Advertisement

A U(1)’ Gauge Mediator

  • Enrico MorganteEmail author
Chapter
  • 199 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

As we saw in the previous chapters, simplified models are a useful tool to interpret LHC and other experiments’ data in terms of a minimal theory of Dark Matter, which contains only the relevant degrees of freedom that can be probed in our searches.

References

  1. 1.
    T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez, A. Riotto, Complementarity of DM Searches in a Consistent Simplified Model: the Case of Z’, JHEP 071, 1610 (2016), arXiv:1605.06513
  2. 2.
    A. Manalaysay, L.U.X. The, dark matter search, Talk at IDM2016 (Sheffield, UK, 2016)Google Scholar
  3. 3.
    PICO Collaboration, C. Amole et al., Dark Matter Search Results from the PICO-60 CF \(_3\) I Bubble Chamber, Submitted to: Phys. Rev. D (2015), arXiv:1510.07754
  4. 4.
    IceCube Collaboration, M.G. Aartsen et al., Search for dark matter annihilations in the Sun with the 79-string IceCube detector, Phys. Rev. Lett. 110, no. 13 131302 (2013), arXiv:1212.4097
  5. 5.
    IceCube Collaboration, M.G. Aartsen et al., Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry, JCAP 022(04), 1604 (2016), arXiv:1601.00653
  6. 6.
    M. Drees, M.M. Nojiri, The Neutralino relic density in minimal N=1 supergravity, Phys. Rev. D47, 376–408 (1993), arXiv:hep-ph/9207234
  7. 7.
    M. Cirelli, N. Fornengo, A. Strumia, Minimal dark matter, Nucl. Phys. B753, 178–194 (2006), arXiv:hep-ph/0512090
  8. 8.
    M. Cirelli, A. Strumia, Minimal Dark Matter: Model and results, New J. Phys. 11, 105005 (2009), arXiv:0903.3381
  9. 9.
    N. Arkani-Hamed, S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06, 073 (2005), arXiv:hep-th/0405159
  10. 10.
    G.F. Giudice, A. Romanino, Split supersymmetry, Nucl. Phys. B699, 65–89 (2004), arXiv:hep-ph/0406088. [Erratum: Nucl. Phys. B 706, 487 (2005)]
  11. 11.
    A. Arvanitaki, N. Craig, S. Dimopoulos, G. Villadoro, Mini-Split, JHEP 02 (2013), p. 126, arXiv:1210.0555
  12. 12.
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner, T. Zorawski, Simply Unnatural Supersymmetry, arXiv:1212.6971
  13. 13.
    Z. Bern, P. Gondolo, M. Perelstein, Neutralino annihilation into two photons, Phys. Lett. B411, 86–96 (1997), arXiv:hep-ph/9706538
  14. 14.
    L. Bergstrom, P. Ullio, Full one loop calculation of neutralino annihilation into two photons, Nucl. Phys. B504, 27–44 (1997), arXiv:hep-ph/9706232
  15. 15.
    O. Lebedev, Y. Mambrini, Axial dark matter: The case for an invisible Z’, Phys. Lett. B734, 350–353 (2014), arXiv:1403.4837
  16. 16.
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02, 016 (2016), arXiv:1510.02110. [JHEP02,016(2016)]
  17. 17.
    N.F. Bell, Y.Cai, R.K. Leane, Mono-W Dark Matter Signals at the LHC: Simplified Model Analysis, JCAP 1601, no. 01 051 (2016), arXiv:1512.00476
  18. 18.
    O. Buchmueller, M.J. Dolan, S.A. Malik, C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: Vector mediators, JHEP 037, 1501 (2015), arXiv:1407.8257
  19. 19.
    M. Blennow, J. Herrero-Garcia, T. Schwetz, S. Vogl, Halo-independent tests of dark matter direct detection signals: local DM density, LHC, and thermal freeze-out, JCAP 1508, no. 08 039 (2015), arXiv:1505.05710
  20. 20.
    A. Alves, S. Profumo, F.S. Queiroz, The dark \(Z^{\prime }\) portal: direct, indirect and collider searches, JHEP 1404, 063 (2014), arXiv:1312.5281
  21. 21.
    A. Alves, A. Berlin, S. Profumo, F.S. Queiroz, Dark Matter Complementarity and the \(Z^\prime \) Portal, Phys. Rev. D92, no.8 083004 (2015), arXiv:1501.03490
  22. 22.
    A. Alves, A. Berlin, S. Profumo, F.S. Queiroz, Dirac-fermionic dark matter in U \((1)_{X}\) models, JHEP 10, 076 (2015), arXiv:1506.06767
  23. 23.
    H. An, X. Ji, L.-T. Wang, Light Dark Matter and Z’ Dark Force at Colliders, JHEP 07, 182 (2012), arXiv:1202.2894
  24. 24.
    H. An, R. Huo, L.-T. Wang, Searching for Low Mass Dark Portal at the LHC, Phys. Dark Univ. 2, 50–57 (2013), arXiv:1212.2221
  25. 25.
    M.T. Frandsen, F.Kahlhoefer, A.Preston, S.Sarkar, K. Schmidt-Hoberg, LHC and Tevatron Bounds on the Dark Matter Direct Detection Cross-Section for Vector Mediators, JHEP 07, 123 (2012), arXiv:1204.3839
  26. 26.
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat, B. Zaldivar, Invisible \(Z^\prime \) and dark matter: LHC vs LUX constraints, JHEP 03, 134 (2014), arXiv:1401.0221
  27. 27.
    I.M. Shoemaker, L. Vecchi, Unitarity and Monojet Bounds on Models for DAMA, CoGeNT, and CRESST-II, Phys.Rev. D86, 015023 (2012), arXiv:1112.5457
  28. 28.
    M.T. Frandsen, F.Kahlhoefer, S.Sarkar, K. Schmidt-Hoberg, Direct detection of dark matter in models with a light \(Z^\prime \), JHEP 09, 128 (2011), arXiv:1107.2118
  29. 29.
    P. Gondolo, P. Ko, Y. Omura, Light dark matter in leptophobic \(Z^\prime \) models, Phys. Rev. D85, 035022 (2012), arXiv:1106.0885
  30. 30.
    M. Fairbairn, J. Heal, Complementarity of dark matter searches at resonance, Phys. Rev. D90, no. 11 115019 (2014), arXiv:1406.3288
  31. 31.
    P. Harris, V.V. Khoze, M. Spannowsky, C. Williams, Constraining Dark Sectors at Colliders: Beyond the Effective Theory Approach, Phys. Rev. D 91, 055009 (2015), arXiv:1411.0535
  32. 32.
    M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini, K. Schmidt-Hoberg, Constraining Dark Sectors with Monojets and Dijets, JHEP 07,089 (2015), arXiv:1503.05916
  33. 33.
    T. Jacques, K. Nordström, Mapping monojet constraints onto Simplified Dark Matter Models, JHEP 06, 142 (2015), arXiv:1502.05721
  34. 34.
    A.J. Brennan, M.F. McDonald, J. Gramling, T.D. Jacques, Collide and Conquer: Constraints on Simplified Dark Matter Models using Mono-X Collider Searches, JHEP 1605 (112), (2016), arXiv:1603.01366
  35. 35.
    H. Dreiner, D. Schmeier, J. Tattersall, Contact Interactions Probe Effective Dark Matter Models at the LHC, Europhys. Lett. 102, 51001 (2013), arXiv:1303.3348
  36. 36.
    K. Ghorbani, H. Ghorbani, Two-portal Dark Matter, Phys. Rev. D91, no. 12 123541 (2015), arXiv:1504.03610
  37. 37.
    S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications (Cambridge University Press, 2013)Google Scholar
  38. 38.
    F. D’Eramo, B.J. Kavanagh, P. Panci, You can hide but you have to run: direct detection with vector mediators, JHEP 1608, 111 (2016), arXiv:1605.04917
  39. 39.
    P. Gondolo, G. Gelmini, Cosmic abundances of stable particles: Improved analysis. Nucl. Phys. B 360, 145–179 (1991)ADSCrossRefGoogle Scholar
  40. 40.
    K. Griest, D. Seckel, Three exceptions in the calculation of relic abundances. Phys. Rev. D 43, 3191–3203 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    Planck Collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. A 13, 594 (2016), arXiv:1502.01589
  42. 42.
    A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, Y. Xu, The Effective Field Theory of Dark Matter Direct Detection, JCAP 1302,004 (2013), arXiv:1203.3542
  43. 43.
    M. Cirelli, E. Del Nobile, P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 1310,019 (2013), arXiv:1307.5955
  44. 44.
    U. Haisch, F. Kahlhoefer, On the importance of loop-induced spin-independent interactions for dark matter direct detection, JCAP 1304,050 (2013), arXiv:1302.4454
  45. 45.
    CMS Collaboration, V. Khachatryan et al., Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04, 025 (2015), arXiv:1412.6302
  46. 46.
    CMS Collaboration, S. Chatrchyan et al., Measurement of inclusive W and Z boson production cross sections in pp collisions at \(\sqrt{s}\) = 8 TeV, Phys. Rev. Lett. 112, 191802 (2014), arXiv:1402.0923
  47. 47.
    J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07, 079 (2014), arXiv:1405.0301
  48. 48.
    CMS Collaboration Collaboration, Search for a Narrow Resonance Produced in 13 TeV pp Collisions Decaying to Electron Pair or Muon Pair Final States, Technical Report CMS-PAS-EXO-15-005, CERN, Geneva, 2015Google Scholar
  49. 49.
    CMS Collaboration, V. Khachatryan et al., Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at \(\sqrt{s} = 8\) TeV, Eur. Phys. J. C75, no. 5 235 (2015), arXiv:1408.3583
  50. 50.
    G. Busoni, A. De Simone, E. Morgante, A. Riotto, On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC, Phys.Lett. B728, 412–421 (2014), arXiv:1307.2253
  51. 51.
    G. Busoni, A. De Simone, J. Gramling, E. Morgante, A. Riotto, On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC, Part II: Complete Analysis for the s-channel, JCAP 1406, 060 (2014), arXiv:1402.1275
  52. 52.
    D. Racco, A. Wulzer, F. Zwirner, Robust collider limits on heavy-mediator Dark Matter, JHEP 05, 009 (2015), arXiv:1502.04701
  53. 53.
    O. Buchmueller, M.J. Dolan, C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 1401, 025 (2014), arXiv:1308.6799
  54. 54.
    DES, Fermi-LAT Collaboration, A. Drlica-Wagner et al., Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data, Astrophys. J. 809, no. 1 L4 (2015), arXiv:1503.02632
  55. 55.
    Fermi-LAT Collaboration, M. Ackermann et al., Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115, no. 23 231301 (2015), arXiv:1503.02641
  56. 56.
    J.F. Navarro, C.S. Frenk, S.D.M. White, A Universal density profile from hierarchical clustering, Astrophys. J. 490, 493–508 (1997), arXiv:astro-ph/9611107
  57. 57.
    HESS Collaboration, H. Abdallah et al., Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S, Phys. Rev. Lett. 117(11), 111301 (2016), arXiv:1607.08142
  58. 58.
    Fermi-LAT Collaboration, M. Ackermann et al., Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements, Astrophys. J. 761, 91 (2012), arXiv:1205.6474
  59. 59.
    T. Daylan, D.P. Finkbeiner, D. Hooper, T. Linden, S.K.N. Portillo, N.L. Rodd, T.R. Slatyer, The characterization of the gamma-ray signal from the central Milky Way: A case for annihilating dark matter, Phys. Dark Univ. 12, 1–23 (2016), arXiv:1402.6703
  60. 60.
    T. Cohen, M. Lisanti, A. Pierce, T.R. Slatyer, Wino Dark Matter Under Siege, JCAP 1310, 061 (2013), arXiv:1307.4082
  61. 61.
    J. Fan, M. Reece, In Wino Veritas? Indirect Searches Shed Light on Neutralino Dark Matter, JHEP 10, 124 (2013), arXiv:1307.4400
  62. 62.
    M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik, P. Panci, M. Raidal, F. Sala, A. Strumia, PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 1130, 051 (2011), arXiv:1012.4515. [Erratum: JCAP1210, E01(2012)]
  63. 63.
    IceCube Collaboration, A. Achterberg et al., First Year Performance of The IceCube Neutrino Telescope, Astropart. Phys. 26, 155–173 (2006), arXiv:astro-ph/0604450
  64. 64.
    J. Braun, J. Dumm, F. De Palma, C. Finley, A. Karle, T. Montaruli, Methods for point source analysis in high energy neutrino telescopes, Astropart. Phys. 29, 299–305 (2008), arXiv:0801.1604
  65. 65.
    IceCube Collaboration, M. Rameez et al., Search for dark matter annihilations in the Sun using the completed IceCube neutrino telescope (2015), http://pos.sissa.it/archive/conferences/236/1209/ICRC2015_1209.pdf
  66. 66.
    G. Punzi, Comments on likelihood fits with variable resolution, eConf C030908, WELT002 235 (2004), arXiv:physics/0401045
  67. 67.
    K. Hagiwara, R.D. Peccei, D. Zeppenfeld, K. Hikasa, Probing the Weak Boson Sector in e+ e- –> W+ W-. Nucl. Phys. B 282, 253–307 (1987)ADSCrossRefGoogle Scholar
  68. 68.
    G.J. Gounaris, J. Layssac, F.M. Renard, New and standard physics contributions to anomalous Z and gamma selfcouplings, Phys. Rev. D62, 073013 (2000), arXiv:hep-ph/0003143
  69. 69.
    R. Catena, B. Schwabe, Form factors for dark matter capture by the Sun in effective theories, JCAP 1504, no. 04 042 (2015), arXiv:1501.03729
  70. 70.
    J. Blumenthal, P. Gretskov, M. Krämer, C. Wiebusch, Effective field theory interpretation of searches for dark matter annihilation in the Sun with the IceCube Neutrino Observatory, Phys. Rev. D91, no. 3 035002 (2015), arXiv:1411.5917
  71. 71.
    J. Heisig, M. Krämer, M. Pellen, C. Wiebusch, Constraints on Majorana Dark Matter from the LHC and IceCube, Phys. Rev. D93, no. 5 055029 (2016), arXiv:1509.07867

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Deutsches Elektronen-SynchrotronHamburgGermany

Personalised recommendations