A U(1)’ Gauge Mediator
Chapter
First Online:
- 199 Downloads
Abstract
As we saw in the previous chapters, simplified models are a useful tool to interpret LHC and other experiments’ data in terms of a minimal theory of Dark Matter, which contains only the relevant degrees of freedom that can be probed in our searches.
References
- 1.T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez, A. Riotto, Complementarity of DM Searches in a Consistent Simplified Model: the Case of Z’, JHEP 071, 1610 (2016), arXiv:1605.06513
- 2.A. Manalaysay, L.U.X. The, dark matter search, Talk at IDM2016 (Sheffield, UK, 2016)Google Scholar
- 3.PICO Collaboration, C. Amole et al., Dark Matter Search Results from the PICO-60 CF \(_3\) I Bubble Chamber, Submitted to: Phys. Rev. D (2015), arXiv:1510.07754
- 4.IceCube Collaboration, M.G. Aartsen et al., Search for dark matter annihilations in the Sun with the 79-string IceCube detector, Phys. Rev. Lett. 110, no. 13 131302 (2013), arXiv:1212.4097
- 5.IceCube Collaboration, M.G. Aartsen et al., Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry, JCAP 022(04), 1604 (2016), arXiv:1601.00653
- 6.M. Drees, M.M. Nojiri, The Neutralino relic density in minimal N=1 supergravity, Phys. Rev. D47, 376–408 (1993), arXiv:hep-ph/9207234
- 7.M. Cirelli, N. Fornengo, A. Strumia, Minimal dark matter, Nucl. Phys. B753, 178–194 (2006), arXiv:hep-ph/0512090
- 8.M. Cirelli, A. Strumia, Minimal Dark Matter: Model and results, New J. Phys. 11, 105005 (2009), arXiv:0903.3381
- 9.N. Arkani-Hamed, S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06, 073 (2005), arXiv:hep-th/0405159
- 10.G.F. Giudice, A. Romanino, Split supersymmetry, Nucl. Phys. B699, 65–89 (2004), arXiv:hep-ph/0406088. [Erratum: Nucl. Phys. B 706, 487 (2005)]
- 11.A. Arvanitaki, N. Craig, S. Dimopoulos, G. Villadoro, Mini-Split, JHEP 02 (2013), p. 126, arXiv:1210.0555
- 12.N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner, T. Zorawski, Simply Unnatural Supersymmetry, arXiv:1212.6971
- 13.Z. Bern, P. Gondolo, M. Perelstein, Neutralino annihilation into two photons, Phys. Lett. B411, 86–96 (1997), arXiv:hep-ph/9706538
- 14.L. Bergstrom, P. Ullio, Full one loop calculation of neutralino annihilation into two photons, Nucl. Phys. B504, 27–44 (1997), arXiv:hep-ph/9706232
- 15.O. Lebedev, Y. Mambrini, Axial dark matter: The case for an invisible Z’, Phys. Lett. B734, 350–353 (2014), arXiv:1403.4837
- 16.F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02, 016 (2016), arXiv:1510.02110. [JHEP02,016(2016)]
- 17.N.F. Bell, Y.Cai, R.K. Leane, Mono-W Dark Matter Signals at the LHC: Simplified Model Analysis, JCAP 1601, no. 01 051 (2016), arXiv:1512.00476
- 18.O. Buchmueller, M.J. Dolan, S.A. Malik, C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: Vector mediators, JHEP 037, 1501 (2015), arXiv:1407.8257
- 19.M. Blennow, J. Herrero-Garcia, T. Schwetz, S. Vogl, Halo-independent tests of dark matter direct detection signals: local DM density, LHC, and thermal freeze-out, JCAP 1508, no. 08 039 (2015), arXiv:1505.05710
- 20.A. Alves, S. Profumo, F.S. Queiroz, The dark \(Z^{\prime }\) portal: direct, indirect and collider searches, JHEP 1404, 063 (2014), arXiv:1312.5281
- 21.A. Alves, A. Berlin, S. Profumo, F.S. Queiroz, Dark Matter Complementarity and the \(Z^\prime \) Portal, Phys. Rev. D92, no.8 083004 (2015), arXiv:1501.03490
- 22.A. Alves, A. Berlin, S. Profumo, F.S. Queiroz, Dirac-fermionic dark matter in U \((1)_{X}\) models, JHEP 10, 076 (2015), arXiv:1506.06767
- 23.H. An, X. Ji, L.-T. Wang, Light Dark Matter and Z’ Dark Force at Colliders, JHEP 07, 182 (2012), arXiv:1202.2894
- 24.H. An, R. Huo, L.-T. Wang, Searching for Low Mass Dark Portal at the LHC, Phys. Dark Univ. 2, 50–57 (2013), arXiv:1212.2221
- 25.M.T. Frandsen, F.Kahlhoefer, A.Preston, S.Sarkar, K. Schmidt-Hoberg, LHC and Tevatron Bounds on the Dark Matter Direct Detection Cross-Section for Vector Mediators, JHEP 07, 123 (2012), arXiv:1204.3839
- 26.G. Arcadi, Y. Mambrini, M.H.G. Tytgat, B. Zaldivar, Invisible \(Z^\prime \) and dark matter: LHC vs LUX constraints, JHEP 03, 134 (2014), arXiv:1401.0221
- 27.I.M. Shoemaker, L. Vecchi, Unitarity and Monojet Bounds on Models for DAMA, CoGeNT, and CRESST-II, Phys.Rev. D86, 015023 (2012), arXiv:1112.5457
- 28.M.T. Frandsen, F.Kahlhoefer, S.Sarkar, K. Schmidt-Hoberg, Direct detection of dark matter in models with a light \(Z^\prime \), JHEP 09, 128 (2011), arXiv:1107.2118
- 29.P. Gondolo, P. Ko, Y. Omura, Light dark matter in leptophobic \(Z^\prime \) models, Phys. Rev. D85, 035022 (2012), arXiv:1106.0885
- 30.M. Fairbairn, J. Heal, Complementarity of dark matter searches at resonance, Phys. Rev. D90, no. 11 115019 (2014), arXiv:1406.3288
- 31.P. Harris, V.V. Khoze, M. Spannowsky, C. Williams, Constraining Dark Sectors at Colliders: Beyond the Effective Theory Approach, Phys. Rev. D 91, 055009 (2015), arXiv:1411.0535
- 32.M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini, K. Schmidt-Hoberg, Constraining Dark Sectors with Monojets and Dijets, JHEP 07,089 (2015), arXiv:1503.05916
- 33.T. Jacques, K. Nordström, Mapping monojet constraints onto Simplified Dark Matter Models, JHEP 06, 142 (2015), arXiv:1502.05721
- 34.A.J. Brennan, M.F. McDonald, J. Gramling, T.D. Jacques, Collide and Conquer: Constraints on Simplified Dark Matter Models using Mono-X Collider Searches, JHEP 1605 (112), (2016), arXiv:1603.01366
- 35.H. Dreiner, D. Schmeier, J. Tattersall, Contact Interactions Probe Effective Dark Matter Models at the LHC, Europhys. Lett. 102, 51001 (2013), arXiv:1303.3348
- 36.K. Ghorbani, H. Ghorbani, Two-portal Dark Matter, Phys. Rev. D91, no. 12 123541 (2015), arXiv:1504.03610
- 37.S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications (Cambridge University Press, 2013)Google Scholar
- 38.F. D’Eramo, B.J. Kavanagh, P. Panci, You can hide but you have to run: direct detection with vector mediators, JHEP 1608, 111 (2016), arXiv:1605.04917
- 39.P. Gondolo, G. Gelmini, Cosmic abundances of stable particles: Improved analysis. Nucl. Phys. B 360, 145–179 (1991)ADSCrossRefGoogle Scholar
- 40.K. Griest, D. Seckel, Three exceptions in the calculation of relic abundances. Phys. Rev. D 43, 3191–3203 (1991)ADSCrossRefGoogle Scholar
- 41.Planck Collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. A 13, 594 (2016), arXiv:1502.01589
- 42.A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, Y. Xu, The Effective Field Theory of Dark Matter Direct Detection, JCAP 1302,004 (2013), arXiv:1203.3542
- 43.M. Cirelli, E. Del Nobile, P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 1310,019 (2013), arXiv:1307.5955
- 44.U. Haisch, F. Kahlhoefer, On the importance of loop-induced spin-independent interactions for dark matter direct detection, JCAP 1304,050 (2013), arXiv:1302.4454
- 45.CMS Collaboration, V. Khachatryan et al., Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04, 025 (2015), arXiv:1412.6302
- 46.CMS Collaboration, S. Chatrchyan et al., Measurement of inclusive W and Z boson production cross sections in pp collisions at \(\sqrt{s}\) = 8 TeV, Phys. Rev. Lett. 112, 191802 (2014), arXiv:1402.0923
- 47.J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07, 079 (2014), arXiv:1405.0301
- 48.CMS Collaboration Collaboration, Search for a Narrow Resonance Produced in 13 TeV pp Collisions Decaying to Electron Pair or Muon Pair Final States, Technical Report CMS-PAS-EXO-15-005, CERN, Geneva, 2015Google Scholar
- 49.CMS Collaboration, V. Khachatryan et al., Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at \(\sqrt{s} = 8\) TeV, Eur. Phys. J. C75, no. 5 235 (2015), arXiv:1408.3583
- 50.G. Busoni, A. De Simone, E. Morgante, A. Riotto, On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC, Phys.Lett. B728, 412–421 (2014), arXiv:1307.2253
- 51.G. Busoni, A. De Simone, J. Gramling, E. Morgante, A. Riotto, On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC, Part II: Complete Analysis for the s-channel, JCAP 1406, 060 (2014), arXiv:1402.1275
- 52.D. Racco, A. Wulzer, F. Zwirner, Robust collider limits on heavy-mediator Dark Matter, JHEP 05, 009 (2015), arXiv:1502.04701
- 53.O. Buchmueller, M.J. Dolan, C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 1401, 025 (2014), arXiv:1308.6799
- 54.DES, Fermi-LAT Collaboration, A. Drlica-Wagner et al., Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data, Astrophys. J. 809, no. 1 L4 (2015), arXiv:1503.02632
- 55.Fermi-LAT Collaboration, M. Ackermann et al., Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115, no. 23 231301 (2015), arXiv:1503.02641
- 56.J.F. Navarro, C.S. Frenk, S.D.M. White, A Universal density profile from hierarchical clustering, Astrophys. J. 490, 493–508 (1997), arXiv:astro-ph/9611107
- 57.HESS Collaboration, H. Abdallah et al., Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S, Phys. Rev. Lett. 117(11), 111301 (2016), arXiv:1607.08142
- 58.Fermi-LAT Collaboration, M. Ackermann et al., Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements, Astrophys. J. 761, 91 (2012), arXiv:1205.6474
- 59.T. Daylan, D.P. Finkbeiner, D. Hooper, T. Linden, S.K.N. Portillo, N.L. Rodd, T.R. Slatyer, The characterization of the gamma-ray signal from the central Milky Way: A case for annihilating dark matter, Phys. Dark Univ. 12, 1–23 (2016), arXiv:1402.6703
- 60.T. Cohen, M. Lisanti, A. Pierce, T.R. Slatyer, Wino Dark Matter Under Siege, JCAP 1310, 061 (2013), arXiv:1307.4082
- 61.J. Fan, M. Reece, In Wino Veritas? Indirect Searches Shed Light on Neutralino Dark Matter, JHEP 10, 124 (2013), arXiv:1307.4400
- 62.M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik, P. Panci, M. Raidal, F. Sala, A. Strumia, PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 1130, 051 (2011), arXiv:1012.4515. [Erratum: JCAP1210, E01(2012)]
- 63.IceCube Collaboration, A. Achterberg et al., First Year Performance of The IceCube Neutrino Telescope, Astropart. Phys. 26, 155–173 (2006), arXiv:astro-ph/0604450
- 64.J. Braun, J. Dumm, F. De Palma, C. Finley, A. Karle, T. Montaruli, Methods for point source analysis in high energy neutrino telescopes, Astropart. Phys. 29, 299–305 (2008), arXiv:0801.1604
- 65.IceCube Collaboration, M. Rameez et al., Search for dark matter annihilations in the Sun using the completed IceCube neutrino telescope (2015), http://pos.sissa.it/archive/conferences/236/1209/ICRC2015_1209.pdf
- 66.G. Punzi, Comments on likelihood fits with variable resolution, eConf C030908, WELT002 235 (2004), arXiv:physics/0401045
- 67.K. Hagiwara, R.D. Peccei, D. Zeppenfeld, K. Hikasa, Probing the Weak Boson Sector in e+ e- –> W+ W-. Nucl. Phys. B 282, 253–307 (1987)ADSCrossRefGoogle Scholar
- 68.G.J. Gounaris, J. Layssac, F.M. Renard, New and standard physics contributions to anomalous Z and gamma selfcouplings, Phys. Rev. D62, 073013 (2000), arXiv:hep-ph/0003143
- 69.R. Catena, B. Schwabe, Form factors for dark matter capture by the Sun in effective theories, JCAP 1504, no. 04 042 (2015), arXiv:1501.03729
- 70.J. Blumenthal, P. Gretskov, M. Krämer, C. Wiebusch, Effective field theory interpretation of searches for dark matter annihilation in the Sun with the IceCube Neutrino Observatory, Phys. Rev. D91, no. 3 035002 (2015), arXiv:1411.5917
- 71.J. Heisig, M. Krämer, M. Pellen, C. Wiebusch, Constraints on Majorana Dark Matter from the LHC and IceCube, Phys. Rev. D93, no. 5 055029 (2016), arXiv:1509.07867
Copyright information
© Springer International Publishing AG 2017