281

  21. A. Alves, A. Berlin, S. Profumo, F.S. Queiroz, Dark Matter Complementarity and the \(Z^\prime \) Portal, Phys. Rev. D92, no.8 083004 (2015), arXiv:1501.03490

  22. A. Alves, A. Berlin, S. Profumo, F.S. Queiroz, Dirac-fermionic dark matter in U \((1)_{X}\) models, JHEP 10, 076 (2015), arXiv:1506.06767

  23. H. An, X. Ji, L.-T. Wang, Light Dark Matter and Z’ Dark Force at Colliders, JHEP 07, 182 (2012), arXiv:1202.2894

  24. H. An, R. Huo, L.-T. Wang, Searching for Low Mass Dark Portal at the LHC, Phys. Dark Univ. 2, 50–57 (2013), arXiv:1212.2221

  25. M.T. Frandsen, F.Kahlhoefer, A.Preston, S.Sarkar, K. Schmidt-Hoberg, LHC and Tevatron Bounds on the Dark Matter Direct Detection Cross-Section for Vector Mediators, JHEP 07, 123 (2012), arXiv:1204.3839

  26. G. Arcadi, Y. Mambrini, M.H.G. Tytgat, B. Zaldivar, Invisible \(Z^\prime \) and dark matter: LHC vs LUX constraints, JHEP 03, 134 (2014), arXiv:1401.0221

  27. I.M. Shoemaker, L. Vecchi, Unitarity and Monojet Bounds on Models for DAMA, CoGeNT, and CRESST-II, Phys.Rev. D86, 015023 (2012), arXiv:1112.5457

  28. M.T. Frandsen, F.Kahlhoefer, S.Sarkar, K. Schmidt-Hoberg, Direct detection of dark matter in models with a light \(Z^\prime \), JHEP 09, 128 (2011), arXiv:1107.2118

  29. P. Gondolo, P. Ko, Y. Omura, Light dark matter in leptophobic \(Z^\prime \) models, Phys. Rev. D85, 035022 (2012), arXiv:1106.0885

  30. M. Fairbairn, J. Heal, Complementarity of dark matter searches at resonance, Phys. Rev. D90, no. 11 115019 (2014), arXiv:1406.3288

  31. P. Harris, V.V. Khoze, M. Spannowsky, C. Williams, Constraining Dark Sectors at Colliders: Beyond the Effective Theory Approach, Phys. Rev. D 91, 055009 (2015), arXiv:1411.0535

  32. M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini, K. Schmidt-Hoberg, Constraining Dark Sectors with Monojets and Dijets, JHEP 07,089 (2015), arXiv:1503.05916

  33. T. Jacques, K. Nordström, Mapping monojet constraints onto Simplified Dark Matter Models, JHEP 06, 142 (2015), arXiv:1502.05721

  34. A.J. Brennan, M.F. McDonald, J. Gramling, T.D. Jacques, Collide and Conquer: Constraints on Simplified Dark Matter Models using Mono-X Collider Searches, JHEP 1605 (112), (2016), arXiv:1603.01366

  35. H. Dreiner, D. Schmeier, J. Tattersall, Contact Interactions Probe Effective Dark Matter Models at the LHC, Europhys. Lett. 102, 51001 (2013), arXiv:1303.3348

  36. K. Ghorbani, H. Ghorbani, Two-portal Dark Matter, Phys. Rev. D91, no. 12 123541 (2015), arXiv:1504.03610

  37. S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications (Cambridge University Press, 2013)

    Google Scholar 

  38. F. D’Eramo, B.J. Kavanagh, P. Panci, You can hide but you have to run: direct detection with vector mediators, JHEP 1608, 111 (2016), arXiv:1605.04917

  39. P. Gondolo, G. Gelmini, Cosmic abundances of stable particles: Improved analysis. Nucl. Phys. B 360, 145–179 (1991)

    Article  ADS  Google Scholar 

  40. K. Griest, D. Seckel, Three exceptions in the calculation of relic abundances. Phys. Rev. D 43, 3191–3203 (1991)

    Article  ADS  Google Scholar 

  41. Planck Collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. A 13, 594 (2016), arXiv:1502.01589

  42. A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, Y. Xu, The Effective Field Theory of Dark Matter Direct Detection, JCAP 1302,004 (2013), arXiv:1203.3542

  43. M. Cirelli, E. Del Nobile, P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 1310,019 (2013), arXiv:1307.5955

  44. U. Haisch, F. Kahlhoefer, On the importance of loop-induced spin-independent interactions for dark matter direct detection, JCAP 1304,050 (2013), arXiv:1302.4454

  45. CMS Collaboration, V. Khachatryan et al., Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04, 025 (2015), arXiv:1412.6302

  46. CMS Collaboration, S. Chatrchyan et al., Measurement of inclusive W and Z boson production cross sections in pp collisions at \(\sqrt{s}\) = 8 TeV, Phys. Rev. Lett. 112, 191802 (2014), arXiv:1402.0923

  47. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07, 079 (2014), arXiv:1405.0301

  48. CMS Collaboration Collaboration, Search for a Narrow Resonance Produced in 13 TeV pp Collisions Decaying to Electron Pair or Muon Pair Final States, Technical Report CMS-PAS-EXO-15-005, CERN, Geneva, 2015

    Google Scholar 

  49. CMS Collaboration, V. Khachatryan et al., Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at \(\sqrt{s} = 8\) TeV, Eur. Phys. J. C75, no. 5 235 (2015), arXiv:1408.3583

  50. G. Busoni, A. De Simone, E. Morgante, A. Riotto, On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC, Phys.Lett. B728, 412–421 (2014), arXiv:1307.2253

  51. G. Busoni, A. De Simone, J. Gramling, E. Morgante, A. Riotto, On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC, Part II: Complete Analysis for the s-channel, JCAP 1406, 060 (2014), arXiv:1402.1275

  52. D. Racco, A. Wulzer, F. Zwirner, Robust collider limits on heavy-mediator Dark Matter, JHEP 05, 009 (2015), arXiv:1502.04701

  53. O. Buchmueller, M.J. Dolan, C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 1401, 025 (2014), arXiv:1308.6799

  54. DES, Fermi-LAT Collaboration, A. Drlica-Wagner et al., Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data, Astrophys. J. 809, no. 1 L4 (2015), arXiv:1503.02632

  55. Fermi-LAT Collaboration, M. Ackermann et al., Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115, no. 23 231301 (2015), arXiv:1503.02641

  56. J.F. Navarro, C.S. Frenk, S.D.M. White, A Universal density profile from hierarchical clustering, Astrophys. J. 490, 493–508 (1997), arXiv:astro-ph/9611107

  57. HESS Collaboration, H. Abdallah et al., Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S, Phys. Rev. Lett. 117(11), 111301 (2016), arXiv:1607.08142

  58. Fermi-LAT Collaboration, M. Ackermann et al., Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements, Astrophys. J. 761, 91 (2012), arXiv:1205.6474

  59. T. Daylan, D.P. Finkbeiner, D. Hooper, T. Linden, S.K.N. Portillo, N.L. Rodd, T.R. Slatyer, The characterization of the gamma-ray signal from the central Milky Way: A case for annihilating dark matter, Phys. Dark Univ. 12, 1–23 (2016), arXiv:1402.6703

  60. T. Cohen, M. Lisanti, A. Pierce, T.R. Slatyer, Wino Dark Matter Under Siege, JCAP 1310, 061 (2013), arXiv:1307.4082

  61. J. Fan, M. Reece, In Wino Veritas? Indirect Searches Shed Light on Neutralino Dark Matter, JHEP 10, 124 (2013), arXiv:1307.4400

  62. M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik, P. Panci, M. Raidal, F. Sala, A. Strumia, PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 1130, 051 (2011), arXiv:1012.4515. [Erratum: JCAP1210, E01(2012)]

  63. IceCube Collaboration, A. Achterberg et al., First Year Performance of The IceCube Neutrino Telescope, Astropart. Phys. 26, 155–173 (2006), arXiv:astro-ph/0604450

  64. J. Braun, J. Dumm, F. De Palma, C. Finley, A. Karle, T. Montaruli, Methods for point source analysis in high energy neutrino telescopes, Astropart. Phys. 29, 299–305 (2008), arXiv:0801.1604

  65. IceCube Collaboration, M. Rameez et al., Search for dark matter annihilations in the Sun using the completed IceCube neutrino telescope (2015), http://pos.sissa.it/archive/conferences/236/1209/ICRC2015_1209.pdf

  66. G. Punzi, Comments on likelihood fits with variable resolution, eConf C030908, WELT002 235 (2004), arXiv:physics/0401045

  67. K. Hagiwara, R.D. Peccei, D. Zeppenfeld, K. Hikasa, Probing the Weak Boson Sector in e+ e- –> W+ W-. Nucl. Phys. B 282, 253–307 (1987)

    Article  ADS  Google Scholar 

  68. G.J. Gounaris, J. Layssac, F.M. Renard, New and standard physics contributions to anomalous Z and gamma selfcouplings, Phys. Rev. D62, 073013 (2000), arXiv:hep-ph/0003143

  69. R. Catena, B. Schwabe, Form factors for dark matter capture by the Sun in effective theories, JCAP 1504, no. 04 042 (2015), arXiv:1501.03729

  70. J. Blumenthal, P. Gretskov, M. Krämer, C. Wiebusch, Effective field theory interpretation of searches for dark matter annihilation in the Sun with the IceCube Neutrino Observatory, Phys. Rev. D91, no. 3 035002 (2015), arXiv:1411.5917

  71. J. Heisig, M. Krämer, M. Pellen, C. Wiebusch, Constraints on Majorana Dark Matter from the LHC and IceCube, Phys. Rev. D93, no. 5 055029 (2016), arXiv:1509.07867

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Morgante .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Morgante, E. (2017). A U(1)’ Gauge Mediator. In: Aspects of WIMP Dark Matter Searches at Colliders and Other Probes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-67606-7_9

Download citation

Publish with us

Policies and ethics