Simplified Models

  • Enrico MorganteEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter we will discuss the construction and the use of simplified models for DM searches at the LHC. First we are going to describe the philosophy of simplified models in relation to the EFT approach and to complete new physics models. Then we are going to list the set of benchmarks models which have emerged as the most common ones in the recent literature. Finally we are going to summarize results obtained with these models, without entering into details about LHC searches, implementation of the models for experimental analyses, or recasting of existing bounds.


  1. 1.
    J. Abdallah et al., Simplified models for dark matter and missing energy searches at the LHC, arXiv:1409.2893
  2. 2.
    S. Malik, C. McCabe, H. Araujo, A. Belyaev, C. Boehm, et al., Interplay and characterization of dark matter searches at colliders and in direct detection experiments, Phys. Dark. Univ. 9–10, 51–58 (2015), arXiv:1409.4075
  3. 3.
    J. Abdallah et al., Simplified models for dark matter searches at the LHC. Phys. Dark Univ. 9–10, 8–23 (2015), arXiv:1506.03116
  4. 4.
    D. Abercrombie et al., Dark matter benchmark models for early LHC run-2 searches: report of the ATLAS/CMS dark matter forum, arXiv:1507.00966
  5. 5.
    G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified \(s\)-channel models of dark matter, arXiv:1603.04156
  6. 6.
    A. De Simone, T. Jacques, Simplified models vs. effective field theory approaches in dark matter searches, Eur. Phys. J. C 76(7), 367 (2016), arXiv:1603.08002
  7. 7.
    G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Minimal flavor violation: an effective field theory approach. Nucl. Phys. B 645, 155–187 (2002), arXiv:hep-ph/0207036
  8. 8.
    M.J. Dolan, F. Kahlhoefer, C. McCabe, K. Schmidt-Hoberg, A taste of dark matter: flavour constraints on pseudoscalar mediators. JHEP 03, 171 (2015), arXiv:1412.5174. [Erratum: JHEP 07, 103 (2015)]
  9. 9.
    P. Agrawal, M. Blanke, K. Gemmler, Flavored dark matter beyond minimal flavor violation. JHEP 10, 72 (2014), arXiv:1405.6709
  10. 10.
    D. Racco, A. Wulzer, F. Zwirner, Robust collider limits on heavy-mediator dark matter. JHEP 05, 009 (2015), arXiv:1502.04701
  11. 11.
    G. Isidori, Y. Nir, G. Perez, Flavor physics constraints for physics beyond the standard model. Ann. Rev. Nucl. Part. Sci. 60, 355 (2010), arXiv:1002.0900
  12. 12.
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models. JHEP 02, 016 (2016), arXiv:1510.02110. [JHEP 02, 016 (2016)]
  13. 13.
    T. Jacques, K. Nordström, Mapping monojet constraints onto simplified dark matter models. JHEP 06, 142 (2015), arXiv:1502.05721
  14. 14.
    A.J. Brennan, M.F. McDonald, J. Gramling, T.D. Jacques, Collide and conquer: constraints on simplified dark matter models using mono-X collider searches, JHEP 1605, 112 (2016), arXiv:1603.01366
  15. 15.
    M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini, K. Schmidt-Hoberg, Constraining dark sectors with monojets and dijets. JHEP 07, 089 (2015), arXiv:1503.05916
  16. 16.
    M. Duerr, F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, S. Vogl, How to save the WIMP: global analysis of a dark matter model with two s-channel mediators, JHEP 1609, 042 (2016), arXiv:1606.07609
  17. 17.
    M. Fairbairn, J. Heal, F. Kahlhoefer, P. Tunney, Constraints on Z’ models from LHC dijet searches, JHEP 1609, 018 (2016), arXiv:1605.07940
  18. 18.
    R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone, D.M. Straub, \(U(2)\) and minimal flavour violation in supersymmetry. Eur. Phys. J. C 71, 1725 (2011), arXiv:1105.2296
  19. 19.
    R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub, Flavour physics from an approximate \(U(2)^3\) symmetry. JHEP 07, 181 (2012), arXiv:1203.4218
  20. 20.
    T. Lin, E.W. Kolb, L.-T. Wang, Probing dark matter couplings to top and bottom quarks at the LHC. Phys. Rev. D 88(6), 063510 (2013), arXiv:1303.6638
  21. 21.
    M.R. Buckley, D. Feld, D. Goncalves, Scalar simplified models for dark matter, Phys. Rev. D 91, 015017 (2015), arXiv:1410.6497
  22. 22.
    M. Duerr, P. Fileviez Pérez, J. Smirnov, Scalar dark matter: direct vs. indirect detection. JHEP 06, 152 (2016), arXiv:1509.04282
  23. 23.
    C. Englert, T. Plehn, D. Zerwas, P.M. Zerwas, Exploring the Higgs portal. Phys. Lett. B 703, 298–305 (2011), arXiv:1106.3097
  24. 24.
    C. Englert, A. Freitas, M.M. Mühlleitner, T. Plehn, M. Rauch, M. Spira, K. Walz, Precision measurements of Higgs couplings: implications for new physics scales. J. Phys. G 41, 113001 (2014), arXiv:1403.7191
  25. 25.
    ATLAS Collaboration, Sensitivity to New Phenomena via Higgs Couplings with the ATLAS Detector at a High-Luminosity LHC. Technical report ATL-PHYS-PUB-2013-015, CERN, Geneva, October 2013Google Scholar
  26. 26.
    M. Papucci, A. Vichi, K.M. Zurek, Monojet versus rest of the world I: t-channel models, JHEP 1411, 024 (2014), arXiv:1402.2285
  27. 27.
    N. Weiner, I. Yavin, UV completions of magnetic inelastic and Rayleigh dark matter for the Fermi Line(s). Phys. Rev. D 87(2), 023523 (2013), arXiv:1209.1093
  28. 28.
    M.T. Frandsen, U. Haisch, F. Kahlhoefer, P. Mertsch, K. Schmidt-Hoberg, Loop-induced dark matter direct detection signals from gamma-ray lines. JCAP 1210, 033 (2012), arXiv:1207.3971
  29. 29.
    ATLAS Collaboration, G. Aad et al., Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector. JHEP 04, 075 (2013), arXiv:1210.4491
  30. 30.
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M. Tait et al., Constraints on dark matter from colliders. Phys. Rev. D 82, 116010 (2010), arXiv:1008.1783
  31. 31.
    M. Jacob, G.C. Wick, On the general theory of collisions for particles with spin. Ann. Phys. 7, 404–428 (1959). [Ann. Phys. 281, 774 (2000)]Google Scholar
  32. 32.
    N.F. Bell, Y. Cai, J.B. Dent, R.K. Leane, T.J. Weiler, Dark matter at the LHC: effective field theories and gauge invariance. Phys. Rev. D 92(5), 053008 (2015), arXiv:1503.07874
  33. 33.
    N.F. Bell, Y. Cai, R.K. Leane, Mono-W dark matter signals at the LHC: simplified model analysis. JCAP 1601(01), 051 (2016), arXiv:1512.00476
  34. 34.
    U. Haisch, F. Kahlhoefer, T.M.P. Tait, On mono-W signatures in spin-1 simplified models, Phys. Lett. B 760, 207–213, (2016), arXiv:1603.01267
  35. 35.
    B.W. Lee, C. Quigg, H.B. Thacker, The strength of weak interactions at very high-energies and the Higgs Boson mass. Phys. Rev. Lett. 38, 883–885 (1977)ADSCrossRefGoogle Scholar
  36. 36.
    B.W. Lee, C. Quigg, H.B. Thacker, Weak interactions at very high-energies: the role of the Higgs Boson mass. Phys. Rev. D 16, 1519 (1977)ADSCrossRefGoogle Scholar
  37. 37.
    T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez, A. Riotto, Complementarity of DM searches in a consistent simplified model: the case of Z, JHEP 1610, 071 (2016), arXiv:1605.06513
  38. 38.
    N.F. Bell, Y. Cai, R.K. Leane, Dark forces in the sky: signals from Z’ and the dark Higgs, JCAP 1608, 011 (2016), arXiv:1605.09382
  39. 39.
    S. Weinberg, The Quantum Theory of Fields.Volume 2: Modern Applications (Cambridge University Press, Cambridge, 2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Deutsches Elektronen-SynchrotronHamburgGermany

Personalised recommendations